Detection of Decadal Phase Transition and Early Warning Signals of PDO in Recent and Next 100 Years
-
摘要: 本文基于临界慢化的理论,采用太平洋年代际振荡(Pacific Decadal Oscillation, PDO)指数的近百年(1900~2019年)历史数据及未来百年(2006~2100年)模式模拟数据,首先通过滑动t检验确定PDO位相转变的时间,进而借助于表征临界慢化现象的方差和自相关系数,研究了PDO年代际位相转折的早期预警信号。结果表明:(1)近百年来PDO发生了4次显著的位相转变,每次位相转变前的5~10年可以提取到早期预警信号;(2)通过对CMIP5气候模式资料计算得到的PDO进行统计合成得到未来百年的PDO序列,检测结果表明在2040年和2080年前后发生年代际转折,转折前的5~10年能够检测到早期预警信号;(3)近百年和未来百年PDO序列的位相转变及早期预警信号研究证实在PDO发生位相转变之前方差和自相关系数总能提前数年给出预警信号,也揭示了未来PDO的转折时间。
-
关键词:
- PDO (Pacific Decadal Oscillation) /
- 非线性 /
- 临界慢化 /
- 转折/突变 /
- 早期预警信号
Abstract: Based on the theory of critical slowing down, this study investigates the decadal phase transition and the early warning signals of the Pacific Decadal Oscillation (PDO) series using the historical monitoring data of PDO in the past 100 years (1900–2019) and the simulation data of the future century (2006–2100) model. First, the phase transition time of the PDO is determined by the moving t test technique. Thereafter, the early warning signal of phase transition is analyzed using the variance and autocorrelation coefficients, which characterize the critical slowing phenomenon. The results show that: (1) Four significant phase changes in the PDO occurred in the recent 100 years, and early warning signals can be given 5–10 years in advance. (2) In the next 100 years, the study of the PDO, which is obtained based on the CMIP5 data, shows that the PDO will have two decadal transitions around 2040 and 2080, and early warning signals can be given 5–10 years in advance. (3) Based on the study of the phase transition detection and early warning signals of PDO sequences in the recent and next 100 years, the variance and autocorrelation coefficients can be detected as the early warning signals of abrupt change several years in advance, which can be utilized to predict the climate changes that will affect the PDO in the future. -
图 1 (a)滑动计算方差、(b)滑动计算自相关系数示意图。L1、L2、L3、···Ln···,L12、L22、L32、···Ln2···代表长度相同的各个窗口(ML),s1、s2、s3、···sn···代表对应窗口长度数据的均方差,L为序列总长度,MT为滑动步长,α1代表L1和L12的自相关系数,α2代表L2和L22的自相关系数,···αn代表Ln和Ln2的自相关系数,LT表示滞后时间
Figure 1. (a) Calculation of the variance and (b) autocorrelation coefficient using the sliding window method. L1, L2, L3, ···, Ln···and L12, L22, L32,···Ln2···denote windows of the same length; s1, s2, s3,···sn··· denote the variances of the corresponding windows; L is the total length of the sequence; MT is the sliding step; α1 denotes the autocorrelation coefficients of L1 and L12, α2 denotes the autocorrelation coefficients of L2 and L22, αn denotes the autocorrelation coefficients of Ln and Ln2; LT denotes the lag time
图 3 基于MTT方法的近百年PDO序列位相转变检测:(a)滑动窗口t为5年;(b)滑动窗口t为12年。虚线表示显著性水平为0.05
Figure 3. Phase transition detection of the PDO sequence in the recent 100 years based on the MTT (Moving t-test) method: (a) Sliding window t is 5 years; (b) sliding window t is 12 years. Dashed lines denote the 0.05 significance level
图 4 近百年PDO序列方差信号检测:(a)1921年位相转变的方差信号检测;(b)1942年位相转变的方差信号检测;(c)1976年位相转变的方差信号检测;(d)1998年位相转变的方差信号检测。滑动窗口(ML)为10年,滑动步长(MT)为3个月
Figure 4. Signals detection of the variance of the PDO sequence in the recent 100 years: (a) Variance signal detection of phase transitions in 1921; (b) variance signal detection of phase transitions in 1942; (c) variance signal detection of phase transitions in 1976; (d) variance signal detection of phase transitions in 1998. ML (sliding window) is 10 years and MT (sliding step) is 3 months
图 5 近百年PDO序列自相关系数信号检测:(a)1921年位相转变的自相关系数信号检测;(b)1942年位相转变的自相关系数信号检测;(c)1976年位相转变的自相关系数信号检测;(d)1998年位相转变的自相关系数信号检测。ML为10年、MT为3个月、滞后时间(LT)为1个月
Figure 5. Signals detection of the autocorrelation coefficient of the PDO sequence in the recent 100 years: (a) Autocorrelation signal detection of phase transitions in 1921; (b) autocorrelation signal detection of phase transitions in 1942; (c) autocorrelation signal detection of phase transitions in 1976; (d) autocorrelation signal detection of phase transitions in 1998. ML is 10 years, MT is 3 months, and LT (lag time) is 1 month
图 8 未来百年PDO序列方差信号检测:(a)2040年位相转变的方差信号检测;(b)2080年位相转变的方差信号检测。ML为10年,MT为3个月
Figure 8. Signals detection of the variance of the PDO sequence in the next 100 years: (a) Variance signal detection of phase transitions in 2040; (b) variance signal detection of phase transitions in 2080. ML is 10 years and MT is 3 months
图 9 未来百年PDO序列自相关系数信号检测:(a)2040年位相转变的自相关系数信号检测;(b)2080年位相转变的自相关系数信号检测。ML为10年,MT为3个月,LT为1个月
Figure 9. Signals detection of the autocorrelation coefficient of the PDO sequence in the next 100 years: (a) Autocorrelation signal detection of phase transitions in 2040; (b) autocorrelation signal detection of phase transitions in 2080. ML is 10 years, MT is 3 months, and LT is 1 month
表 1 CMIP5(phase 5 of Coupled Model Intercomparison Project)的36个气候模式
Table 1. The 36 climate models of CMIP5 (phase 5 of Coupled Model Intercomparison Project)
编号 模式名称 编号 模式名称 编号 模式名称 编号 模式名称 1 ACCESS1-0 10 CMCC-CMS 19 GISS-E2-H-CC 28 IPSL-CM5B-LR 2 ACCESS1-3 11 CNRM-CM5 20 GISS-E2-R 29 MIROC-ESM 3 BCC-CSM1-1 12 CSIRO-Mk3-6-0 21 GISS-E2-R-CC 30 MIROC-ESM-CHEM 4 BCC-CSM1-1-M 13 FGOALS-g2 22 HadGEM2-AO 31 MIROC5 5 BNU-ESM 14 FIO-ESM 23 HadGEM2-CC 32 MPI-ESM-LR 6 CanESM2 15 GFDL-CM3 24 HadGEM2-ES 33 MPI-ESM-MR 7 CCSM4 16 GFDL-ESM2G 25 inmcm4 34 MRI-CGCM3 8 CESM1-BGC 17 GFDL-ESM2M 26 IPSL-CM5A-LR 35 NorESM1-M 9 CMCC-CM 18 GISS-E2-H 27 IPSL-CM5A-MR 36 NorESM1-ME 注:加粗字体模式表示选中的最具代表性的模式。 -
[1] Alley R B, Marotzke J, Nordhaus W D, et al. 2003. Abrupt climate change [J]. Science, 299(5615): 2005−2010. doi: 10.1126/science.1081056 [2] Bence J R. 1995. Analysis of short time series: Correcting for autocorrelation [J]. Ecology, 76(2): 628−639. doi: 10.2307/1941218 [3] Birk K, Lupo A R, Guinan P, et al. 2010. The interannual variability of midwestern temperatures and precipitation as related to the ENSO and PDO [J]. Atmósfera, 23(2): 95−128. [4] Carpenter S R, Brock W A. 2006. Rising variance: A leading indicator of ecological transition [J]. Ecology Letters, 9(3): 311−318. doi: 10.1111/j.1461-0248.2005.00877.x [5] Cayan D R, Dettinger M D, Diaz H F, et al. 1998. Decadal variability of precipitation over western North America [J]. Journal of Climate, 11(12): 3148−3166. doi:10.1175/1520-0442(1998)011<3148:DVOPOW>2.0.CO;2 [6] 陈红. 2019. CMIP5耦合模式对太平洋年代际振荡的模拟与预估 [J]. 大气科学, 43(4): 783–795.Chen H. 2019. Simulation and projection of the Pacific Decadal Oscillation based on CMIP5 coupled models [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(4): 783–795. doi: 10.3878/j.issn.1006-9895.1809.18142 [7] Chikamoto Y, Kimoto M, Ishii M, et al. 2013. An overview of decadal climate predictability in a multi-model ensemble by climate model MIROC [J]. Climate Dyn., 40(5): 1201−1222. doi: 10.1007/s00382-012-1351-y [8] Dakos V, Scheffer M, Van Nes E H, et al. 2008. Slowing down as an early warning signal for abrupt climate change [J]. Proc. Natl. Acad. Sci. USA, 105(38): 14308−14312. doi: 10.1073/pnas.0802430105 [9] Davis R E. 1976. Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean [J]. J. Phys. Oceanogr., 6(3): 249−266. doi:10.1175/1520-0485(1976)006<0249:POSSTA>2.0.CO;2 [10] Delworth T L, Mann M E. 2000. Observed and simulated multidecadal variability in the Northern Hemisphere [J]. Climate Dyn., 16(9): 661−676. doi: 10.1007/s003820000075 [11] 丁一汇, 司东, 柳艳菊, 等. 2018. 论东亚夏季风的特征、驱动力与年代际变化 [J]. 大气科学, 42(3): 533−558. doi: 10.3878/j.issn.1006-9895.1712.17261Ding Y H, Si D, Liu Y J, et al. 2018. On thecharacteristics, driving forces and inter-decadal variability of the East Asian summer monsoon [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(3): 533−558. doi: 10.3878/j.issn.1006-9895.1712.17261 [12] 丁一汇, 李怡, 王遵娅, 等. 2020. 亚非夏季风的年代际变化: 大西洋多年代际振荡与太平洋年代际振荡的协同作用 [J]. 大气科学学报, 43(1): 20−32. doi: 10.13878/j.cnki.dqkxxb.20191011007Ding Y H, Li Y, Wang Z Y, et al. 2020. Interdecadal variation of Afro-Asian summer monsoon: Coordinated effects of AMO and PDO oceanic modes [J]. Trans. Atmos. Sci. (in Chinese), 43(1): 20−32. doi: 10.13878/j.cnki.dqkxxb.20191011007 [13] Fisher L. 2011. Review: Marten Scheffer, Critical transitions in nature and society [J]. The American Journal of Psychology, 124(3): 365−367. doi: 10.5406/amerjpsyc.124.3.0365 [14] Fuentes-Franco R, Giorgi F, Coppola E, et al. 2016. The role of ENSO and PDO in variability of winter precipitation over North America from twenty first century CMIP5 projections [J]. Climate Dyn., 46(9-10): 3259−3277. doi: 10.1007/s00382-015-2767-y [15] Gershunov A, Barnett T P. 1998. Interdecadal modulation of ENSO teleconnections [J]. Bull. Amer. Meteor. Soc., 79(12): 2715−2726. doi:10.1175/1520-0477(1998)079<2715:IMOET>2.0.CO;2 [16] Gopalakrishnan E A, Sharma Y, John T, et al. 2016. Early warning signals for critical transitions in a thermoacoustic system [J]. Scientific Reports, 6: 35310. doi: 10.1038/srep35310 [17] Guttal V, Jayaprakash C. 2008. Changing skewness: An early warning signal of regime shifts in ecosystems [J]. Ecology Letters, 11(5): 450−460. doi: 10.1111/j.1461-0248.2008.01160.x [18] Hare S R, Mantua N J. 2000. Empirical evidence for North Pacific regime shifts in 1977 and 1989 [J]. Progress in Oceanography, 47(2−4): 103−145. doi: 10.1016/S0079-6611(00)00033-1 [19] He W P, Liu Q Q, Gu B, et al. 2016. A novel method for detecting abrupt dynamic change based on the changing Hurst exponent of spatial images [J]. Climate Dyn., 47(7-8): 2561−2571. doi: 10.1007/s00382-016-2983-0 [20] Kuznetsov Y A. 2004. Elements of Applied Bifurcation Theory [M]. 3rd ed. New York: Springer-Verlag. doi: 10.1007/978-1-4757-3978-7 [21] Lenton T M, Livina V N, Dakos V, et al. 2012. Early warning of climate tipping points from critical slowing down: Comparing methods to improve robustness [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1962): 1185–1204. doi: 10.1098/rsta.2011.0304 [22] 李建平, 史久恩. 1993. 一百年来全球气候突变的检测与分析 [J]. 大气科学, 17(Z1): 132−140. doi: 10.3878/j.issn.1006-9895.1993.z1.20Li J P, Shi J E. 1993. The detection and analysis of the abrupt change of the global climate during the last 100 years [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 17(Z1): 132−140. doi: 10.3878/j.issn.1006-9895.1993.z1.20 [23] Lin P F, Yu Z P, Lü J H, et al. 2019. Two regimes of Atlantic multidecadal oscillation: Cross-basin dependent or Atlantic-intrinsic [J]. Science Bulletin, 64(3): 198−204. doi: 10.1016/j.scib.2018.12.027 [24] Mantua N J, Hare S R. 2002. The Pacific decadal oscillation [J]. Journal of Oceanography, 58(1): 35−44. doi: 10.1023/A:1015820616384 [25] Mantua N J, Hare S R, Zhang Y, et al. 1997. A Pacific interdecadal climate oscillation with impacts on salmon production [J]. Bull. Amer. Meteor. Soc., 78(6): 1069−1080. doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2 [26] Minobe S. 2000. Spatio-temporal structure of the pentadecadal variability over the North Pacific [J]. Progress in Oceanography, 47(2−4): 381−408. doi: 10.1016/S0079-6611(00)00042-2 [27] Okumura Y M, Deser C, Hu A X, et al. 2009. North Pacific climate response to freshwater forcing in the Subarctic North Atlantic: Oceanic and atmospheric pathways [J]. J. Climate, 22(6): 1424−1445. doi: 10.1175/2008JCLI2511.1 [28] Qian C, Zhou T J. 2014. Multidecadal variability of North China aridity and its relationship to PDO during 1900–2010 [J]. J. Climate, 27(3): 1210−1222. doi: 10.1175/JCLI-D-13-00235.1 [29] Scheffer M, Bascompte J, Brock W A, et al. 2009. Early-warning signals for critical transitions [J]. Nature, 461(7260): 53−59. doi: 10.1038/nature08227 [30] Spielmann K A, Peeples M A, Glowacki D M, et al. 2016. Early warning signals of social transformation: A case study from the US southwest [J]. PLoS ONE, 11(10): e0163685. doi: 10.1371/journal.pone.0163685 [31] 苏小芸, 陈丽君, 王文才, 等. 2020. 甘东南地区水氡浓度的临界慢化现象研究 [J]. 地震工程学报, 42(5): 1104−1110. doi: 10.3969/j.issn.1000-0844.2020.05.1104Su X Y, Chen L J, Wang WC, et al. 2020. Critical-slowing-down phenomenon of water radon concentrations in the southeastern Gansu region [J]. China Earthquake Engineering Journal (in Chinese), 42(5): 1104−1110. doi: 10.3969/j.issn.1000-0844.2020.05.1104 [32] Timmermann A, An S I, Krebs U, et al. 2005. ENSO suppression due to weakening of the North Atlantic thermohaline circulation [J]. J. Climate, 18(16): 3122−3139. doi: 10.1175/JCLI3495.1 [33] Tong J L, Wu H, Hou W, et al. 2014. Early warning signals of abrupt temperature change in different regions of China over the past 50 years [J]. Chinese Physics B, 23(4): 049201. doi: 10.1088/1674-1056/23/4/049201 [34] Trefois C, Antony P M, Goncalves J, et al. 2015. Critical transitions in chronic disease: Transferring concepts from ecology to systems medicine [J]. Current Opinion in Biotechnology, 34: 48−55. doi: 10.1016/j.copbio.2014.11.020 [35] Venegas J G, Winkler T, Musch G, et al. 2005. Self-organized patchiness in asthma as a prelude to catastrophic shifts [J]. Nature, 434(7034): 777−782. doi: 10.1038/nature03490 [36] 王绍武, 叶瑾琳. 1995. 近百年全球气候变暖的分析 [J]. 大气科学, 19(5): 545−553. doi: 10.3878/j.issn.1006-9895.1995.05.04Wang S W, Ye J L. 1995. An analysis of global warming during the lastone hundred years [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 19(5): 545−553. doi: 10.3878/j.issn.1006-9895.1995.05.04 [37] Wang L, Chen W, Huang R H. 2008. Interdecadal modulation of PDO on the impact of ENSO on the East Asian winter monsoon [J]. Geophys. Res. Lett., 35(20): L20702. doi: 10.1029/2008GL035287 [38] 王革丽, 杨培才, 卞建春, 等. 2011. 一个包含外强迫因子的非平稳时间序列的预测方法 [J]. 科学通报, 56(25): 2107−2110. doi: 10.1360/csb2011-56-25-2107Wang G L, Yang P C, Bian J C, et al. 2011. A novel approach in predicting non-stationary time series by combining external forces [J]. Chinese Sci. Bull (in Chinese), 56(25): 2107−2110. doi: 10.1360/csb2011-56-25-2107 [39] 魏凤英. 1999. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 62–76.Wei F Y. 1999. Modern Climatic Statistical Diagnosis and ForecastingTechnology (in Chinese) [M]. Beijing: China Meteorological Press, 62–76. [40] 吴浩, 侯威, 颜鹏程. 2013. 试用临界慢化原理探讨气候突变 [J]. 物理学报, 62(3): 039206. doi: 10.7498/aps.62.039206Wu H, Hou W, Yan P C. 2013. Using the principle of criticalslowing down to discuss the abrupt climate change [J]. Acta Phys. Sin. (in Chinese), 62(3): 039206. doi: 10.7498/aps.62.039206 [41] 吴波, 周天军, 孙倩. 2017. 海洋模式初始化同化方案对IAP近期气候预测系统回报试验技巧的影响 [J]. 地球科学进展, 32(4): 342−352. doi: 10.11867/j.issn.1001-8166.2017.04.0342Wu B, Zhou T J, Sun Q. 2017. Impacts of initialization schemes of oceanic states on the predictive skills of the IAP near-term climate prediction system [J]. Advances in EarthScience (in Chinese), 32(4): 342−352. doi: 10.11867/j.issn.1001-8166.2017.04.0342 [42] 吴浩, 侯威, 颜鹏程, 等. 2012. 基于临界慢化现象的气候突变前兆信号的初步研究 [J]. 物理学报, 61(20): 209202. doi: 10.7498/aps.61.209202Wu H, Hou W, Yan P C, et al. 2012. Thepreliminary research about the precursory signals of abrupt climate change based on critical slowing down phenomenon [J]. Acta Phys. Sin. (in Chinese), 61(20): 209202. doi: 10.7498/aps.61.209202 [43] 肖栋, 李建平. 2007. 全球海表温度场中主要的年代际突变及其模态 [J]. 大气科学, 31(5): 839−854. doi: 10.3878/j.issn.1006-9895.2007.05.08Xiao D, Li J P. 2007. Main decadal abrupt changes anddecadal modes in global sea surface temperature field [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 31(5): 839−854. doi: 10.3878/j.issn.1006-9895.2007.05.08 [44] 严中伟. 1992. 60年代北半球夏季气候跃变过程的初步分析 [J]. 大气科学, 16(1): 111−119. doi: 10.3878/j.issn.1006-9895.1992.01.16Yan Z W. 1992. A primary analysis of the process of the 1960snorthern hemispheric summer climatic jump [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 16(1): 111−119. doi: 10.3878/j.issn.1006-9895.1992.01.16 [45] 严中伟, 李兆元, 王晓春. 1993. 历史上10年–100年尺度气候跃变的分析 [J]. 大气科学, 17(6): 663−672. doi: 10.3878/j.issn.1006-9895.1993.06.03Yan Z W, Li Z Y, Wang X C. 1993. An analysis ofdecade-to-century–scale climatic jumps in history [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 17(6): 663−672. doi: 10.3878/j.issn.1006-9895.1993.06.03 [46] 晏锐, 蒋长胜, 张浪平. 2011. 汶川8.0级地震前水氡浓度的临界慢化现象研究 [J]. 地球物理学报, 54(7): 1817−1826. doi: 10.3969/j.issn.0001-5733.2011.07.015Yan R, Jiang C S, Zhang L P. 2011. Study on critical slowing down phenomenon of radon concentrations in water before the Wenchuan Ms 8.0 earthquake [J]. Chinese J. Geophys. (in Chinese), 54(7): 1817−1826. doi: 10.3969/j.issn.0001-5733.2011.07.015 [47] 颜鹏程, 侯威, 胡经国. 2012. 基于Logistic模型的均值突变时间序列临界预警研究 [J]. 物理学报, 61(18): 189202. doi: 10.7498/aps.61.189202Yan P C, Hou W, Hu J G. 2012. Thecritical warning research of the mean time series mutations based on Logistic model [J]. Acta Phys. Sin. (in Chinese), 61(18): 189202. doi: 10.7498/aps.61.189202 [48] 杨培才, 卞建春, 王革丽, 等. 2003. 气候系统的层次结构和非平稳行为: 复杂系统预测问题探讨 [J]. 科学通报, 48(13): 1470−1476. doi: 10.3321/j.issn:0023-074X.2003.13.023Yang P C, Bian J C, Wang G L, et al. 2003. The hierarchy structure and non-linear structure and non-stationary behavior of climate system: The study of prediction problem ofcomplex systems [J]. Chinese Science Bulletin (in Chinese), 48(13): 1470−1476. doi: 10.3321/j.issn:0023-074X.2003.13.023 [49] 杨修群, 朱益民, 谢倩, 等. 2004. 太平洋年代际振荡的研究进展 [J]. 大气科学, 28(6): 979−992. doi: 10.3878/j.issn.1006-9895.2004.06.15Yang X Q, Zhu Y M, Xie Q, et al. 2004. Advances in studiesof Pacific decadal oscillation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 28(6): 979−992. doi: 10.3878/j.issn.1006-9895.2004.06.15 [50] 于渌, 郝柏林. 1984. 相变和临界现象 [M]. 北京: 科学出版社. Yu L, Hao B L. 1984. Phase Transitions and Critical Phenomena (in Chinese) [M]. Beijing: Science Press. [51] Zhang Y, Wallace J M, Battisti D S. 1997. ENSO-like interdecadal variability: 1900–93 [J]. J. Climate, 10(5): 1004−1020. doi:10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2 [52] Zhang R, Delworth T L, Held I M. 2007. Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature? [J]. Geophys. Res. Lett., 34(2): L02709. doi: 10.1029/2006GL028683 [53] Zhang G W, Zeng G, Li C, et al. 2020. Impact of PDO and AMO on interdecadal variability in extreme high temperatures in North China over the most recent 40-year period [J]. Climate Dyn., 54(5): 3003−3020. doi: 10.1007/s00382-020-05155-z [54] 朱益民, 杨修群. 2003. 太平洋年代际振荡与中国气候变率的联系 [J]. 气象学报, 61(6): 641−654. doi: 10.3321/j.issn:0577-6619.2003.06.001Zhu Y M, Yang X Q. 2003. Relationships between PacificDecadal Oscillation (PDO) and climate variabilities in China [J]. Acta Meteor. Sinica (in Chinese), 61(6): 641−654. doi: 10.3321/j.issn:0577-6619.2003.06.001 -