高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

江淮地区夏季极端日降水事件变化特征及其与Rossby波活动的联系

孙思远 管兆勇 金大超

孙思远, 管兆勇, 金大超. 2021. 江淮地区夏季极端日降水事件变化特征及其与Rossby波活动的联系[J]. 大气科学, 45(X): 1−12 doi: 10.3878/j.issn.1006-9895.2108.20226
引用本文: 孙思远, 管兆勇, 金大超. 2021. 江淮地区夏季极端日降水事件变化特征及其与Rossby波活动的联系[J]. 大气科学, 45(X): 1−12 doi: 10.3878/j.issn.1006-9895.2108.20226
SUN Siyuan, GUAN Zhaoyong, JIN Dachao. 2021. Variation Features of Summer Regional Daily Precipitation Extreme Events in Yangtze–Huaihe Rivers Region and Their Relationships with Rossby Wave Activities [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(X): 1−12 doi: 10.3878/j.issn.1006-9895.2108.20226
Citation: SUN Siyuan, GUAN Zhaoyong, JIN Dachao. 2021. Variation Features of Summer Regional Daily Precipitation Extreme Events in Yangtze–Huaihe Rivers Region and Their Relationships with Rossby Wave Activities [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(X): 1−12 doi: 10.3878/j.issn.1006-9895.2108.20226

江淮地区夏季极端日降水事件变化特征及其与Rossby波活动的联系

doi: 10.3878/j.issn.1006-9895.2108.20226
基金项目: 国家重点研发计划重点专项2019YFC1510201,公益性行业(气象)科研专项GYHY201406024,江苏省PAPD项目
详细信息
    作者简介:

    孙思远,女,1994年出生,主要从事气候动力学研究。E-mail: sunsy@nuist.edu.cn

    通讯作者:

    管兆勇,E-mail: guanzy@nuist.edu.cn

  • 中图分类号: P466

Variation Features of Summer Regional Daily Precipitation Extreme Events in Yangtze–Huaihe Rivers Region and Their Relationships with Rossby Wave Activities

Funds: National Key Research and Development Program of China (Grant 2019YFC1510201), China Meteorological Administration Special Public Welfare Research Fund (Grant GYHY201406024), PAPD Project of Jiangsu Province
  • 摘要: 利用NCEP/NCAR逐日再分析资料和中国国家级地面气象站基本气象要素日值数据集,研究了1979~2016年(38年)夏季江淮地区区域性极端日降水事件的统计特征及其与Rossby波活动的联系。结果表明:在38年夏季(6~7月)中,江淮地区区域性极端日降水量的95百分位阈值为33.95 mm d−1,且共有63次极端日降水事件发生。江淮地区极端日降水事件发生时,在对流层中低层受气旋性异常环流控制,在对流层上层受反气旋性异常环流控制,为极端日降水事件的形成和维持提供了有利的斜压性环流背景。源于孟加拉湾和中国南海地区的水汽在江淮地区有较强的汇集,为极端日降水事件的发生、发展提供了有利的水汽条件。在极端日降水事件发生期间,引起江淮地区扰动涡度拟能显著变化的主要是时间平均气流对扰动涡度的平流输送项和扰动气流中的水平散度项;在极端日降水事件发生当天,对流层上层的扰动涡度拟能迅速减弱,同时在低层快速增强。波动起源于里海和黑海附近,有明显的下游频散效应,传至江淮地区约需3~5 d时间,为江淮地区极端日降水事件的形成提供了扰动能量。这些结果加深了对极端日降水事件成因的认识,并为预报预测提供了思路。
  • 图  1  1979~2016年夏季(a)江淮地区极端日降水事件的平均降水量(单位:mm d−1)分布,及其(b)与前一日降水量之差的分布。红色矩形框区域为江淮地区,蓝色实线自南向北分别为长江、淮河和黄河

    Figure  1.  (a) Precipitation (units: mm d−1) averaged from RDPEs (regional daily precipitation extreme events) in YHR (Yangtze-Huai rivers) region and (b) the differences of mean precipitation between RDPEs and the day before RDPEs occurred in the summers of 1979–2016. The red rectangular frames represent YHR regions. The thick blue lines from south to north indicate the Yangtze River, Huai River, and Yellow River, respectively

    图  2  1979~2016年夏季江淮地区极端日降水事件发生时合成的(a)850 hPa、(b)500 hPa、(c)300 hPa异常风的流函数(阴影,单位:106 m2 s−1,打点表示通过90%信度水平的显著性t检验)、旋转风分量(流线,单位:m s−1)和辐散风分量(单位:m s−1,箭头表示通过90%信度水平的显著性t检验)以及(d)整层(1000~300 hPa)积分的水汽通量散度(阴影,单位:106 kg s−1,打点表示通过90%信度水平的显著性t检验)及水汽通量辐散分量(单位:kg m−1 s−1,箭头表示通过90%信度水平的显著性t检验)和旋转分量(流线,单位:kg m−1 s−1

    Figure  2.  Composites of stream functions (shadings, units: 106 m2 s−1, areas passing t-test at 90% confidence level are stippled), rotational components (streamlines, units: m s−1), and divergent components (arrows, units: m s−1, arrows represent divergent components exceed the 90% confidence level using a t-test) of the anomalous winds at (a) 850 hPa, (b) 500 hPa, (c) 300 hPa, and (d) divergences (shadings, units: 106 kg s−1, areas exceeding 90% confidence level using a t-test are stippled), divergent components (units: kg m−1 s−1, arrows represent divergent components exceed the 90% confidence level using a t-test), and rotational components (streamlines, units: kg m−1 s−1) of water vapor fluxes integrated from 1000 hPa to 300 hPa for the RDPEs in the YHR region in the summers of 1979–2016

    图  3  1979~2016年夏季江淮地区上空区域平均的(a)扰动涡度拟能(单位:10−11 s−2)的高度—时间剖面(打点区域表示通过99%信度水平的显著性t检验),(b)区域极端日降水事件中扰动涡度拟能变化($ {E_{net}} $)及引起其变化的各项($ {E_{ne1}} $$ {E_{ne2}} $、······、$ {E_{ne7}} $,单位:10−14 s−3)的整层(1000~100 hPa)积分随时间的变化,(c)水平散度项(阴影,单位:10−15 s−3)和扰动涡度(等值线,单位:10−5 s−1)的高度—时间剖面

    Figure  3.  (a) Height–time cross section of the regional average eddy enstrophy (units: 10−11 s−2) (areas exceeding 90% confidence level using a t-test are stippled), (b) temporal variations of the eddy enstrophy (EE) changing ($ {E_{net}} $) and terms causing the eddy enstrophy changing (units: 10−14 s−3, including $ {E_{ne1}} $, $ {E_{ne2}} $, ······, and $ {E_{ne7}} $) integrated vertically from 1000 hPa to 100 hPa during RDPEs, and (c) height–time cross section of the horizontal dispersion term (shadings, units: 10−15 s−3) and the disturbance vorticity (contours, units: 10−5 s−1) over the YHR region in the summers of 1979–2016. Day−5 presents 5 days before RDPEs

    图  4  1979~2016年夏季江淮地区300 hPa区域平均的经向风扰动$ v' $和波包Ve随时间的变化。左(右)侧纵坐标表示经向风扰动$ v' $数值(Ve数值)

    Figure  4.  Temporal variations of regional mean meridional wind perturbations $ v' $ and wave packet Ve at 300 hPa over the YHR region in the summers of 1979–2016. Values on the left (right) y-axis represent meridional winds perturbations (wave packet)

    图  5  1979~2016年夏季江淮地区极端日降水事件合成的300 hPa区域平均经向风扰动$ v' $(波包Ve)与整个场的经向风扰动$ v' $(波包Ve)在−5 d至+1 d的一点相关(阴影:经向风扰动$ v' $的相关;等值线:波包Ve的相关)。等值线间隔为0.1,相关系数≥0.2即为通过90%信度水平的显著性t检验

    Figure  5.  One-point correlations between the regional mean meridional wind perturbations $ v' $ (wave packet Ve) and meridional wind perturbations $ v' $ (wave packet Ve) in the whole study domain at 300 hPa over the YHR region in the summers of 1979–2016. Time-lags are set in a range from −5 d (the regional mean series lags the whole space field by 5 days) to +1 d. Shadings (contours) are the correlations for meridional wind perturbations $ v' $ (wave packet Ve). Contour intervals are 0.1. Correlation coefficients more than 0.2 represent the value passing the 90% confidence level using a t-test

    图  6  1979~2016年夏季江淮地区极端日降水事件合成的300 hPa区域平均的(a)经向风扰动$ v' $、(b)波包Ve分别与整个场的经向风扰动$ v' $、波包Ve的一点相关在30°~60°N之间的时间-经度剖面。绿色虚线表示群速度,相关系数≥0.2即为通过90%信度水平的显著性t检验

    Figure  6.  The time–longitude cross-sections of one-point correlations of the regional mean (a) meridional wind perturbations $ v' $ and (b) wave packet Ve with respectively the corresponding meridional wind perturbations $ v' $ and wave packet Ve in the whole study domain at 300 hPa averaged over the zonal belt (30°–60°N) during RDPEs in the YHR region in the summers of 1979–2016. The green dashed lines depict the group velocity. Correlation coefficients more than 0.2 represent the value passing the 90% confidence level using a t-test

    表  1  1979~2016年夏季江淮地区极端日降水事件的发生日期和区域平均雨量

    Table  1.   Occurrence dates of extreme daily precipitation events and regional average precipitation in the Yangtze-Huai rivers (YHR) region in the summers of 1979–2016

    年份雨量/mm
    197937.2(7月16日)
    198054.25(6月24日);43.86(7月9日)
    198142.04(7月10日)
    198242.26(7月19日);37.78(7月23日)
    198359.4(7月1日);37.18(7月21日)
    198445.9(6月13日)
    1985
    198651.68(6月12日)
    198747.42(7月6日)
    198835.03(7月24日);46.01(7月25日)
    1989
    199034.44(7月19日)
    199134.47(6月13日);75.26(6月14日);36.47(6月30日);34.56(7月1日);53.16(7月3日);71.88(7月6日);42.57(7月9日);38.57(7月11日)
    1992
    199336.28(6月29日)
    1994
    199536.33(6月20日)
    199648.75(6月24日);50.55(7月3日);39.24(7月4日)
    199746.51(6月30日)
    199844.38(6月1日);40.37(6月29日);42.63(6月30日)
    199939.78(6月23日);36.12(7月7日)
    200045.18(6月2日);65.57(6月3日);34.19(7月13日)
    2001
    200237.31(6月23日)
    200351.93(6月30日);36.29(7月1日);35.15(7月2日);64.61(7月5日);49.22(7月10日)
    2004
    200534.24(7月7日);40.89(7月10日)
    200655.04(7月1日)
    200740.82(7月3日);35.45(7月5日);45.3(7月8日);51.63(7月9日)
    2008
    200947;21(7月23日)
    201035.11(6月9日);46.57(7月12日)
    201136.12(6月18日)
    2012
    201344.8(6月25日);41.14(7月5日)
    201448.21(6月1日);37.1(7月5日)
    201538.63(6月2日);35.44(6月17日);36.84(6月25日);84.63(6月27日)
    201635.28(6月21日);61.6(7月1日)
    下载: 导出CSV

    表  2  1979~2016年夏季江淮地区区域极端日降水事件合成的扰动涡度拟能的变化($ {E_{net}} $)及引起其变化的各项($ {E_{ne1}} $$ {E_{ne2}} $$ {E_{ne3}} $$ {E_{ne4}} $$ {E_{ne5}} $$ {E_{ne6}} $$ {E_{ne7}} $)的整层(1000~100 hPa)积分的变化

    Table  2.   Temporal variations of the eddy enstrophy changing ($ {E_{net}} $) and terms causing the eddy enstrophy changing (including $ {E_{ne1}} $, $ {E_{ne2}} $, ······, and $ {E_{ne7}} $) integrated vertically from 1000 hPa to 100 hPa over the YHR region during RDPEs in the summers of 1979–2016

    时间$ {E_{net}} $/10−14 s−3$ {E_{ne1}} $/10−14 s−3$ {E_{ne2}} $/10−14 s−3$ {E_{ne3}} $/10−14 s−3$ {E_{ne4}} $/10−14 s−3$ {E_{ne5}} $/10−14 s−3$ {E_{ne6}} $/10−14 s−3$ {E_{ne7}} $/10−14 s−3
    Day−5−0.00530.0077−0.15060.01380.0764−0.0192−0.01460.0813
    Day−4−0.01540.0106−0.20660.02580.0681−0.0117−0.00150.1000
    Day−30.04920.0033−0.0777−0.00040.0539−0.00090.00020.0707
    Day−20.2662−0.21010.26020.07250.0865−0.03850.00280.0929
    Day−10.3226−0.5030−0.13830.14870.9577−0.1898−0.01920.0665
    Day0−0.1350−0.0745−0.8729−0.07111.51590.0167−0.2012−0.4478
    下载: 导出CSV
  • [1] Chang E K M, Yu D B. 1999. Characteristics of wave packets in the upper troposphere. Part I: Northern Hemisphere winter [J]. J. Atmos. Sci., 56(11): 1708−1728. doi:10.1175/1520-0469(1999)056<1708:cowpit>2.0.co;2
    [2] Chang E K M. 2005. The impact of wave packets propagating across Asia on Pacific cyclone development [J]. Mon. Wea. Rev., 133(7): 1998−2015. doi: 10.1175/MWR2953.1
    [3] 陈丹萍, 管兆勇, 侯俊, 等. 2016. 2007年夏季江淮强降水过程中10~30 d低频变化及其与对流层上层波包活动的联系 [J]. 大气科学学报, 39(2): 177−188. doi: 10.13878/j.cnki.dqkxxb.20150427042

    Chen D P, Guan Z Y, Hou J, et al. 2016. The 10-30-day intraseasonal oscillations of circulations and their associations with Rossby wave packets in the upper troposphere during persistent severe rainfall in summer 2007 [J]. Trans. Atmos. Sci., 39(2): 177−188. doi: 10.13878/j.cnki.dqkxxb.20150427042
    [4] Emori S, Brown S J. 2005. Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate [J]. Geophys. Res. Lett., 32(17): L17706. doi: 10.1029/2005GL023272
    [5] 傅云飞, 罗晶, 王东勇, 等. 2020. 夏季江淮地区降水的气候变化研究进展 [J]. 暴雨灾害, 39(4): 317−324. doi: 10.3969/j.issn.1004-9045.2020.04.001

    Fu Y F, Luo J, Wang D Y, et al. 2020. A review of studies on climate change of summer precipitation in the Jianghuai region [J]. Torrential Rain and Disasters, 39(4): 317−324. doi: 10.3969/j.issn.1004-9045.2020.04.001
    [6] Groisman P Y, Karl T R, Easterling D R, et al. 1999. Changes in the probability of heavy precipitation: Important indicators of climatic change [J]. Climatic Change, 42(1): 243−283. doi: 10.1023/A:1005432803188
    [7] Holopainen E O, Oort A H. 1981. On the role of large-scale transient eddies in the maintenance of the vorticity and enstrophy of the time-mean atmospheric flow [J]. J. Atmos. Sci., 38(2): 270−280. doi:10.1175/1520-0469(1981)038<0270:OTROLS>2.0.CO;2
    [8] Hoskins J B, Karoly J D. 1981. The steady linear response of a spherical atmosphere to thermal and orographic forcing [J]. J. Atmos. Sci., 38(6): 1179−1196. doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2
    [9] Hou J, Guan Z Y. 2013. Climatological characteristics of frontogenesis and related circulations over East China in June and July [J]. Acta Meteor. Sinica, 27(2): 144−169. doi: 10.1007/s13351-013-0202-z
    [10] 黄昌兴, 朱乾根, 周伟灿. 2001. 鄂霍茨克海阻高发展过程的正斜压涡度和涡度拟能的演变特征 [J]. 南京气象学院学报, 24(3): 356−363. doi: 10.13878/j.cnki.dqkxxb.2001.03.009

    Huang C X, Zhu Q G, Zhou W C. 2001. Features of barotropic/baroclinic vorticity and enstrophy during Okhotsk blocking development [J]. J. Nanjing Inst. Meteor., 24(3): 356−363. doi: 10.13878/j.cnki.dqkxxb.2001.03.009
    [11] Huang D Q, Zhu J, Zhang Y C, et al. 2014. The different configurations of the East Asian polar front jet and subtropical jet and the associated rainfall anomalies over eastern China in summer [J]. J. Climate, 27(21): 8205−8220. doi: 10.1175/JCLI-D-14-00067.1
    [12] 黄荣辉, 皇甫静亮, 刘永, 等. 2016. 从Rossby波能量频散理论到准定常行星波动力学研究的发展 [J]. 大气科学, 40(1): 3−21. doi: 10.3878/j.issn.1006-9895.1503.14298

    Huang R H, Huangfu J L, Liu Y, et al. 2016. Development from the theory of energy dispersion of Rossby waves to studies on the dynamics of quasi-stationary planetary waves [J]. Chinese Journal of Atmospheric Sciences, 40(1): 3−21. doi: 10.3878/j.issn.1006-9895.1503.14298
    [13] Jin D C, Guan Z Y, Cai J X, et al. 2015. Interannual variations of regional summer precipitation in mainland of China and their possible relationships with different teleconnections in the past five decades [J]. J. Meteor. Soc. Japan, 93(2): 265−283. doi: 10.2151/jmsj.2015-015
    [14] Kao S K, Wendell L L. 1970. The kinetic energy of the large-scale atmospheric motion in wavenumber-frequency space: I. Northern Hemisphere [J]. J. Atmos. Sci., 27(3): 359−375. doi:10.1175/1520-0469(1970)027<0359:tkeotl>2.0.co;2
    [15] Kharin V V, Zwiers F W, Zhang X B, et al. 2007. Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations [J]. J. Climate, 20(8): 1419−1444. doi: 10.1175/jcli4066.1
    [16] 李永平, 于润玲, 秦曾灏. 2006. 未来半个世纪江淮流域夏季降水变化趋势的数值模拟结果分析 [J]. 大气科学, 30(1): 153−161. doi: 10.3878/j.issn.1006-9895.2006.01.13

    Li Y P, Yu R L, Qin Z H. 2006. A numerical study of summer precipitation in the Changjiang River and the Huaihe River valleys within coming half century [J]. Chinese Journal of Atmospheric Sciences, 30(1): 153−161. doi: 10.3878/j.issn.1006-9895.2006.01.13
    [17] 李红梅, 周天军, 宇如聪. 2008. 近四十年我国东部盛夏日降水特性变化分析 [J]. 大气科学, 32(2): 358−370. doi: 10.3878/j.issn.1006-9895.2008.02.14

    Li H M, Zhou T J, Yu R C. 2008. Analysis of July–August daily precipitation characteristics variation in eastern China during 1958–2000 [J]. Chinese Journal of Atmospheric Sciences, 32(2): 358−370. doi: 10.3878/j.issn.1006-9895.2008.02.14
    [18] 李明刚, 管兆勇, 梅士龙. 2016. 夏季长江中下游地区降水持续性年(代)际变异及其与环流和Rossby波活动的联系 [J]. 大气科学, 40(6): 1199−1214. doi: 10.3878/j.issn.1006-9895.1511.15257

    Li M G, Guan Z Y, Mei S L. 2016. Interannual and interdecadal variations of summer rainfall duration over the middle and lower reaches of the Yangtze River in association with anomalous circulation and Rossby wave activities [J]. Chinese Journal of Atmospheric Sciences, 40(6): 1199−1214. doi: 10.3878/j.issn.1006-9895.1511.15257
    [19] Liang X Z, Wang W C. 1998. Associations between China monsoon rainfall and tropospheric jets [J]. Quart. J. Roy. Meteor. Soc., 124(552): 2597−2623. doi: 10.1002/qj.49712455204
    [20] Liu H B, Yang J, Zhang D L, et al. 2014. Roles of synoptic to quasi-biweekly disturbances in generating the summer 2003 heavy rainfall in East China [J]. Mon. Wea. Rev., 142(2): 886−904. doi: 10.1175/mwr-d-13-00055.1
    [21] 卢明, 谭桂容, 陈海山, 等. 2013. 江淮夏季降水异常与西印度洋地区大气环流异常的关系 [J]. 气象科学, 33(5): 510−518. doi: 10.3969/2013jms.0032

    Lu M, Tan G R, Chen H S, et al. 2013. The relationship between summer rainfall anomalies in Yangtze–Huaihe valley and atmospheric circulation anomalies over western Indian Ocean [J]. J. Meteor. Sci., 33(5): 510−518. doi: 10.3969/2013jms.0032
    [22] 梅士龙, 管兆勇. 2008. 对流层上层斜压波包活动与2003年江淮流域梅雨的关系 [J]. 大气科学, 32(6): 1333−1340. doi: 10.3878/j.issn.1006-9895.2008.06.08

    Mei S L, Guan Z Y. 2008. Activities of baroclinic wave packets in the upper troposphere related to Meiyu of 2003 in the Yangtze River–Huaihe River valley [J]. Chinese Journal of Atmospheric Sciences, 32(6): 1333−1340. doi: 10.3878/j.issn.1006-9895.2008.06.08
    [23] 梅士龙, 管兆勇. 2009. 1998年长江中下游梅雨期间对流层上层斜压波包的传播 [J]. 热带气象学报, 25(3): 300−306. doi: 10.3969/j.issn.1004-4965.2009.03.007

    Mei S L, Guan Z Y. 2009. Propagation of baroclinic wave packets in upper troposphere during the Meiyu period of 1998 over middle and lower reaches of Yangtze River valley [J]. Journal of Tropical Meteorology, 25(3): 300−306. doi: 10.3969/j.issn.1004-4965.2009.03.007
    [24] 钱永甫, 王谦谦, 黄丹青. 2007. 江淮流域的旱涝研究 [J]. 大气科学, 31(6): 1279−1289. doi: 10.3878/j.issn.1006-9895.2007.06.22

    Qian Y F, Wang Q Q, Huang D Q. 2007. Studies of floods and droughts in the Yangtze–Huaihe River basin [J]. Chinese Journal of Atmospheric Sciences, 31(6): 1279−1289. doi: 10.3878/j.issn.1006-9895.2007.06.22
    [25] 冉令坤, 李娜, 崔晓鹏. 2014. 登陆台风莫拉克(2009)的涡度拟能收支分析 [J]. 气象学报, 72(6): 1118−1134. doi: 10.11676/qxxb2014.088

    Ran L K, Li N, Cui X P. 2014. Analysis of the budget of enstrophy during the landing of Typhoon Morakot (2009) [J]. Acta Meteor. Sinica, 72(6): 1118−1134. doi: 10.11676/qxxb2014.088
    [26] Ren F M, Cui D L, Gong Z Q, et al. 2012. An objective identification technique for regional extreme events [J]. J. Climate, 25(20): 7015−7027. doi: 10.1175/jcli-d-11-00489.1
    [27] Schoeberl M R, Smith A K. 1986. The integrated enstrophy budget of the winter stratosphere diagnosed from LIMS data [J]. J. Atmos. Sci., 43(11): 1074−1086. doi:10.1175/1520-0469(1986)043<1074:tiebot>2.0.co;2
    [28] Takaya K, Nakamura H. 2001. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow [J]. J. Atmos. Sci., 58(6): 608−627. doi:10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2
    [29] 谭本馗. 2008. 大气Rossby波动力学的研究进展 [J]. 气象学报, 66(6): 870−879. doi: 10.3321/j.issn:0577-6619.2008.06.003

    Tan B K. 2008. Advances of atmospheric of Rossby waves dynamics [J]. Acta Meteor. Sinica, 66(6): 870−879. doi: 10.3321/j.issn:0577-6619.2008.06.003
    [30] Wang C H, Yang K, Li Y L, et al. 2017. Impacts of spatiotemporal anomalies of Tibetan Plateau snow cover on summer precipitation in eastern China [J]. J. Climate, 30(3): 885−903. doi: 10.1175/JCLI-D-16-0041.1
    [31] 王钟睿, 钱永甫. 2005. 印度洋、南海和东南沿海海温异常影响江淮流域6~7月降水量的分析及数值模拟 [J]. 应用气象学报, 16(4): 527−538. doi: 10.3969/j.issn.1001-7313.2005.04.014

    Wang Z R, Qian Y F. 2005. Influences of SSTA in Indian Ocean, South China Sea and southeastern coastal region of China on Yangtze–Huaihe River valley precipitation of June and July [J]. J. Appl. Meteor. Sci., 16(4): 527−538. doi: 10.3969/j.issn.1001-7313.2005.04.014
    [32] 王黎娟, 黄青兰, 李熠, 等. 2014. 江淮流域梅雨期降水的空间非均匀分布与前期海温的关系 [J]. 大气科学学报, 37(3): 313−322. doi: 10.3969/j.issn.1674-7097.2014.03.008

    Wang L J, Huang L Q, Li Y, et al. 2014. Relationship between spatial inhomogeneous distribution of Meiyu rainfall over the Yangtze–Huaihe River valley and previous SST [J]. Trans. Atmos. Sci., 37(3): 313−322. doi: 10.3969/j.issn.1674-7097.2014.03.008
    [33] 魏林波, 周甘霖, 王式功, 等. 2012. 亚洲副热带高空西风急流活动的气候特征及其与我国部分地区夏季降水的关系 [J]. 高原气象, 31(1): 87−93.

    Wei L B, Zhou G L, Wang S G, et al. 2012. Climatic features of Asian upper westerly jet activities and their relationship with summer precipitation in partly areas of China [J]. Plateau Meteor., 31(1): 87−93.
    [34] Wirth V, Riemer M, Chang E K M, et al. 2018. Rossby wave packets on the midlatitude waveguide—A review [J]. Mon. Wea. Rev., 146(7): 1965−2001. doi: 10.1175/MWR-D-16-0483.1
    [35] Wu R S. 1985. On the change of enstrophy [J]. Sci. Bull., 30(6): 777−780.
    [36] 夏芸, 管兆勇, 王黎娟. 2008. 2003年江淮流域强降水过程与30~70 d天低频振荡的联系 [J]. 南京气象学院学报, 31(1): 33−41. doi: 10.3969/j.issn.1674-7097.2008.01.005

    Xia Y, Guan Z Y, Wang L J. 2008. Association of 30–70 d oscillations with the heavy rainfall over Changjiang–Huaihe River valley in summer 2003 [J]. J. Nanjing Inst. Meteor., 31(1): 33−41. doi: 10.3969/j.issn.1674-7097.2008.01.005
    [37] 杨哲, 管兆勇, 蔡佳熙. 2012. 近30 a来北半球对流层大气月均环流的涡动减弱现象 [J]. 大气科学学报, 35(6): 702−711. doi: 10.3969/j.issn.1674-7097.2012.06.010

    Yang Z, Guan Z Y, Cai J X. 2012. Weakening trends of tropospheric enstrophy of monthly mean circulation in the Northern Hemisphere in the past three decades [J]. Trans. Atmos. Sci, 35(6): 702−711. doi: 10.3969/j.issn.1674-7097.2012.06.010
    [38] 张璟, 智协飞, 缪锴, 等. 2014. 江淮流域夏季降水的准两年振荡特征及其关联因子分析 [J]. 大气科学学报, 37(5): 541−547. doi: 10.13878/j.cnki.dqkxxb.20121030006

    Zhang J, Zhi X F, Miao K, et al. 2014. Characteristics of the quasi-biennial oscillation of the summer precipitation over Yangtze–Huaihe valley and its correlation factors [J]. Trans. Atmos. Sci., 37(5): 541−547. doi: 10.13878/j.cnki.dqkxxb.20121030006
    [39] 章基嘉, 徐祥德, 苗峻峰. 1995. 青藏高原地面热力异常对夏季江淮流域持续暴雨形成作用的数值试验 [J]. 大气科学, 19(3): 270−276. doi: 10.3878/j.issn.1006-9895.1995.03.02

    Zhang J J, Xu X D, Miao J F. 1995. A numerical experiment of the effect of anomalous thermal forcing of Tibetan Plateau ground surface on the formation of persistent heavy rain in summer over the Yangtze–Huaihe basin [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica), 19(3): 270−276. doi: 10.3878/j.issn.1006-9895.1995.03.02
    [40] Zimin A V, Szunyogh I, Patil D J, et al. 2003. Extracting envelopes of Rossby wave packets [J]. Mon. Wea. Rev., 131(5): 1011−1017. doi:10.1175/1520-0493(2003)131<1011:eeorwp>2.0.co;2
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  16
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-09
  • 录用日期:  2021-08-26
  • 网络出版日期:  2021-08-27

目录

    /

    返回文章
    返回