Analysis of Diurnal Variation Characteristics of Summer Extreme Precipitation in Sichuan and Chongqing
-
摘要: 利用川渝地区1991~2012年夏季逐小时降水资料,分析该地区总降水、极端降水时空分布特征,特别是极端降水的日变化特征。结果表明,川渝地区受西高东低的地形影响,降水量总量(precipitation amounts,简称PA)也呈西少东多分布,具体是川西北高原少、川西南山地及东部盆地多,盆周山区多、盆中丘陵区少;降水频率(precipitation frequency,简称PF)则呈西高东低的相反分布,高原地区PF较高;降水强度(precipitation intensity,简称PI)的分布与PA较为一致,自西向东逐渐增强。极端降水的PA、PF、PI空间分布特征与总降水的空间分布特征相似。东部的四川盆地乐山、雅安地区和达州、广元地区,以及西南山地区的西昌、攀枝花地区的PA大主要是由于PI大。西昌地区北方小部分西南山地区的PA大主要是由于PF大。川西高原区PA小是因为PI小。PA日峰值自西向东递增,PF日峰值呈相反变化趋势,自西向东递减。两者几乎全部都出现在夜间,“夜雨”特征显著。海拔较高的地区日峰值大多出现在前半夜,而海拔较低的地区大多出现在后半夜,自西向东日峰值出现时间逐渐推迟,因此川渝地区的降水系统可能存在自西向东传播的特征。聚类得到四类区域站点的典型形态降水日变化曲线分析表明,一区主要为川西高原地区,二区主要为高原向盆地过渡的南部山区,三区为盆地区域,四区为盆地向东部过渡的丘陵地区,PA、PF和PI的日变化曲线均有“一峰一谷”的特征,区域一到四的PA峰值在午夜到凌晨,谷值在午后到傍晚,且自西向东逐渐推迟,PF峰谷值时间均与PA峰谷值接近,PI日变化波动较PA和PF的曲线大。位于高海拔地区的第一区PA小,主要是其PI小,高原向盆地过渡的南部山区的PA较大主要是PF较大,盆地区域及其向东部过渡的丘陵地区的PA的主要贡献是PI大。极端降水日峰值及其出现时间的分布特征都与总降水相似。川渝地区夏季小时极端降水的阈值西低东高,自西向东逐渐增大,极端降水量占总降水量的比重自西向东呈增大趋势,极端降水量对川渝地区东部总降水量贡献大,对西部贡献较少。Abstract: Hourly precipitation data in the summer of 1991–2012 in Sichuan and Chongqing were used to analyze the spatial and temporal distribution characteristics of total precipitation and extreme precipitation, especially the diurnal variation characteristics of extreme precipitation. The results show that the area’s precipitation amount (PA) is low in the west and high in the east influenced by the terrain, which is high in the west and low in the east. Specifically, there is more precipitation in the eastern Sichuan Basin and southwestern mountains than in the northwest plateau and more precipitation in the mountains around the basin than in the basin. The precipitation frequency (PF) was higher in the west and the plateau but lower in the east. The precipitation intensity (PI) distribution is similar to that of PA, which increases gradually from west to east. The spatial distribution characteristics of PA, PF, and PI of extreme precipitation are similar to those of total precipitation. Greater precipitation in the eastern Sichuan basin, such as Leshan, Ya’an, Dazhou, and Guangyuan, and in the southwestern mountains, such as Xichang and Panzhihua, is mainly because of greater PI. The larger precipitation in a small part of the southwest mountain in the north of Xichang is mainly because of high PF. Less precipitation in the western plateau of Sichuan is due to lower PI. The daily peak of PA increased from west to east, while the daily peak of PF showed an opposite trend, decreasing from west to east. Almost all of them occur at night, and the “night rain” feature is very prominent. Most of the daily peaks in the high-altitude areas occur in the early midnight, whereas the peaks in the low-altitude areas occur in the later midnight. The time of the daily peaks from west to east delays gradually, which is indicative of the precipitation system spreading from west to east in Sichuan and Chongqing. Four regions are obtained by clustering of the typical form of precipitation area site daily change curve analysis. The first region is the plateau, the second is the southern mountains transitioning from the plateau to the basin, the third is the basin, and the fourth is the transition area from the basin to the eastern hills. The diurnal variation of the PA, PF, and PI curves has the same characteristics as “one peak and one valley.” The peak values of PA from regions one to four are from midnight to early morning, and the valley ones are from afternoon to evening, which gradually delays from west to east. The peak and valley time of PF is close to those of PA, and the diurnal fluctuation of PI is larger than that of PA and PF. The small PA of the first region is mainly due to its weaker PI. The PA of the second region is high mainly because of its higher PF. The higher PA of the third and fourth regions is mainly due to their stronger PI. The distribution characteristics of the daily peak of extreme precipitation and its occurrence time are similar to that of total precipitation. The threshold value of extreme hourly precipitation in summers in Sichuan and Chongqing was low in the west and high in the east and gradually increased from west to east. The proportion of extreme precipitation to total precipitation increased from west to east. The extreme precipitation contributed more to the total precipitation in the eastern parts of Sichuan and Chongqing but less to the western part.
-
Key words:
- Sichuan and Chongqing /
- Summer /
- Extreme precipitation /
- Diurnal variation
-
图 1 1991~2012年川渝地区夏季降水小时平均(a)PA、(b)PF和(c)PI的空间分布(彩色点为物理量值,填色为站点所在海拔高度,下同)
Figure 1. Spatial distribution of hourly mean (a) precipitation amount (PA), (b) precipitation frequency (PF), and (c) precipitation intensity (PI) of summer precipitation in Sichuan and Chongqing from 1991 to 2012 (The colored points represent values; the shaded area represent the altitude, the same below)
图 4 1991~2012年(a)PA、(c)PF、(e)PI变化四种典型形态站点空间分布及(b、d、f)不同类型站点区域平均日变化曲线(深蓝色圆点为一区,蓝色圆点为二区,黄色圆点为三区,红色圆点为四区)
Figure 4. Spatial distribution of four typical forms of (a) precipitation amount (PA), (c) precipitation frequency (PF), and (d) precipitation intensity (PI) and (b, d, e) average daily variation curves of different types of sites from 1991 to 2012 (The dark blue dots represent zone one; the blue, yellow, and red dots represent zones two to four in order)
-
[1] Bao X H, Zhang F Q, Sun J H. 2011. Diurnal variations of warm-season precipitation east of the Tibetan Plateau over China [J]. Mon. Wea. Rev., 139(9): 2790−2810. doi: 10.1175/MWR-D-11-00006.1 [2] Chen H, Yu R, Li J, et al. 2010. Why nocturnal long-duration rainfall presents an eastward-delayed diurnal phase of rainfall down the Yangtze River valley [J]. Journal of Climate, 23(4): 905−917. doi: 10.1175/2009JCLI3187.1 [3] Chen H P. 2013. Projected change in extreme rainfall events in China by the end of the 21st century using CMIP5 models [J]. Chinese Sci. Bull., 58(12): 1462−1472. doi: 10.1007/s11434-012-5612-2 [4] 陈贵川, 谌芸, 张勇, 等. 2013. “12.7. 21”西南涡极端强降雨的成因分析 [J]. 气象, 39(12): 1529−1541. doi: 10.7519/j.issn.1000-0526.2013.12.001Chen Guichuan, Chen Yun, Zhang Yong, et al. 2013. Causes analysis of the southwest vortex extremely heavy rainfall on 21 July 2012 [J]. Meteorological Monthly (in Chinese), 39(12): 1529−1541. doi: 10.7519/j.issn.1000-0526.2013.12.001 [5] 陈贵川, 谌芸, 王晓芳, 等. 2018. 一次冷性停滞型西南低涡结构的演变特征 [J]. 高原气象, 37(6): 1628−1642. doi: 10.7522/j.issn.1000-0534.2018.00093Chen Guichuan, Shen Yun, Wang Xiaofang, et al. 2018. The developmental characteristics of the structure of a stationery cold southwest vortex [J]. Plateau Meteorology (in Chinese), 37(6): 1628−1642. doi: 10.7522/j.issn.1000-0534.2018.00093 [6] 陈海山, 范苏丹, 张新华. 2009. 中国近50a极端降水事件变化特征的季节性差异 [J]. 大气科学学报, 32(6): 744−751. doi: 10.3969/j.issn.1674-7097.2009.06.003Chen Haishan, Fan Sudan, ZHANG Xinhua. 2009. Seasonal differences of variation characteristics of extreme precipitation events over China in the last 50 years [J]. Transactions of Atmospheric Sciences (in Chinese), 32(6): 744−751. doi: 10.3969/j.issn.1674-7097.2009.06.003 [7] 陈炯, 郑永光, 张小玲, 等. 2013. 中国暖季短时强降水分布和日变化特征及其与中尺度对流系统日变化关系分析 [J]. 气象学报, 71(3): 367−382. doi: 10.11676/qxxb2013.035Chen Jiong, Zheng Yongguang, Zhang Xiaoling, et al. 2013. Analysis of the climatological distribution and diurnal variations of the short-duration heavy rain and its relation with diurnal variations of the MCSs over China during the warm season [J]. Acta Meteorologica Sinica (in Chinese), 71(3): 367−382. doi: 10.11676/qxxb2013.035 [8] Chen X C, Zhao K, Xue M. 2014. Spatial and temporal characteristics of warm season convection over Pearl River Delta region, China, based on 3 years of operational radar data [J]. J. Geophys. Res.: Atmos., 119(22): 12447−12465. doi: 10.1002/2014JD021965 [9] 陈晓燕, 尚可政, 王式功, 等. 2010. 近50年中国不同强度降水日数时空变化特征 [J]. 干旱区研究, 27(5): 766−772. doi: 10.13866/j.azr.2010.05.010Chen Xiaoyan, Shang Kezheng, Wang Shigong, et al. 2010. Analysis on the spatiotemporal characteristics of precipitation under different intensities in China in recent 50 years [J]. Arid Zone Research (in Chinese), 27(5): 766−772. doi: 10.13866/j.azr.2010.05.010 [10] 方德贤, 董新宁, 邓承之, 等. 2020. 2008~2016年重庆地区降水时空分布特征 [J]. 大气科学, 44(2): 327−340. doi: 10.3878/j.issn.1006-9895.1907.18256Fang Dexian, Dong Xinning, Deng Chengzhi, et al. 2020. Temporal and spatial distribution of precipitation in Chongqing during 2008-2016 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(2): 327−340. doi: 10.3878/j.issn.1006-9895.1907.18256 [11] Fu S M, Zhang J P, Sun J H, et al. 2014. A fourteen-year climatology of the southwest vortex in summer [J]. Atmos. Oceanic Sci. Lett., 7(6): 510−514. doi: 10.1080/16742834.2014.11447216 [12] 韩林君, 白爱娟. 2019. 2004~2017年夏半年西南涡在四川盆地形成降水的特征分析 [J]. 高原气象, 38(3): 552−562. doi: 10.7522/j.issn.1000-0534.2018.00100Han Linjun, Bai Aijuan. 2019. Precipitation characteristics of southwest vortex in Sichuan Basin from May to October in 2004-2017 [J]. Plateau Meteorology (in Chinese), 38(3): 552−562. doi: 10.7522/j.issn.1000-0534.2018.00100 [13] 何光碧. 2012. 西南低涡研究综述 [J]. 气象, 38(2): 155−163. doi: 10.7519/j.issn.1000-0526.2012.2.003He Guangbi. 2012. Review of the southwest vortex research [J]. Meteorological Monthly (in Chinese), 38(2): 155−163. doi: 10.7519/j.issn.1000-0526.2012.2.003 [14] 何光碧, 陈静, 李川, 等. 2005. 低涡与急流对“04.9”川东暴雨影响的分析与数值模拟 [J]. 高原气象, 24(6): 1012−1023. doi: 10.3321/j.issn:1000-0534.2005.06.023He Guangbi, Chen Jing, Li Chuan, et al. 2005. Aalysis and numerical simulation for effects of vortex and jet stream on heavy rain in East Sichuan in September 2004 [J]. Plateau Meteorology (in Chinese), 24(6): 1012−1023. doi: 10.3321/j.issn:1000-0534.2005.06.023 [15] 胡豪然, 毛晓亮, 梁玲. 2009. 近50年四川盆地汛期极端降水事件的时空演变 [J]. 地理学报, 64(3): 278−288. doi: 10.3321/j.issn:0375-5444.2009.03.003Hu Haoran, Mao Xiaoliang, Liang Ling. 2009. Temporal and spatial variations of extreme precipitation events of flood season over Sichuan Basin in last 50 years [J]. Acta Geographica Sinica (in Chinese), 64(3): 278−288. doi: 10.3321/j.issn:0375-5444.2009.03.003 [16] 蒋璐君, 李国平, 王兴涛. 2015. 基于TRMM 资料的高原涡与西南涡引发强降水的对比研究 [J]. 大气科学, 39(2): 249−259. doi: 10.3878/j.issn.1006-9895.1407.13260Jiang Lujun, Li Guoping, Wang Xingtao. 2015. Comparative study based on TRMM data of the heavy rainfall caused by the Tibetan Plateau vortex and the southwest vortex [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(2): 249−259. doi: 10.3878/j.issn.1006-9895.1407.13260 [17] 康岚, 冯汉中, 屠妮妮, 等. 2008. 一次川渝大暴雨的中尺度分析 [J]. 气象, 34(10): 40−49. doi: 10.7519/j.issn.1000-0526.2008.10.006Kang Lan, Feng Hanzhong, Tu Nini. 2008. Mesoscale analysis of a torrential rain in Sichuan and Chongqing [J]. Meteorological Monthly (in Chinese), 34(10): 40−49. doi: 10.7519/j.issn.1000-0526.2008.10.006 [18] 李超, 李跃清, 蒋兴文. 2015. 四川盆地低涡的月际变化及其日降水分布统计特征 [J]. 大气科学, 39(6): 1191−1203. doi: 10.3878/j.issn.1006-9895.1502.14270Li Chao, Li Yueqing, Jiang Xingwen. 2015. Statistical characteristics of the inter-monthly variation of the Sichuan Basin vortex and the distribution of daily precipitation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(6): 1191−1203. doi: 10.3878/j.issn.1006-9895.1502.14270 [19] Li J, Yu R C, Sun W. 2013. Duration and seasonality of hourly extreme rainfall in the central eastern China [J]. Acta Meteor. Sinica, 27(6): 799−807. doi: 10.1007/s13351-013-0604-y [20] 李强, 王秀明, 周国兵, 等. 2020. 四川盆地西南低涡暴雨过程的短时强降水时空分布特征研究 [J]. 高原气象, 39(5): 960−972. doi: 10.7522/j.issn.1000-0534.2019.00096Li Qiang, Wang Xiuming, Zhou Guobing, et al. 2020. Temporal and spatial distribution characteristics of short-time heavy rainfall during southwest vortex rainstorm in Sichuan Basin [J]. Plateau Meteorology (in Chinese), 39(5): 960−972. doi: 10.7522/j.issn.1000-0534.2019.00096 [21] 李琴, 崔晓鹏, 曹洁. 2014. 四川地区一次暴雨过程的观测分析与数值模拟 [J]. 大气科学, 38(6): 1095−1108, Li Qin, Cui Xiaopeng, Cao Jie. 2014. Observational analysis and numerical simulation of a heavy rainfall event in Sichuan Province [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38(6): 1095−1108. doi:10.3878/j.issn.1006-9895.1401.13255 [22] 李振朝, 韦志刚, 吕世华, 等. 2013. CMIP5部分模式气温和降水模拟结果在北半球及青藏高原的检验 [J]. 高原气象, 32(4): 921−928. doi: 10.7522/j.issn.1000-0534.2012.00088Li Zhenchao, Wei Zhigang, Lü Shihua, et al. 2013. Verifications of surface air temperature and precipitation from CMIP5 model in Northern Hemisphere and Qinghai−Xizang plateau [J]. Plateau Meteorology (in Chinese), 32(4): 921−928. doi: 10.7522/j.issn.1000-0534.2012.00088 [23] Lin Y L. 1993. Orographic effects on airflow and mesoscale weather systems over Taiwan [J]. Terr. Atmos. Oceanic Sci., 4(4): 381−420. doi: 10.3319/TAO.1993.4.4.381(A [24] 刘德, 张亚萍, 陈贵川, 等. 2012. 重庆市天气预报技术手册[M]. 北京: 气象出报社, 92–147Liu De, Zhang Yaping, Chen Guichuan, et al. 2012. Chongqing Weather Forecast Technical Manual [M]. Beijing: China Meteorological Press, 92–147. [25] 卢萍, 宇如聪, 周天军. 2008. 2003年8月“巴蜀夜雨”过程的模拟和分析研究 [J]. 气象学报, 66(3): 371−380. doi: 10.3321/j.issn:0577-6619.2008.03.008Lu Ping, Yu Rucong, Zhou Tianjun. 2008. Numerical simulation of the mid-night rainfall over Sichuan basin during August 2003 [J]. Acta Meteorologica Sinica (in Chinese), 66(3): 371−380. doi: 10.3321/j.issn:0577-6619.2008.03.008 [26] 罗玉, 范广洲, 周定文, 等. 2015. 西南地区极端降水变化趋势 [J]. 气象科学, 35(5): 581−586. doi: 10.3969/2014jms.0084Luo Yu, Fan Guangzhou, Zhou Dingwen. 2015. A extreme precipitation trend of Southwest China in recent 41 years [J]. Journal of the Meteorological Sciences (in Chinese), 35(5): 581−586. doi: 10.3969/2014jms.0084 [27] Miao S G, Chen F, Li Q C, et al. 2011. Impacts of urban processes and urbanization on summer precipitation: A case study of heavy rainfall in Beijing on 1 August 2006 [J]. J. Appl. Meteor. Climatol., 50(4): 806−825. doi: 10.1175/2010JAMC2513.1 [28] 潘旸, 沈艳, 宇婧婧, 等. 2012. 基于最优插值方法分析的中国区域地面观测与卫星反演逐时降水融合试验 [J]. 气象学报, 70(6): 1381−1389. doi: 10.11676/qxxb2012.116Pan Yang, Shen Yan, Yu Jingjing, et al. 2012. Analysis of the combined gauge-satellite hourly precipitation over China based on the OI technique [J]. Acta Meteorologica Sinica (in Chinese), 70(6): 1381−1389. doi: 10.11676/qxxb2012.116 [29] Qu X, Huang G, Zhou W. 2014. Consistent responses of East Asian summer mean rainfall to global warming in CMIP5 simulations [J]. Theor. Appl. Climatol., 117(1−2): 123–131. doi:10.1007/s00704-013-0995-9 [30] Reiter E R, Tang M C. 1984. Plateau effects on diurnal circulation patterns [J]. Mon. Wea. Rev., 112(4): 638−651. doi: 10.1175/1520-0493(1984)112<0638:PEODCP>2.0.CO;2 [31] 任国玉, 封国林, 严中伟. 2010. 中国极端气候变化观测研究回顾与展望 [J]. 气候与环境研究, 15(4): 337−353. doi: 10.3878/j.issn.1006-9585.2010.04.01Ren Guoyu, Feng Guolin, Yan Zhongwei. 2010. Progresses in observation studies of climate extremes and changes in mainland China [J]. Climatic and Environmental Research (in Chinese), 15(4): 337−353. doi: 10.3878/j.issn.1006-9585.2010.04.01 [32] Roy S S. 2009. A spatial analysis of extreme hourly precipitation patterns in India [J]. Int. J. Climatol., 29(3): 345−355. doi: 10.1002/joc.1763 [33] 谌贵珣, 何光碧. 2008. 2000~2007年西南低涡活动的观测事实分析 [J]. 高原山地气象研究, 28(4): 59−65. doi: 10.3969/j.issn.1674-2184.2008.04.010Shen Guixun, He Guangbi. 2008. The observed facts analysis of southwest vortex from 2000 to 2007 [J]. Plateau and Mountain Meteorology Research (in Chinese), 28(4): 59−65. doi: 10.3969/j.issn.1674-2184.2008.04.010 [34] 沈艳, 潘旸, 宇婧婧, 等. 2013. 中国区域小时降水量融合产品的质量评估 [J]. 大气科学学报, 36(1): 37−46. doi: 10.13878/j.cnki.dqkxxb.2013.01.005Shen Yan, Pan Yang, Yu Jingjing, et al. 2013. Quality assessment of hourly merged precipitation product over China [J]. Transactions of Atmospheric Sciences (in Chinese), 36(1): 37−46. doi: 10.13878/j.cnki.dqkxxb.2013.01.005 [35] Shen Y, Zhao P, Pan Y, et al. 2014. A high spatiotemporal gauge-satellite merged precipitation analysis over China [J]. J Geophys Res Atmos, 119(6): 3063−3075. doi: 10.1002/2013JD020686 [36] Su B D, Xiao B, Zhu D M, et al. 2005. Trends in frequency of precipitation extremes in the Yangtze River basin, China: 1960–2003 [J]. Hydrol. Sci. J., 50(3): 492. doi: 10.1623/hysj.50.3.479.65022 [37] 汤欢, 傅慎明, 孙建华, 等. 2020. 一次高原东移MCS与下游西南低涡作用并产生强降水事件的研究 [J]. 大气科学, 44(6): 1275−1290. doi: 10.3878/j.issn.1006-9895.1911.19206Tang Huan, Fu Shenming, Sun Jianhua, et al. 2020. Investigation of severe precipitation event caused by an eastward-propagating MCS originating from the Tibetan Plateau and a downstream southwest vortex [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(6): 1275−1290. doi: 10.3878/j.issn.1006-9895.1911.19206 [38] 唐红玉, 顾建峰, 俞胜宾, 等. 2011. 西南地区降水日变化特征分析 [J]. 高原气象, 30(2): 376−384.Tang Hongyu, Gu Jianfeng, Yu Shengbin. 2011. Analysis on diurnal variation of precipitation in southwest China [J]. Plateau Meteorology (in Chinese), 30(2): 376−384. [39] Tao S Y, Ding Y H. 1981. Observational evidence of the influence of the Qinghai–Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China [J]. Bull. Amer. Meteor. Soc., 62(1): 23−30. doi: 10.1175/1520-0477(1981)062<0023:OEOTIO>2.0.CO;2 [40] 王成鑫, 高守亭, 梁莉, 等. 2013. 动力因子对地形影响下的四川暴雨落区的诊断分析 [J]. 大气科学, 37(5): 1099−1110. doi: 10.3878/j.issn.1006-9895.2012.12112Wang Chengxin, Gao Shouting, Liang Li, et al. 2013. Diagnostic analysis of dynamical parameters for Sichuan rainstorm influenced by terrain [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(5): 1099−1110. doi: 10.3878/j.issn.1006-9895.2012.12112 [41] 王中, 白莹莹, 杜钦, 等. 2008. 一次无地面冷空气触发的西南涡特大暴雨分析 [J]. 气象, 34(12): 63−71. doi: 10.7519/j.issn.1000-0526.2008.12.008Wang Zhong, Bai Yingying, Du Qin, et al. 2008. Analysis of a torrential southwest vortex rainstorm without surface cold air intrusion [J]. Meteorological Monthly (in Chinese), 34(12): 63−71. doi: 10.7519/j.issn.1000-0526.2008.12.008 [42] 吴志鹏, 李跃清, 李晓岚, 等. 2021. WRF模式边界层参数化方案对川渝盆地西南涡降水模拟的影响 [J]. 大气科学, 45(1): 58−72. doi: 10.3878/j.issn.1006-9895.2005.19171Wu Zhipeng, Li Yueqing, Li Xiaolan, et al. 2021. Influence of different planetary boundary layer parameterization schemes on the simulation of precipitation caused by southwest China vortex in Sichuan Basin based on the WRF model [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(1): 58−72. doi: 10.3878/j.issn.1006-9895.2005.19171 [43] Xu W X, Zipser E J, Liu C T. 2009. Rainfall characteristics and convective properties of Mei–Yu precipitation systems over South China, Taiwan, and the South China Sea. Part I: TRMM observations [J]. Mon. Wea. Rev., 137(12): 4261−4275. doi: 10.1175/2009MWR2982.1 [44] 徐裕华. 1991. 西南气候[M]. 北京: 气象出版社, 56–60Xu Yuhua. 1991. Climate of Southwest China (in Chinese) [M]. Beijing: China Meteorological Press, 56–60. [45] 晏红明, 字俣丞. 2021. 夏季副高次季节尺度东西变动特征及其与中国西南降水的关系 [J]. 大气科学, 45(1): 1−20. doi: 10.3878/j.issn.1006-9895.2003.19204Yan Hongming, Zi Yucheng. 2021. Characteristics of the subseasonal-scale zonal movement of subtropical high in summer and its relationship with precipitation in southwest China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(1): 1−20. doi: 10.3878/j.issn.1006-9895.2003.19204 [46] 杨萍, 肖子牛, 石文静. 2017. 基于小时降水资料研究北京地区降水的精细化特征 [J]. 大气科学, 41(3): 475−489. doi: 10.3878/j.issn.1006-9895.1606.16134Yang Ping, Xiao Ziniu, Shi Wenjing. 2017. Fine-scale characteristics of rainfall in Beijing urban area based on a high-density autonomous weather stations (AWS) dataset [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 41(3): 475−489. doi: 10.3878/j.issn.1006-9895.1606.16134 [47] 姚莉, 李小泉, 张立梅. 2009. 我国1小时雨强的时空分布特征 [J]. 气象, 35(2): 80−87. doi: 10.7519/j.issn.1000-0526.2009.2.012Yao Li, Li Xiaoquan, Zhang Limei. 2009. Spatial-temporal distribution characteristics of hourly rain intensity in China [J]. Meteorological Monthly (in Chinese), 35(2): 80−87. doi: 10.7519/j.issn.1000-0526.2009.2.012 [48] Yin S, Chen D, Xie Y. 2009. Diurnal variations of precipitation during the warm season over China [J]. Int. J. Climatol., 29(8): 1154−1170. doi: 10.1002/joc.1758 [49] 宇婧婧, 沈艳, 潘旸, 等. 2013. 概率密度匹配法对中国区域卫星降水资料的改进 [J]. 应用气象学报, 24(5): 544−553. doi: 10.3969/j.issn.1001-7313.2013.05.004Yu Jingjing, Shen Yan, Pan Yang, et al. 2013. Improvement of satellite-based precipitation estimates over China based on probability density function matching method [J]. Journal of Applied Meteorological Science (in Chinese), 24(5): 544−553. doi: 10.3969/j.issn.1001-7313.2013.05.004 [50] Yu R C, Zhou T J, Xiong A Y, et al. 2007a. Diurnal variations of summer precipitation over contiguous China [J]. Geophys Res Lett, 34(1): 223−234. doi: 10.1029/2006GL028129 [51] Yu R C, Li J, Yuan W H, et al. 2010. Changes in characteristics of late-summer precipitation over eastern China in the past 40 years revealed by hourly precipitation data [J]. J. Climate, 23(12): 3390−3396. doi: 10.1175/2010JCLI3454.1 [52] 袁文德, 郑江坤, 董奎. 2014. 1962–2012年西南地区极端降水事件的时空变化特征 [J]. 资源科学, 36(4): 766−772.Yuan Wende, Zheng Jiangkun, Dong Kui. 2014. Spatial and temporal variation in extreme precipitation events in southwestern China during 1962–2012 [J]. Resources Science (in Chinese), 36(4): 766−772. [53] Yuan W H, Sun W, Chen H M, et al. 2014. Topographic effects on spatiotemporal variations of short-duration rainfall events in warm season of central North China [J]. J. Geophys. Res.: Atmos., 119(19): 11223−11234. doi: 10.1002/2014JD022073 [54] Zhai P M, Zhang X B, Wan H, et al. 2005. Trends in total precipitation and frequency of daily precipitation extremes over China [J]. J. Climate, 18(7): 1096−1108. doi: 10.1175/JCLI-3318.1 [55] Zhang H, Zhai P M. 2011. Temporal and spatial characteristics of extreme hourly precipitation over eastern China in the warm season [J]. Adv. Atmos. Sci., 28(5): 1177−1183. doi: 10.1007/s00376-011-0020-0 [56] 张焕, 翟盘茂, 唐红玉. 2011. 1961~2000年西南地区小时降水变化特征 [J]. 气候变化研究进展, 7(1): 8−13. doi: 10.3969/j.issn.1673-1719.2011.01.002Zhang Huan, Zhai Panmao, Tang Hongyu. 2011. Trends of hourly precipitation over southwest China during 1961–2000 [J]. Advances in Climate Change Research (in Chinese), 7(1): 8−13. doi: 10.3969/j.issn.1673-1719.2011.01.002 [57] 张琪, 李跃清. 2014. 近48年西南地区降水量和雨日的气候变化特征 [J]. 高原气象, 33(2): 372−383. doi: 10.7522/j.issn.1000-0534.2013.00032Zhang Qi, Li Yueqing. 2014. Climatic variation of rainfall and rain day in southwest China for last 48 years [J]. Plateau Meteorology (in Chinese), 33(2): 372−383. doi: 10.7522/j.issn.1000-0534.2013.00032 [58] 张天宇, 程炳岩, 刘晓冉, 等. 2009. 重庆汛期极端降水事件分析 [J]. 热带气象学报, 25(4): 475−482. doi: 10.3969/j.issn.1004-4965.2009.04.013Zhang Tianyu, Cheng Bingyan, Liu Xiaoran, et al. 2009. Analysis of extreme precipitation events over Chongqing in flood season during the past 46 years [J]. Journal of Tropical Meteorology (in Chinese), 25(4): 475−482. doi: 10.3969/j.issn.1004-4965.2009.04.013 [59] 张天宇, 李永华, 程炳岩, 等. 2011. 重庆主城区百年雨日及强度变化特征 [J]. 重庆师范大学学报(自然科学版), 28(3): 37−42,52.Zhang Tianyu, Li Yonghua, Cheng Bingyan, et al. 2011. The variation features of rainy days and its intensity in the main districts of Chongqing during the past 100 years [J]. Journal of Chongqing Normal University (Natural Science), 28(3): 37−42,52. [60] Zhang Q, Zhou Y, Singh V P, et al. 2012. Scaling and clustering effects of extreme precipitation distributions [J]. J. Hydrol., 454–455: 187–194. doi:10.1016/j.jhydrol.2012.06.015 [61] 张武龙, 张井勇, 范广洲. 2015. CMIP5模式对我国西南地区干湿季降水的模拟和预估 [J]. 大气科学, 39(3): 559−570. doi: 10.3878/j.issn.1006-9895.1408.14136Zhang Wulong, Zhang Jingyong, Fan Guangzhou. 2015. Evaluation and projection of dry- and wet-season precipitation in Southwestern China using CMIP5 models [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(3): 559−570. doi: 10.3878/j.issn.1006-9895.1408.14136 [62] 赵平, 孙淑清. 1991. 一次西南低涡形成过程的数值试验和诊断(一)——地形动力作用和潜热作用对西南低涡影响的数值试验对比分析 [J]. 大气科学, 15(6): 46−52. doi: 10.3878/j.issn.1006-9895.1991.06.05Zhao Ping, Sun Shuqing. 1991. Numerical simulation and diagnosis of the formation of SW vortex. Part I: An analysis of numerical simulation of the effects of topography and latent heat on SW vortex [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 15(6): 46−52. doi: 10.3878/j.issn.1006-9895.1991.06.05 [63] 赵思雄, 傅慎明. 2017. 2004年9月川渝大暴雨期间西南低涡结构及其环境场的分析 [J]. 大气科学, 31(6): 1059−1075. doi: 10.3878/j.issn.1006-9895.2007.06.03Zhao Sixiong, Fu Shenming. 2017. An analysis on the southwest vortex and its environment fields during heavy rainfall in eastern Sichuan Province and Chongqing in September 2004 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 31(6): 1059−1075. doi: 10.3878/j.issn.1006-9895.2007.06.03 [64] Zhong S, Yang X Q. 2015. Ensemble simulations of the urban effect on a summer rainfall event in the Great Beijing Metropolitan Area [J]. Atmos. Res., 153: 318−334. doi: 10.1016/j.atmosres.2014.09.005 [65] 周长艳, 李跃清, 彭俊. 2006. 高原东侧川渝盆地降水与水资源特征及变化 [J]. 大气科学, 30(6): 1217−1226. doi: 10.3878/j.issn.1006-9895.2006.06.16Zhou Changyan, Li Yueqing, Peng Jun. 2006. The characteristics and variation of precipitation and water resource of Sichuan and Chongqing Basin on the eastern side of the plateau [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30(6): 1217−1226. doi: 10.3878/j.issn.1006-9895.2006.06.16 [66] 周秋雪, 刘莹, 冯良敏, 等. 2015. 2008~2012年四川强小时雨强的时空分布特征 [J]. 高原气象, 34(5): 1261−1269. doi: 10.7522/j.issn.1000-0534.2014.00070Zhou Qiuxue, Liu Ying, Feng Liangmin, et al. 2015. Analysis on temporal and spatial distribution characteristics of strong hour rainfall intensity in Sichuan during 2008-2012 [J]. Plateau Meteorology (in Chinese), 34(5): 1261−1269. doi: 10.7522/j.issn.1000-0534.2014.00070 [67] 周玉淑, 颜玲, 吴天贻, 等. 2019. 高原涡和西南涡影响的两次四川暴雨过程的对比分析 [J]. 大气科学, 43(4): 813−830. doi: 10.3878/j.issn.1006-9895.1807.18147Zhou Yushu, Yan Ling, Wu Tianyi, et al. 2019. Comparative analysis of two rainstorm processes in Sichuan Province affected by the Tibetan Plateau vortex and southwest vortex [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(4): 813−830. doi: 10.3878/j.issn.1006-9895.1807.18147 -