高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地形对华南飑线升尺度影响机制的数值模拟研究

沈新勇 王林 乔娜 尹宜舟 李焕连

沈新勇, 王林, 乔娜, 等. 2022. 地形对华南飑线升尺度影响机制的数值模拟研究[J]. 大气科学, 46(6): 1319−1331 doi: 10.3878/j.issn.1006-9895.2108.21045
引用本文: 沈新勇, 王林, 乔娜, 等. 2022. 地形对华南飑线升尺度影响机制的数值模拟研究[J]. 大气科学, 46(6): 1319−1331 doi: 10.3878/j.issn.1006-9895.2108.21045
SHEN Xinyong, WANG Lin, QIAO Na, et al. 2022. Mechanism of the Influence of Topography on the Initial Upscaling of the South China Squall Line: A Numerical Simulation Study [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(6): 1319−1331 doi: 10.3878/j.issn.1006-9895.2108.21045
Citation: SHEN Xinyong, WANG Lin, QIAO Na, et al. 2022. Mechanism of the Influence of Topography on the Initial Upscaling of the South China Squall Line: A Numerical Simulation Study [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(6): 1319−1331 doi: 10.3878/j.issn.1006-9895.2108.21045

地形对华南飑线升尺度影响机制的数值模拟研究

doi: 10.3878/j.issn.1006-9895.2108.21045
基金项目: 国家自然科学基金项目41975054、41930967,国家重点研发计划项目2019YFC1510400,中国科学院战略性先导科技专项XDA20100304
详细信息
    作者简介:

    沈新勇,男,1964年出生,教授,主要从事中尺度气象学研究。E-mail: shenxy@nuist.edu.cn

    通讯作者:

    王林,E-mail: wanglinknight@163.com

  • 中图分类号: P458.2

Mechanism of the Influence of Topography on the Initial Upscaling of the South China Squall Line: A Numerical Simulation Study

Funds: National Natural Science Foundation of China (Grants 41975054, 41930967), Nation Key Research and Development Program of China (Grant 2019YFC1510400), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDA20100304)
  • 摘要: 本文利用NCEP/NCAR提供的1°×1°的再分析资料,应用WRF4.0中尺度数值模式对2016年4月13日华南地区的一次飑线升尺度过程进行模拟,并设计一系列的敏感性试验,详细研究了南岭对飑线升尺度增长的影响以及可能的机制。结果表明:WRF模式较好的模拟了本次飑线过山前后的变化以及其降水的分布。强对流在过山后比过山前发展要强烈,水平的尺度增长快。但不同高度的地形敏感性试验表明,适宜的地形高度对于风暴的发展更有利。地形影响了飑线的尺度和组织,地形过高会使得广东北部的对流分散。地形可以通过改变水平流场、水汽场、垂直运动以及低层的垂直风切变等来间接影响飑线中的对流单体的分布和对流单体的强度。无地形阻挡时,有利于急流的北进,水汽输送更为有利。但是,一定的地形高度对低层的垂直运动是有利的。地形较高,则会利于高层的垂直运动,低层更多的可能以绕流为主。当地形超过一定高度时,低层的辐合场也相应的减弱。
  • 图  1  2016年4月12日(a)16:00(协调世界时,下同)、(b)19:00、(c)20:00、(d)23:00、13日(e)00:00和(f)01:00实况雷达组合反射率因子(单位:dBZ)分布

    Figure  1.  Observed radar composite reflectivity (units: dBZ) from April 12 to 13, 2016: (a) 1600 UTC 12; (b) 1900 UTC 12; (c) 2000 UTC 12; (d) 2300 UTC 12; (e) 0000 UTC 13; (f) 0100 UTC 13

    图  2  WRF模式四重嵌套的模拟区域

    Figure  2.  Nesting area of WRF model

    图  3  理想试验地形高度(单位:m)及敏感性试验区域(虚线框代表南岭区域,下同):(a)ZE试验;(b)ZFE试验;(c)RE试验;(d)OFE试验

    Figure  3.  Ideal terrain (units: m) and area of sensitivity tests (dashed frame: Nanling Mountains, the same below): (a) ZE test; (b) ZFE test; (c) RE test; (d) OFE test

    图  4  2016年4月12日06:00至13日06:00(a)实况和(b)对照试验的24 h降水量(阴影,单位:mm)分布

    Figure  4.  Distributions of (a) observed and (b) simulated precipitation (shaded, units: mm) from 0600 UTC 12 to 0600 UTC 13 April 2016

    图  5  图1,但为模式模拟雷达组合反射率因子

    Figure  5.  Same as Fig. 1, but for simulated combined radar reflectivity

    图  6  (a, b)ZE试验、(a1, b1)ZFE试验、(a2, b2)RE试验和(a3, b3)OFE试验模拟的2016年4月12日17:00(第一行)和21:00(第二行)的雷达回波(阴影,单位:dBZ

    Figure  6.  Simulated radar reflectivity (shaded, units: dBZ) respectively by (a, b) ZE test, (a1, b1) ZFE test, (a2, b2) RE test, and (a3, b3) OFE test at 1700 UTC (top line) and 2100 UTC (bottom line) 12 April 2016

    图  7  2016年4月12日18:00(a, e)ZE试验、(b, f)ZFE试验、(c, g)RE试验和(d, h)OFE试验模拟的850 hPa风场(第一行,单位:m s−1)和散度场(第二行,单位:10−5 s−1)。(a–d)中阴影区为风速大于12 m s−1的急流区

    Figure  7.  Simulated 850 hPa wind field (top line, units: m s−1) and divergence field (bottom line, units: 10−5 s−1) by (a, e) ZE test, (b, f) ZFE test, (c, g) RE test, and (d, h) OFE test at 1800 UTC 12 April 2016. Shadows in (a–d) for the jet with wind speed more than 12 m s−1

    图  8  2016年4月12日18:00模拟的敏感性试验与对照试验在850 hPa高度上散度场的差值(阴影,单位:10−5 s−1):(a)ZE减去RE试验结果;(b)ZFE减去RE试验结果;(c)OFE减去RE试验结果。黑色椭圆形框代表飑线的位置

    Figure  8.  Difference in the divergence between simulated 850 hPa sensitivity tests and the control test(shaded, units: 10−5 s−1) at 1800 UTC on April 12, 2016: (a) ZE minus RE; (b) ZFE minus RE; (c) OFE minus RE;The black oval represent the position of the squall lines

    图  9  2016年4月12日17:00(a)ZE试验、(b)ZFE试验、(c)RE试验和(d)OFE试验模拟的850 hPa水汽通量(箭头和阴影,单位:g hPa−1 cm−1 s−1

    Figure  9.  Simulated 850 hPa water vapor flux (arrows and shaded, units: g hPa−1 cm−1 s−1) at 1700 UTC 12 April 2016: (a) ZE test; (b) ZFE test; (c) RE test; (d) OFE test

    图  10  图9,但为水汽通量散度(阴影,单位:10−6 g hPa−1 cm−2 s−1

    Figure  10.  Same as Fig. 9, but for water vapor flux divergence (shaded, units: 10−6 g hPa−1 cm−2 s−1)

    图  11  2016年4月12日18:00模式模拟的假相位温线(θse,等值线,间隔:4 K)和垂直运动速度(阴影,单位:m s−1)过图3c中直线AB的垂直剖面(垂直速度扩大20倍):(a)ZE试验;(b)ZFE试验;(c)RE试验;(d)OFE试验

    Figure  11.  Simulated pseudo-equivalent potential temperature θse (isoline, interval: 4 K) and vertical velocity (shadings, units: m s−1) along AB straight line at 1800 UTC April 12, 2016 (vertical wind speed enlarged 20 times): (a) ZE test; (b) ZFE test; (c) RE test; (d) OFE test

    图  12  2016年4月12日19:00 模拟的雷达组合反射率(阴影,单位:dBZ)和0.5~3 km垂直风切变(风羽,单位:m s−1)分布:(a)ZE试验;(b)ZFE试验;(c)RE试验;(d)OFE 试验。椭圆D1和椭圆D2表示β中尺度飑线的位置

    Figure  12.  Distributions of simulated combined radar reflectivity (shaded, units: dBZ) and 0.5–3 km vertical wind shear (barbs, units: m s−1) at 1900 UTC April 12, 2016: (a) ZE test; (b) ZFE test; (c) RE test; (d) OFE test. The oval d1 and the oval d2 represent the position of meso-β-scale squal lines

  • [1] Benjamin T B. 1970. Upstream influence [J]. J. Fluid Mech., 40(1): 49−79. doi: 10.1017/S0022112070000046
    [2] Doswell III C A. 1987. The distinction between large-scale and mesoscale contribution to severe convection: A case study example [J]. Wea. Forecasting, 2(1): 3−16. doi: 10.1175/1520-0434(1987)002<0003:TDBLSA>2.0.CO;2
    [3] 段旭, 段玮, 邢东, 等. 2018. 冬春季昆明准静止锋与云贵高原地形的关系 [J]. 高原气象, 37(1): 137−147. doi: 10.7522/j.issn.1000-0534.2017.00032

    Duan X, Duan W, Xing D, et al. 2018. The relationship between Kunming quasi-stationary front and Yunnan–Guizhou Plateau terrain [J]. Plateau Meteor. (in Chinese), 37(1): 137−147. doi: 10.7522/j.issn.1000-0534.2017.00032
    [4] Fovell R G, Tan P H. 1998. The temporal behavior of numerically simulated multicell-type storms. Part Ⅱ: The convective cell life cycle and cell regeneration [J]. Mon. Wea. Rev., 126: 551−557. doi: 10.1175/1520-0493(1998)126<0551:TTBONS>2.0.CO;2
    [5] 李鸿洲, 蔡则怡, 徐元泰. 1999. 华北强飑线生成环境与地形作用的数值试验研究 [J]. 大气科学, 23(6): 713−721. doi: 10.3878/j.issn.1006-9895.1999.06.08

    Li H Z, Cai Z Y, Xu Y T. 1999. A numbereical experiment of topographic effect on genesis of the squall line in North China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 23(6): 713−721. doi: 10.3878/j.issn.1006-9895.1999.06.08
    [6] 马严枝, 陆昌根, 高守亭. 2012. 8.19华北暴雨模拟中微物理方案的对比试验 [J]. 大气科学, 36(4): 835−850. doi: 10.3878/j.issn.1006-9895.2011.11159

    Ma Y Z, Lu C G, Gao S T. 2012. The effects of different microphysical schemes in WRF on a heavy rainfall in North China during 18–19 August 2010 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36(4): 835−850. doi: 10.3878/j.issn.1006-9895.2011.11159
    [7] McIntyre M E. 1972. On Long's hypothesis of no upstream influence in uniformly stratified or rotating flow [J]. J. Fluid Mech., 52(2): 209−243. doi: 10.1017/S0022112072001387
    [8] 孟英杰, 李丽平, 王珊珊, 等. 2010. 中尺度暴雨过程中地形抬升作用分析 [J]. 安徽农业科学, 38(12): 6333−6336,6402. doi: 10.3969/j.issn.0517-6611.2010.12.092

    Meng Y J, Li L P, Wang S S, et al. 2010. Analysis of the topographic lifting in mesoscale rainstorm process [J]. J. Anhui Agric. Sci. (in Chinese), 38(12): 6333−6336,6402. doi: 10.3969/j.issn.0517-6611.2010.12.092
    [9] Rotunno R, Klemp J B, Weisman M L. 1988. A theory for strong, long-lived squall lines [J]. J. Atmos. Sci., 45(3): 463−485. doi: 10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2
    [10] 寿绍文, 励申申, 姚秀萍. 2003. 中尺度气象学[M]. 北京: 气象出版社, 195–203

    Shou S W, Li S S, Yao X P. 2003. Mesoscale Meteorology (in Chinese) [M]. Beijing: China Meteorological Press, 195–203.
    [11] 孙建华, 郑淋淋, 赵思雄. 2014. 水汽含量对飑线组织结构和强度影响的数值试验 [J]. 大气科学, 38(4): 742−755. doi: 10.3878/j.issn.1006-9895.2013.13187

    Sun J H, Zheng L L, Zhao S X. 2014. Impact of moisture on the organizational mode and intensity of squall lines determined through numerical experiments [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38(4): 742−755. doi: 10.3878/j.issn.1006-9895.2013.13187
    [12] 孙密娜, 韩婷婷, 王艳春, 等. 2020. 华北一次冷涡背景下飑线雷暴大风成因分析 [J]. 气象科技, 48(2): 263−273. doi: 10.19517/j.1671-6345.20190117

    Sun M N, Han T T, Wang Y C, et al. 2020. Causal analysis of a squall line thunderstorm gale under background of a cold vortex in North China [J]. Meteor. Sci. Technol. (in Chinese), 48(2): 263−273. doi: 10.19517/j.1671-6345.20190117
    [13] 陶局, 易笑园, 赵海坤, 等. 2019. 一次飑线过程及其受下垫面影响的数值模拟 [J]. 高原气象, 38(4): 756−772. doi: 10.7522/j.issn.1000-0534.2019.00035

    Tao J, Yi X Y, Zhao H K, et al. 2019. Numerical simulation on the influence of Bohai Sea to a squall line process [J]. Plateau Meteor. (in Chinese), 38(4): 756−772. doi: 10.7522/j.issn.1000-0534.2019.00035
    [14] 王瑾婷, 丁治英, 赵向军, 等. 2017. 大别山地形对江淮飑线发展变化及组织结构的影响研究 [J]. 气象科学, 37(5): 639−651. doi: 10.3969/2017jms.0006

    Wang J T, Ding Z Y, Zhao X J, et al. 2017. Study of the orographic effects of the Dabie mountain on the development and structure of squall line [J]. J. Meteor. Sci. (in Chinese), 37(5): 639−651. doi: 10.3969/2017jms.0006
    [15] 王林, 沈新勇, 王勇, 等. 2021. 华南一次飑线升尺度增长过程的机制分析 [J]. 高原气象, 40(1): 145−158. doi: 10.7522/j.issn.1000-0534.2019.00127

    Wang L, Shen X Y, Wang Y, et al. 2021. Mecha-nism Analysis of a Squall Line Upscale Growing Process in South China [J]. Plateau Meteor. (in Chinese), 40(1): 145−158. doi: 10.7522/j.issn.1000-0534.2019.00127
    [16] 王莹, 苗峻峰, 苏涛. 2018. 海南岛地形对局地海风降水强度和分布影响的数值模拟 [J]. 高原气象, 37(1): 207−222. doi: 10.7522/j.issn.1000-0534.2016.00135

    Wang Y, Miao J F, Su T. 2018. A numerical study of impact of topography on intensity and pattern of sea breeze precipitation over the Hainan Island [J]. Plateau Meteor. (in Chinese), 37(1): 207−222. doi: 10.7522/j.issn.1000-0534.2016.00135
    [17] 王华, 李宏宇, 仲跻芹, 等. 2019. 京津冀一次罕见的双雨带暴雨过程成因分析 [J]. 高原气象, 38(4): 856−871. doi: 10.7522/j.issn.1000-0534.2018.00102

    Wang H, Li H Y, Zhong J Q, et al. 2019. The formation of an unusual two-belt heavy rainfall around Beijing-Tianjin-Hebei area [J]. Plateau Meteor. (in Chinese), 38(4): 856−871. doi: 10.7522/j.issn.1000-0534.2018.00102
    [18] Weisman M L, Rotunno R. 2004. “A theory for strong long-lived squall lines”revisited [J]. J. Atmos. Sci., 61(4): 361−382. doi: 10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2
    [19] 吴紫煜, 姚雯, 李超, 等. 2016. 京津冀地区中α尺度飑线过程中大风特征分析及成因初探 [J]. 气象与环境科学, 39(2): 90−98. doi: 10.16765/j.cnki.1673-7148.2016.02.013

    Wu Z Y, Yao W, Li C, et al. 2016. Study on the characteristics and causes of strong wind during the Meso-α-scale squall line process in Beijing–Tianjin–Hebei area [J]. Meteor. Environ. Sci. (in Chinese), 39(2): 90−98. doi: 10.16765/j.cnki.1673-7148.2016.02.013
    [20] 徐国昌, 张志银. 1983. 青藏高原对西北干旱气候形成的作用 [J]. 高原气象, 2(2): 9−16.

    Xu G C, Zhang Z Y. 1983. The effect of Qinghai-Xizang plateau on the formation of dry climate over the Northwest of China [J]. Plateau Meteor. (in Chinese), 2(2): 9−16.
    [21] 杨舒楠, 张芳华, 徐珺, 等. 2016. 四川盆地一次暴雨过程的中尺度对流及其环境场特征 [J]. 高原气象, 35(6): 1476−1486. doi: 10.7522/j.issn.1000-0534.2015.00105

    Yang S N, Zhang F H, Xu J, et al. 2016. Mesoscale convective systems and characteristics of environment field of a heavy rainfall process occurred in Sichuan Basin [J]. Plateau Meteor. (in Chinese), 35(6): 1476−1486. doi: 10.7522/j.issn.1000-0534.2015.00105
    [22] 姚晨, 戴娟, 刘晓蓓. 2013. 江淮流域长生命史飑线的特征分析与临近预警 [J]. 气象科学, 33(5): 577−583. doi: 10.3969/2012jms.0153

    Yao C, Dai J, Liu X B. 2013. Characteristic analysis and early-warning of long life squall line on Jianghuai river basin [J]. J. Meteor. Sci. (in Chinese), 33(5): 577−583. doi: 10.3969/2012jms.0153
    [23] 翟少婧. 2021. 龙口市一次强对流天气过程分析 [J]. 现代农业科技(2): 166−168. doi: 10.3969/j.issn.1007-5739.2021.02.068

    Zhai S J. 2021. Analysis of a severe convective weather process in Longkou City [J]. Mod. Agric. Sci. Technol. (in Chinese)(2): 166−168. doi: 10.3969/j.issn.1007-5739.2021.02.068
    [24] 张腾飞, 张杰, 张思豆, 等. 2018. 云南南支槽飑线雹暴中尺度特征及环境条件 [J]. 高原气象, 37(4): 958−969. doi: 10.7522/j.issn.1000-0534.2017.00093

    Zhang T F, Zhang J, Zhang S D, et al. 2018. Mesoscale characteristics and environmental conditions of south trough squall-line hailstorm in Yunnan [J]. Plateau Meteor. (in Chinese), 37(4): 958−969. doi: 10.7522/j.issn.1000-0534.2017.00093
    [25] 张乐楠, 丁治英, 王咏青, 等. 2019. 一次东北冷涡下槽后强风与飑线后向入流演变及成因分析 [J]. 气象科学, 39(4): 488−501. doi: 10.3969/2018jms.0060

    Zhang L N, Ding Z Y, Wang Y Q, et al. 2019. Cause and evolution analysis of rear inflow in a squall line with the influence of strong wind after trough of Northeast cold vortex [J]. J. Meteor. Sci. (in Chinese), 39(4): 488−501. doi: 10.3969/2018jms.0060
    [26] 张宏芳, 潘留杰, 陈昊明, 等. 2020. 秦岭及周边地区暖季降水日变化及其成因分析 [J]. 高原气象, 39(5): 935−946. doi: 10.7522/j.issn.1000-0534.2019.00067

    Zhang H F, Pan L J, Chen H M, et al. 2020. Diurnal variations and causes of warm season precipitation in Qinling and surrounding areas [J]. Plateau Meteor. (in Chinese), 39(5): 935−946. doi: 10.7522/j.issn.1000-0534.2019.00067
    [27] 郑淋淋, 孙建华. 2016. 风切变对中尺度对流系统强度和组织结构影响的数值试验 [J]. 大气科学, 40(2): 324−340. doi: 10.3878/j.issn.1006-9895.1505.14311

    Zheng L L, Sun J H. 2016. The impact of vertical wind shear on the intensity and organizational mode of mesoscale convective systems using numerical experiments [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(2): 324−340. doi: 10.3878/j.issn.1006-9895.1505.14311
    [28] 钟敏, 陈璇, 王珊珊, 等. 2020. 一次局地大暴雨过程中两个不同MCS成因分析 [J]. 气象与环境科学, 43(4): 26−35. doi: 10.16765/j.cnki.1673-7148.2020.04.004

    Zhong M, Chen X, Wang S S, et al. 2020. Cause analysis of two different MCS during a local heavy rainstorm [J]. Meteor. Environ. Sci. (in Chinese), 43(4): 26−35. doi: 10.16765/j.cnki.1673-7148.2020.04.004
  • 加载中
图(12)
计量
  • 文章访问数:  542
  • HTML全文浏览量:  104
  • PDF下载量:  212
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-14
  • 录用日期:  2021-11-01
  • 网络出版日期:  2021-11-30
  • 刊出日期:  2022-11-24

目录

    /

    返回文章
    返回