高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

影响夏季青藏高原横切变线演变的动力和热力作用分析

高媛 姚秀萍 李山山 王晓芳

高媛, 姚秀萍, 李山山, 等. 2022. 影响夏季青藏高原横切变线演变的动力和热力作用分析[J]. 大气科学, 46(2): 486−500 doi: 10.3878/j.issn.1006-9895.2108.21053
引用本文: 高媛, 姚秀萍, 李山山, 等. 2022. 影响夏季青藏高原横切变线演变的动力和热力作用分析[J]. 大气科学, 46(2): 486−500 doi: 10.3878/j.issn.1006-9895.2108.21053
GAO Yuan, YAO Xiuping, LI Shanshan, et al. 2022. Dynamic and Thermodynamic Effects on the Evolution of the Transverse Shear Line over the Tibetan Plateau in Boreal Summer [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(2): 486−500 doi: 10.3878/j.issn.1006-9895.2108.21053
Citation: GAO Yuan, YAO Xiuping, LI Shanshan, et al. 2022. Dynamic and Thermodynamic Effects on the Evolution of the Transverse Shear Line over the Tibetan Plateau in Boreal Summer [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(2): 486−500 doi: 10.3878/j.issn.1006-9895.2108.21053

影响夏季青藏高原横切变线演变的动力和热力作用分析

doi: 10.3878/j.issn.1006-9895.2108.21053
基金项目: 高原与盆地暴雨旱涝灾害四川省重点实验室开放研究基金项目SZKT202003,国家自然科学基金项目41620104009、91937301、42030611,湖北省气象局科研项目年轻科技人员专项2022Q05
详细信息
    作者简介:

    高媛,女,1994年出生,硕士研究生,助理工程师,主要研究领域:高原气象学和中尺度气象学。E-mail: 492498134@qq.com

  • 中图分类号: P443

Dynamic and Thermodynamic Effects on the Evolution of the Transverse Shear Line over the Tibetan Plateau in Boreal Summer

Funds: Funded by Open Research Foundation of Heavy Rain and Drought–Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province (Grant SZKT202003), National Natural Science Foundation of China (Grants 41620104009, 91937301, 42030611), Scientific Research Project of Hubei Meteorological Bureau for Young Scientists and Technicians (Grant 2022Q05)
  • 摘要: 青藏高原横切变线(简称切变线)是引发青藏高原夏季暴雨的主要天气系统之一。本文基于欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,简称ECMWF)提供的ERA-5再分析资料,选取14个生成于6~8月、生命史为38小时且引发高原暴雨的切变线个例进行合成分析,探究动力和热力作用对夏季切变线生成和强度演变的影响。结果表明:(1)500 hPa切变线生成于伊朗高压和西太平洋副热带高压两高之间的鞍形场中,处于580 dagpm闭合低值中心和272 K高温中心内,比湿大值区的北侧;200 hPa南亚高压北部边缘、西风急流入口区南侧。(2)切变线强度表现出明显的日变化特征,在当地时间(LT=UTC+6h)23时最强,13时最弱。(3)涡度收支诊断表明,青藏高原上空高低层散度变化对切变线强度变化具有指示意义,500 hPa涡度最大值(最小值)出现时间滞后于辐合作用最大值(最小值)3小时。(4)切变线演变过程中,切变线发展时位涡随之增大。位涡收支诊断表明,青藏高原上空的水汽和非绝热加热对切变线的生成和发展演变起到重要作用。当边界层感热加热增强时,低层辐合增强,上升运动增强,在充足的水汽配合下,凝结潜热释放使非绝热加热中心抬高至大气中层,从而有利于切变线生成及发展。
  • 图  1  合成高原横切变线附近(32°~35°N,83°~90°E)区域平均500 hPa相对涡度(ζ,单位: 10−5 s−1)和位涡(PV,单位:PVU,1 PVU= 10−6 m2 s−1 K kg−1)的时间演变。LT:当地时间(LT=UTC+6 h);D1:切变线生命史第一天,D2:切变线生命史第二天,D3:切变线生命史第三天;A、B、C、D、E分别代表切变线生命史的五个时刻,下同

    Figure  1.  Time series of the area-averaged (32°–35°N, 83°–90°E) relative vorticity (ζ, units: 10−5 s−1) and potential vorticity (PV, units: PVU, 1PVU= 10−6 m2 s−1 K kg−1 at 500 hPa. LT: local time (LT=UTC+6 h). D1: the first day of the TPTSL lifetime; D2: the second day of the TPTSL lifetime; D3: the third day of the TPTSL lifetime. A, B, C, D, and E represent the five moments of the lifetime of the composited Tibetan Plateau transverse shear line (TPTSL) respectively, the same below

    图  2  五个时刻合成高原横切变线的空间结构演变:(a)500 hPa(灰色边界线为海拔 3000 m以上高原边界);(b)沿90°E垂直剖面(灰色部分为地形)

    Figure  2.  Spatial evolution of the TPTSL at five moments (A, B, C, D, and E respectively) at (a) 500 hPa (the solid gray line represents the Tibetan Plateau) and (b) the vertical cross-section along 90°E (the shaded gray area represents the Tibetan Plateau)

    图  3  合成高原横切变线(a–d)500 hPa的高度场(黑色等值线,等值线间隔4 dagpm)、温度场(红色等值线,等值线间隔4 K)、比湿(阴影部分,单位:10−3 g g−1)和风场(风向杆,一长风杆代表1.34 m s−1)及(e−h)200 hPa的高度场(黑色等值线,等值线间隔10 dagpm)和纬向风(红色等值线, 等值线间隔10 m s−1)的分布,阴影部分表示陆地。蓝色粗实线为对应时刻500 hPa合成高原横切变线。(a,e)时刻A(D1\17LT);(b,f)时刻B(D1\23LT);(c,g)时刻C(D2\13LT);(d,h)时刻E(D3\06LT)

    Figure  3.  (a–d) Composites of heights (black contour, the contour interval is 4 dagpm), temperature (red contour, the contour interval is 4 K), specific humidity (shaded, units: 10−3 g g−1), and winds (vector, units: m s−1) at 500 hPa. (e–h) Composites of heights (black contour, the contour interval is 10 dagpm) and zonal winds (red contour, the contour interval is 10 m s−1) at 200 hPa, the shaded region represents the land. The bold blue line represents the TPTSL. (a, e) at Time A (D1\17LT); (b, f) at Time B (D1\23LT); (c, g) at Time C (D2\13LT); (d, h) at Time E (D3\06LT)

    图  4  合成高原横切变线附近(32°~35°N,83°~90°E)区域平均500 hPa涡度诊断方程各项的时间演变(涡度局地变化项和辐合辐散项的单位:10−10 s−2,其余项单位:10−11s−2

    Figure  4.  Time series of the area-averaged (32°–35°N, 83°–90°E) vorticity budget around the TPTSL (unit of the tendency and divergence terms: 10−10 s−2, others: 10−11 s−2)

    图  5  (a–d)500 hPa、(e–h)200 hPa的散度场(填色,单位:10−5 s−1)、相对涡度(a–d中红色实线,单位:10−5s−1)和垂直速度(黑色等值线,单位:10−2 Pa s−1):(a,e)时刻A(D1\17LT);(b,f)时刻B(D1\23LT);(c,g)时刻C(D2\13LT);(d,h)时刻E(D3\06LT)。紫色粗实线为对应时刻500 hPa合成高原横切变线

    Figure  5.  Composites of the divergence (shaded, units: 10−5 s−1), relative vorticity (red contour in a–d, units: 10−5 s−1), and vertical velocity (black contour, units: 10−2 Pa s−1) at (a–d) 500 hPa and (e–h) 200 hPa. The bold purple line represents the TPTSL. (a, e) at Time A (D1\17LT); (b, f) at Time B (D1\23LT); (c, g) at Time C (D2\13LT); (d, h) at Time E (D3\06LT)

    图  6  合成高原横切变线附近(32°~35°N,83°~90°E)区域平均散度(填色部分,单位:10−6 s−1)和垂直速度(等值线,单位:10−2 Pa s−1)的高度—时间演变

    Figure  6.  Height–time cross-sections of the area-averaged (32°–35°N, 83°–90°E) divergence (shaded area, units: 10−6 s−1) and vertical velocity (contour, units: 10−2 Pa s−1)

    图  7  (a)合成高原横切变线附近(32°~35°N,83°~90°E)区域平均非绝热加热率Q(填色部分)和视水汽汇加热率Q2(等值线)的高度—时间演变,单位:K h−1;(b)整层大气非绝热加热<Q1>(黑色实线,单位:W m−2)、整层视水汽源<Q2>(黑色点线,单位:W m−2)和500 hPa比湿偏差$q'$(黑色虚线,${q}'={q}_{i}-{q}_{ave}$, ${q}_{ave}=\displaystyle\frac{1}{38}{\sum }_{i=1}^{i=38}{q}_{i}$, i代表不同时次,单位:10−5 g g−1)的时间演变

    Figure  7.  (a) Height–time cross-sections of the area-averaged (32°–35°N, 83°–90°E) diabatic heating rate (Q, shaded area, units: K h−1) and the apparent moisture sink (Q2, contour, units: K h−1). (b) Time series of the area-averaged vertically integrated <Q1> (solid, units: W m−2), vertically integrated <Q1> (dotted, units: W m−2), and the special humidity departure (short dashed line, units: 10−5 g g−1)

    图  8  五个时刻合成高原横切变线500 hPa相对涡度(填色部分,单位:10−5s−1)、位涡(黑色实线,单位:PVU)和静力稳定度(蓝色虚线,单位:10−4 K Pa−1)分布:(a)时刻A(D1\17LT);(b)时刻B(D1\23LT);(c)时刻C(D2\13LT);(d)时刻D(D2\22LT);(e)时刻E(D3\06L T)

    Figure  8.  Composites of the relative vorticity (shaded area, units: 10−5 s−1), potential vorticity (black contour, units: PVU), and static stability (blue dashed line, units: 10−4 K Pa−1): (a) Time A (D1\17LT); (b) Time B (D1\23LT); (c) Time C (D2\13LT); (d) Time D (D2\22LT); (e) Time E (D3\06L T)

    图  9  (a)合成高原横切变线附近(32°~35°N,83°~90°E)区域平均500 hPa位涡诊断方程各项:位涡局地变化项(PVT)、位涡平流项(PVA)和非绝热加热效应项(DHE)的时间演变;(b)500 hPa位涡平流项三个分量:x分量(PVAX)、y分量(PVAY)和垂直分量(PVAP)的时间演变;(c)500 hPa非绝热加热效应项三个分量:x分量(DHEX)、y分量(DHEY)和垂直分量(DHEP)的时间演变图。PVT、DHE、DHEP的单位:10−2 PVU h−1,PVA、PVAX、PVAY、PVAP的单位:10−3 PVU h−2, DHEX、DHEY的单位:10−4 PVU h−1

    Figure  9.  (a) Time series of the area-averaged (32°–35°N, 83°–90°E) PV tendency (PVT), PV advection (PVA), and diabatic heating effects (DHE) at 500 hPa; (b) time series of the area-average x component of PV advection (PVAX), y component of PV advection (PVAY), and p component of PV advection (PVAP) at 500 hPa; and (c) time series of the area-averaged x component of diabatic heating effects (DHEX), y component of diabatic heating effects (DHEY), and p component of diabatic heating effects (DHEP) at 500 hPa. Units for PVT, DHE, and DHEP is 10−2 PVU h−1; units for PVA, PVAX, PVAY, PVAP is 10−3 PVU h−1; and units for DHEX and DHEY is10−4 PVU h−1

    图  10  高原横切变线生成机制示意图

    Figure  10.  Schematic of the generation mechanism for the TPTS

    表  1  用于合成分析的高原横切变线个例生成时间及过程降水情况

    Table  1.   Generation time and precipitation of each case of the TSL used for the composite analysis

    生成时间平均降水量
    年-月-日R1R2R3
    1982-06-2433.546.783.6
    1983-06-2622.22339.9
    1985-06-0810.212.357.3
    1985-08-2223.72142
    1987-07-0842.339.834.6
    1988-06-153832.243.1
    1992-07-2457.625.933.9
    1998-08-1719.741.372.5
    2000-06-2943.625.94.2
    2001-08-2222.816.318.3
    2002-06-1214.27.327.1
    2005-06-1726.230.245.7
    2015-08-1736.511.711.2
    2018-06-1229.222.950.3
    注:R1为该切变线生成当日20时至次日08时(北京时间,BJT=UTC+
    8 h)在(32°~35°N,80°~100°E)范围内各降水站点的平均降水量, R 2为该切变线生成次日08时~20时(BJT)在(32°~35°N,80°~100°E)范围内各降水站点的平均降水量,R 3为该切变线生成次日20时至第三日08时(BJT)在(32°~35°N,80°~100°E)范围内各降水站点的平均降水量。单位:mm
    下载: 导出CSV
  • [1] 杜梅, 李国平, 李山山. 2020. 高原横切变线与高原低涡关系的初步研究 [J]. 大气科学, 44(2): 269−281. doi: 10.3878/j.issn.1006-9895.1906.18191

    Du Mei, Li Guoping, Li Shanshan. 2020. A preliminary study of the relationship between the plateau transverse shear line and plateau vortex [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(2): 269−281. doi: 10.3878/j.issn.1006-9895.1906.18191
    [2] Guan Q, Yao X P, Li Q P, et al. 2018. Study of a horizontal shear line over the Qinghai–Tibetan Plateau and the impact of diabatic heating on its evolution [J]. J. Meteor. Res., 32(4): 612−626. doi: 10.1007/s13351-018-7186-7
    [3] 何光碧, 师锐. 2014. 三次高原切变线过程演变特征及其对降水的影响 [J]. 高原气象, 33(3): 615−625. doi: 10.7522/j.issn.1000-0534.2013.00023

    He Guangbi, Shi Rui. 2014. Analysis on evolution characteristics of three Plateau shearlines and their effect on precipitation [J]. Plateau Meteorology (in Chinese), 33(3): 615−625. doi: 10.7522/j.issn.1000-0534.2013.00023
    [4] Hoskins B. 1997. A potential vorticity view of synoptic development [J]. Meteorological Applications, 4(4): 325−334. doi: 10.1017/S1350482797000716
    [5] Hoskins B J, McIntyre M E, Robertson A W. 1985. On the use and significance of isentropic potential vorticity maps [J]. Quart. J. Roy. Meteor. Soc., 111(470): 877−946. doi: 10.1002/qj.497111470024
    [6] 李山山, 李国平. 2017a. 一次高原低涡与高原切变线演变过程与机理分析 [J]. 大气科学, 41(4): 713−726. doi: 10.3878/j.issn.1006-9895.1611.16179

    Li Shanshan, Li Guoping. 2017a. Evolution and mechanism analysis of a plateau vortex and Plateau shear line [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 41(4): 713−726. doi: 10.3878/j.issn.1006-9895.1611.16179
    [7] 李山山, 李国平. 2017b. 一次鞍型场环流背景下高原东部切变线降水的湿Q矢量诊断分析 [J]. 高原气象, 36(2): 317−329. doi: 10.7522/j.issn.1000-0534.2016.00025

    Li Shanshan, Li Guoping. 2017b. Diagnostic analysis based on wet Q–vector of a shear line with rain on the east side of Qinghai–Tibetan Plateau under the saddle pattern circulation background field [J]. Plateau Meteorology (in Chinese), 36(2): 317−329. doi: 10.7522/j.issn.1000-0534.2016.00025
    [8] Li L, Zhang R H, Wen M. 2011. Diagnostic analysis of the evolution mechanism for a vortex over the Tibetan Plateau in June 2008 [J]. Adv. Atmos. Sci., 28(4): 797−808. doi: 10.1007/s00376-010-0027-y
    [9] Li L, Zhang R H, Wen M, et al. 2014. Effect of the atmospheric heat source on the development and eastward movement of the Tibetan Plateau vortices [J]. Tellus A, 66(1): 24451. doi: 10.3402/tellusa.v66.24451
    [10] Li L, Zhang R H, Wen M. 2018a. Diurnal variation in the intensity of nascent Tibetan Plateau vortices [J]. Quart. J. Roy. Meteor. Soc., 144(717): 2524−2536. doi: 10.1002/qj.3343
    [11] Li L, Zhang R H, Wen M, et al. 2018b. Development and eastward movement mechanisms of the Tibetan Plateau vortices moving off the Tibetan Plateau [J]. Climate Dyn., 52(7-8): 4849−4859. doi: 10.1007/s00382-018-4420-z
    [12] 罗雄, 李国平. 2018. 高空急流对青藏高原切变线影响的数值试验与动力诊断 [J]. 气象学报, 76(3): 361−378. doi: 10.11676/qxxb2018.005

    Luo Xiong, Li Guoping. 2018. Numerical experiments and dynamic diagnosis of the upper-level jet stream impact on the Tibetan Plateau shear line [J]. Acta Meteorologica Sinica (in Chinese), 76(3): 361−378. doi: 10.11676/qxxb2018.005
    [13] 马嘉理, 姚秀萍. 2015. 1981–2013年6–7月江淮地区切变线及暴雨统计分析 [J]. 气象学报, 73(5): 883−894. doi: 10.11676/qxxb2015.065

    Ma Jiali, Yao Xiuping. 2015. Statistical analysis of the shear lines and torrential rains over the Yangtze–Huaihe River region during June–July in 1981–2013 [J]. Acta Meteorologica Sinica (in Chinese), 73(5): 883−894. doi: 10.11676/qxxb2015.065
    [14] 马婷, 刘屹岷, 吴国雄, 等. 2020. 青藏高原低涡形成、发展和东移影响下游暴雨天气个例的位涡分析 [J]. 大气科学, 44(3): 472−486. doi: 10.3878/j.issn.1006-9895.1904.18275

    Ma Ting, Liu Yimin, Wu Guoxiong, et al. 2020. Effect of potential vorticity on the formation, development, and eastward movement of a Tibetan Plateau vortex and its influence on downstream precipitation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(3): 472−486. doi: 10.3878/j.issn.1006-9895.1904.18275
    [15] 彭新东, 程麟生. 1994. 高原东侧低涡切变线发展的个例数值研究──Ⅱ. 中尺度数值模拟 [J]. 兰州大学学报(1): 124−131. doi: 10.13885/j.issn.0455-2059.1994.01.026

    Peng Xindong, Cheng Linsheng. 1994. A case numerical study on the evolution of the low vortex and shear-line on the east side of the plateau Ⅱ. Mesoscale numerical simulation [J]. Journal of Lanzhou University (in Chinese)(1): 124−131. doi: 10.13885/j.issn.0455-2059.1994.01.026
    [16] 青藏高原气象科学研究拉萨会战组. 1981. 夏半年青藏高原500毫巴低涡切变线的研究[M]. 北京: 科学出版社, 1–122

    Lhasa Battle Group of Meteorological Sciences on the Qinghai–Tibet Plateau. 1981. Study on 500mb Low Vortex Shear Line of Tibet Plateau (in Chinese) [M]. Beijing: Science Press, 1–122.
    [17] 师锐, 何光碧. 2011. 移出与未移出高原的高原切变线背景环流对比分析 [J]. 高原气象, 30(6): 1453−1461.

    Shi Rui, He Guangbi. 2011. Contrast analysis on background circulation of Plateau shear line moving out and not moving out of the Tibetan Plateau [J]. Plateau Meteorology (in Chinese), 30(6): 1453−1461.
    [18] 寿绍文. 2010. 位涡理论及其应用 [J]. 气象, 36(3): 9−18. doi: 10.7519/j.issn.1000-0526.2010.3.002

    Shou Shaowen. 2010. Theory and application of potential vorticity [J]. Meteorological Monthly (in Chinese), 36(3): 9−18. doi: 10.7519/j.issn.1000-0526.2010.3.002
    [19] 唐洪. 2002. 西藏高原夏季强降水过程分析 [J]. 西藏科技(9): 51−55. doi: 10.3969/j.issn.1004-3403.2002.09.022

    Tang Hong. 2002. Research on the process of the strong precipitation in the Summer of Tibet Plateau [J]. Tibet’s Science and Technology (in Chinese)(9): 51−55. doi: 10.3969/j.issn.1004-3403.2002.09.022
    [20] 陶诗言, 罗四维, 张鸿材. 1984. 1979年5~8月青藏高原气象科学实验及其观测系统 [J]. 气象, 10(7): 2−5. doi: 10.7519/j.issn.1000-0526.1984.7.001

    Tao Shiyan, Luo Siwei, Zhang Hongcai. 1984. The meteorological science experiment and observation system of the Qinghai–Tibet Plateau in May–August [J]. Meteorological Monthly (in Chinese), 10(7): 2−5. doi: 10.7519/j.issn.1000-0526.1984.7.001
    [21] 屠妮妮, 何光碧. 2010. 两次高原切变线诱发低涡活动的个例分析 [J]. 高原气象, 29(1): 90−98.

    Tu Nini, He Guangbi. 2010. Case analysis on two low vortexes induced by Tibetan Plateau shear line [J]. Plateau Meteorology (in Chinese), 29(1): 90−98.
    [22] Wu D, Zhang F M, Wang C H. 2018. Impacts of diabatic heating on the genesis and development of an inner Tibetan Plateau vortex [J]. J. Geophys. Res., 123(20): 11691−11704. doi: 10.1029/2018JD029240
    [23] 徐祥德. 2009. 青藏高原“敏感区”对我国灾害天气气候的影响及其监测 [J]. 中国工程科学, 11(10): 96−107. doi: 10.3969/j.issn.1009-1742.2009.10.014

    Xu Xiangde. 2009. The effects of sensitive region over Tibetan Plateau on disastrous weather and climate and its monitoring [J]. Engineering Sciences (in Chinese), 11(10): 96−107. doi: 10.3969/j.issn.1009-1742.2009.10.014
    [24] Yanai M, Li C F, Song Z S. 1992. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon [J]. J. Meteor. Soc. Japan., 70(1B): 319−350. doi: 10.2151/jmsj1965.70.1B_319
    [25] 姚秀萍, 孙建元, 康岚, 等. 2014. 高原切变线研究的若干进展 [J]. 高原气象, 33(1): 294−300. doi: 10.7522/j.issn.1000-0534.2013.00164

    Yao Xiuping, Sun Jianyuan, Kang Lan, et al. 2014. Advances on research of shear convergence line over Qinghai–Xizang Plateau [J]. Plateau Meteorology (in Chinese), 33(1): 294−300. doi: 10.7522/j.issn.1000-0534.2013.00164
    [26] 尹道声. 1979. 论青藏高原中部的非绝热局地锋生 [J]. 气象学报, 37(4): 16−25. doi: 10.11676/qxxb1979.035

    Yin Daosheng. 1979. On the local diabatic frontogenesis in the central part of Qingzang Gaoyuan [J]. Acta Meteorologica Sinica, 37(4): 16−25. doi: 10.11676/qxxb1979.035
    [27] 郁淑华. 1994. 一次高空槽在青藏高原上诱发切变线的Q矢量分析 [J]. 应用气象学报, 5(1): 109−113.

    Yu Shuhua. 1994. A Q–vector analysis of the process of shear line on Qinghai–Xizang Plateau triggered from moving Trough aloft [J]. Quarterly Journal of Applied Meteorology (in Chinese), 5(1): 109−113.
    [28] 郁淑华, 骆红. 1993. 青藏高原上低槽与切变线动能收支的个例分析 [J]. 高原气象, 12(3): 251−256.

    Yu Shuhua, Luo Hong. 1993. The contrast analysis of kinetic energy budget for developing trough and shear line over the Qinghai–Xizang Plateau [J]. Plateau Meteorology (in Chinese), 12(3): 251−256.
    [29] 张小玲, 程麟生. 2000a. “96.1”暴雪期中尺度切变线发生发展的动力诊断I: 涡度和涡度变率诊断 [J]. 高原气象, 19(3): 285−294. doi: 10.3321/j.issn:1000-0534.2000.03.003

    Zhang Xiaoling, Cheng Linsheng. 2000a. Dynamic diagnoses of the genesis and development for the mesoscale shear line during “96.1” snowstorm. I: Diagnoses of vorticity and vorticity variability [J]. Plateau Meteorology (in Chinese), 19(3): 285−294. doi: 10.3321/j.issn:1000-0534.2000.03.003
    [30] 张小玲, 程麟生. 2000b. “96.1”暴雪期中尺度切变线发生发展的动力诊断Ⅱ: 散度和散度变率诊断 [J]. 高原气象, 19(4): 459−466. doi: 10.3321/j.issn:1000-0534.2000.04.007

    Zhang Xiaoling, Cheng Linsheng. 2000b. Dynamic diagnoses of the genesis and development for mesoscale shear line during “96.1” snowstorm, Ⅱ: Diagnoses of divergence and its variability [J]. Plateau Meteorology (in Chinese), 19(4): 459−466. doi: 10.3321/j.issn:1000-0534.2000.04.007
    [31] Zhang X, Yao X P, Ma J L, et al. 2016. Climatology of transverse shear lines related to heavy rainfall over the Tibetan Plateau during boreal summer [J]. J. Meteor. Res., 30(6): 915−926. doi: 10.1007/s13351-016-6952-7
    [32] Zhang F M, Wang C H, Pu Z X. 2019. Genesis of Tibetan Plateau vortex: Roles of surface diabatic and atmospheric condensational latent heating [J]. J. Appl. Meteor. Climatol., 58(12): 2633−2651. doi: 10.1175/JAMC-D-19-0103.1
    [33] 张硕, 姚秀萍, 巩远发. 2019. 基于客观判识的青藏高原横切变线结构及演变特征合成研究 [J]. 气象学报, 77(6): 1086−1106. doi: 10.11676/qxxb2019.058

    Zhang Shuo, Yao Xiuping, Gong Yuanfa. 2019. A synthetic study of the structure and evolution characteristics of a meridionally-oriented shearline over the Tibetan Plateau based on objective identification [J]. Acta Meteorologica Sinica, 77(6): 1086−1106. doi: 10.11676/qxxb2019.058
    [34] 赵大军, 姚秀萍. 2018. 高原切变线形态演变过程中的个例研究: 结构特征 [J]. 高原气象, 37(2): 420−431. doi: 10.7522/j.issn.1000-0534.2017.00066

    Zhao Dajun, Yao Xiuping. 2018. Case study on shape evolution of plateau shear line: Structural characteristics [J]. Plateau Meteorology (in Chinese), 37(2): 420−431. doi: 10.7522/j.issn.1000-0534.2017.00066
    [35] 郑永骏, 吴国雄, 刘屹岷. 2013. 涡旋发展和移动的动力和热力问题Ⅰ: PV-Q观点 [J]. 气象学报, 71(2): 185−197. doi: 10.11676/qxxb2013.018

    Zheng Yongjun, Wu Guoxiong, Liu Yimin. 2013. Dynamical and thermal problems in vortex development and movement. Part Ⅰ: A PV-Q view [J]. Acta Meteorologica Sinica, 71(2): 185−197. doi: 10.11676/qxxb2013.018
    [36] 中国气象局成都高原气象研究所, 中国气象局成都高原气象委员会. 2011. 青藏高原低涡切变线年鉴-2010[M]. 北京: 科学出版社, 1–244

    Institute of Plateau Meteorology, Chengdu Plateau Meteorological Committee of China Meteorological Administration. 2011. Yearbook of Tibetan Plateau Vortex and Shear Line – 2010 (in Chinese) [M]. Beijing: Science Press, 1–244.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  246
  • HTML全文浏览量:  58
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-02
  • 录用日期:  2021-09-02
  • 网络出版日期:  2021-09-09
  • 刊出日期:  2022-03-16

目录

    /

    返回文章
    返回