TanSat ACGS On-orbit Wavelength Calibration Using the Solar Fraunhofer Lines
-
摘要: 大气二氧化碳(CO2)探测仪(ACGS, Atmospheric Carbon dioxide Grating Spectrometer)搭载于中国全球二氧化碳观测科学试验卫星(TanSat),通过探测0.76 μm、1.61 μm、2.06 μm波段的反射太阳光谱,采用最优估计算法反演大气CO2浓度。满足高光谱分辨率和高精度CO2浓度反演需求,精确探测光谱波长的变化非常重要。本文以高分辨率太阳参考光谱的夫朗禾费吸收线作为参考基准,利用ACGS对太阳的观测光谱计算了ACGS三个谱段通道中心波长位置在一年内的变化情况。结果显示,三个谱段的波长变化在光谱分辨率10%以内,满足光谱定标精度需求。这种变化可能是由于仪器在轨状态变化引起,特别是在轨运行温度变化引起的。ACGS波长的微小变化需要在产品反演中进行修正。基于独立太阳夫琅禾费吸收线的在轨光谱定标方法不仅可以有效监测ACGS的光谱稳定性,还可以为L2产品的处理的提供参考信息。Abstract: Spectra measured using an atmospheric carbon dioxide grating spectrometer (ACGS) by the Chinese global carbon dioxide monitoring scientific experimental satellite (TanSat) in the bands of 0.76, 1.61, and 2.06 μm can be used for retrieving carbon dioxide (CO2) concentrations by fitting observations and simulations using an optimal estimation algorithm. Accurately detecting the change in the center wavelength is important because of its very high spectral resolution and accuracy requirement for product retrieval. Variations in the center wavelength for all the three bands of ACGS have been calculated at the locations of the Fraunhofer lines by comparing solar-viewing measurements and a high-resolution solar reference spectrum. Variations in magnitudes less than 10% of the spectral resolution for each band have been detected. Changes are probably caused by the vibration and instrument status difference between the ground and space, especially the temperature variation in the orbit. The scheme described herein can be used not only for monitoring spectral stability but also to gain spectral knowledge prior to the level-2 product processing. These minor temporal changes in the wavelength in the orbit should be corrected during the product retrieval.
-
Key words:
- High-resolution /
- Carbon dioxide /
- Spectral calibration /
- Solar spectra
-
表 1 TanSat ACGS主要光谱参数
Table 1. Spectral parameters of the TanSat ACGS instrument
探测波段 谱段范围
/nm光谱分辨率
/nm光谱
像元数光谱
采样率空间
像元数O2A 758~778 0.033~0.047 1242 >2 9 WCO2 1594~1624 0.12~0.14 500 >2 9 SCO2 2042~2082 0.16~0.18 500 >2 9 -
[1] Chance K. 1998. Analysis of BrO measurements from the Global Ozone Monitoring Experiment [J]. Geophys. Res. Lett., 25(17): 3335−3338. doi: 10.1029/98GL52359 [2] Chance K, Kurucz R L. 2010. An improved high-resolution solar reference spectrum for earth’s atmosphere measurements in the ultraviolet, visible, and near infrared [J]. J. Quant. Spectrosc. Radiat. Transf., 111(9): 1289−1295. doi: 10.1016/j.jqsrt.2010.01.036 [3] Chatterjee A, Gierach M M, Sutton A J, et al. 2017. Influence of El Niño on atmospheric CO2 over the tropical Pacific Ocean: Findings from NASA’s OCO-2 mission [J]. Science, 358(6360): eaam5776. doi: 10.1126/science.aam5776 [4] Crisp D, Fisher B M, O’Dell C, et al. 2012. The ACOS CO2 retrieval algorithm—Part II: Global $ {\rm{X}}_{{\rm{co}}_2} $ data characterization [J]. Atmos. Meas. Tech., 5(4): 687−707. doi: 10.5194/amt-5-687-2012[5] Crisp D, Pollock H R, Rosenberg R, et al. 2017. The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products [J]. Atmos. Meas. Tech., 10(1): 59−81. doi: 10.5194/amt-10-59-2017 [6] Fontenla J, White O R, Fox P A, et al. 1999. Calculation of solar irradiances. I. Synthesis of the solar spectrum [J]. Astrophys. J., 518(1): 480−499. doi: 10.1086/307258 [7] Frankenberg C, Pollock R, Lee R A M, et al. 2015. The Orbiting Carbon Observatory (OCO-2): Spectrometer performance evaluation using pre-launch direct sun measurements [J]. Atmos. Meas. Tech., 8(1): 301−313. doi: 10.5194/amt-8-301-2015 [8] Liu X, Chance K, Sioris C E, et al. 2005. Ozone profile and tropospheric ozone retrievals from the Global Ozone Monitoring Experiment: Algorithm description and validation [J]. J. Geophys. Res. :Atmos., 110(D20): D20307. doi: 10.1029/2005JD006240 [9] Liu X, Bhartia P K, Chance K, et al. 2010. Ozone profile retrievals from the Ozone Monitoring Instrument [J]. Atmos. Chem. Phys., 10(5): 2521−2537. doi: 10.5194/acp-10-2521-2010 [10] Miller C E, Crisp D, DeCola P L, et al. 2007. Precision requirements for space-based $ {\rm{X}}_{{\rm{co}}_2} $ data [J]. J. Geophys. Res.: Atmos., 112(D10): D10314. doi: 10.1029/2006JD007659[11] Munro R, Lang R, Klaes D, et al. 2016. The GOME-2 instrument on the Metop series of satellites: Instrument design, calibration, and level 1 data processing—An overview [J]. Atmos. Meas. Tech., 9(3): 1279−1301. doi: 10.5194/amt-9-1279-2016 [12] O’ Dell C W, Connor B, Bösch H, et al. 2012. The ACOS CO2 retrieval algorithm—Part 1: Description and validation against synthetic observations [J]. Atmos. Meas. Tech., 5(1): 99−121. doi: 10.5194/amt-5-99-2012 [13] Schwandner F M, Gunson M R, Miller C E, et al. 2017. Spaceborne detection of localized carbon dioxide sources [J]. Science, 358(6360): eaam5782. doi: 10.1126/science.aam5782 [14] Sun K, Liu X, Nowlan C R, et al. 2017. Characterization of the OCO-2 instrument line shape functions using on-orbit solar measurements [J]. Atmos. Meas. Tech., 10(3): 939−953. doi: 10.5194/amt-10-939-2017 [15] Yang Z D, Zhen Y Q, Yin Z S, et al. 2018. Laboratory spectral calibration of the TanSat atmospheric carbon dioxide grating spectrometer [J]. Geosci. Instrum. , Method. Data Syst., 7(3): 245–252. doi: 10.5194/gi-7-245-2018 [16] Yang Z D, Bi Y M, Wang Q, et al. 2020. Inflight performance of the TanSat atmospheric carbon dioxide grating spectrometer [J]. IEEE Trans. Geosci. Remote Sens., 58(7): 4691−4703. doi: 10.1109/TGRS.2020.2966113 -