高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳卫星高光谱二氧化碳探测仪基于太阳夫琅禾费吸收线的在轨波长定标

毕研盟 王倩 杨忠东 刘成保 蔺超 田龙飞 张乃强 王雅澄

毕研盟, 王倩, 杨忠东, 等. 2022. 碳卫星高光谱二氧化碳探测仪基于太阳夫琅禾费吸收线的在轨波长定标[J]. 大气科学, 46(3): 645−652 doi: 10.3878/j.issn.1006-9895.2108.21069
引用本文: 毕研盟, 王倩, 杨忠东, 等. 2022. 碳卫星高光谱二氧化碳探测仪基于太阳夫琅禾费吸收线的在轨波长定标[J]. 大气科学, 46(3): 645−652 doi: 10.3878/j.issn.1006-9895.2108.21069
BI Yanmeng, WANG Qian, YANG Zhongdong, et al. 2022. TanSat ACGS On-orbit Wavelength Calibration Using the Solar Fraunhofer Lines [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(3): 645−652 doi: 10.3878/j.issn.1006-9895.2108.21069
Citation: BI Yanmeng, WANG Qian, YANG Zhongdong, et al. 2022. TanSat ACGS On-orbit Wavelength Calibration Using the Solar Fraunhofer Lines [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(3): 645−652 doi: 10.3878/j.issn.1006-9895.2108.21069

碳卫星高光谱二氧化碳探测仪基于太阳夫琅禾费吸收线的在轨波长定标

doi: 10.3878/j.issn.1006-9895.2108.21069
基金项目: 国家863计划项目2011AA12A104,民用航天技术预先研究项目D040301
详细信息
    作者简介:

    毕研盟,男,1979年出生,博士,研究员,主要从事高光谱遥感、微波遥感以及GNSS掩星研究。E-mail: biym@cma.gov.cn

    通讯作者:

    王倩,E-mail: qwang@cma.gov.cn

  • 中图分类号: P407.4

TanSat ACGS On-orbit Wavelength Calibration Using the Solar Fraunhofer Lines

Funds: National High-tech R&D Program of China (863 Program) (Grant 2011AA12A104), Civil Aerospace Technology Pre Research Project (Grant D040301)
  • 摘要: 大气二氧化碳(CO2)探测仪(ACGS, Atmospheric Carbon dioxide Grating Spectrometer)搭载于中国全球二氧化碳观测科学试验卫星(TanSat),通过探测0.76 μm、1.61 μm、2.06 μm波段的反射太阳光谱,采用最优估计算法反演大气CO2浓度。满足高光谱分辨率和高精度CO2浓度反演需求,精确探测光谱波长的变化非常重要。本文以高分辨率太阳参考光谱的夫朗禾费吸收线作为参考基准,利用ACGS对太阳的观测光谱计算了ACGS三个谱段通道中心波长位置在一年内的变化情况。结果显示,三个谱段的波长变化在光谱分辨率10%以内,满足光谱定标精度需求。这种变化可能是由于仪器在轨状态变化引起,特别是在轨运行温度变化引起的。ACGS波长的微小变化需要在产品反演中进行修正。基于独立太阳夫琅禾费吸收线的在轨光谱定标方法不仅可以有效监测ACGS的光谱稳定性,还可以为L2产品的处理的提供参考信息。
  • 图  1  实验室测定的(a)O2A带、(b)WCO2带和(c)SCO2带星下像元的中心区域的仪器线型(ILS)

    Figure  1.  Preflight ILS (Instrument Line Shape) functions at three adjacent pixels located in the central section of FPA (Focal Panel Arrays) for (a) O2A band, (b) WCO2 band and (c) SCO2 band

    图  2  星下像元(a)O2A带、(b)WCO2带和(c)SCO2带波长及像元序号的对应关系

    Figure  2.  An example of wavelength as a function of pixel index in the focal plane at FOV 5 for (a) O2A band, (b) WCO2 band and (c) SCO2 band

    图  3  (a)O2A带、(b)WCO2带和(b)SCO2带的Kurucz太阳光谱和选择的参考吸收线位置(红色×)μ

    Figure  3.  Kurucz solar spectra and locations of the Fraunhofer lines selected as a reference in (a) O2A band, (b) WCO2 band and (c) SCO2 band

    图  4  O2A带2017年多普勒频移的时间序列

    Figure  4.  Time series of the Doppler shifts in the O2A band in 2017

    图  5  WCO2带2017年多普勒频移的时间序列

    Figure  5.  Time series of the Doppler shifts in the WCO2 band in 2017

    图  6  SCO2带2017年多普勒频移的时间序列

    Figure  6.  Time series of the Doppler shifts in the SCO2 band in 2017

    图  7  光谱定标算法流程

    Figure  7.  Flow chart of the spectral calibration algorithm

    图  8  O2A带9个空间像元波长偏移的时间序列

    Figure  8.  Time series of the wavelength shift for nine spatial FOVs in the O2 A-band

    图  9  WCO2带9个空间像元波长偏移的时间序列

    Figure  9.  Time series of the wavelength shift for nine spatial FOVs in the WCO2 band

    图  10  SCO2带9个空间像元波长偏移的时间序列

    Figure  10.  Time series of the wavelength shift for nine spatial FOVs in the SCO2 band

    图  11  O2A带基准吸收线位置波长偏移量统计结果

    Figure  11.  Statistics of the wavelength shift at the locations of the selected Fraunhofer lines in the O2A band

    图  12  WCO2带基准吸收线位置波长偏移量统计结果

    Figure  12.  Statistics of the wavelength shift at the locations of the selected Fraunhofer lines in the WCO2 band

    图  13  SCO2带基准吸收线位置波长偏移量统计结果

    Figure  13.  Statistics of the wavelength shift at the locations of the selected Fraunhofer lines in the SCO2 band

    表  1  TanSat ACGS主要光谱参数

    Table  1.   Spectral parameters of the TanSat ACGS instrument

    探测波段谱段范围
    /nm
    光谱分辨率
    /nm
    光谱
    像元数
    光谱
    采样率
    空间
    像元数
    O2A758~7780.033~0.0471242>29
    WCO21594~16240.12~0.14500>29
    SCO22042~20820.16~0.18500>29
    下载: 导出CSV
  • [1] Chance K. 1998. Analysis of BrO measurements from the Global Ozone Monitoring Experiment [J]. Geophys. Res. Lett., 25(17): 3335−3338. doi: 10.1029/98GL52359
    [2] Chance K, Kurucz R L. 2010. An improved high-resolution solar reference spectrum for earth’s atmosphere measurements in the ultraviolet, visible, and near infrared [J]. J. Quant. Spectrosc. Radiat. Transf., 111(9): 1289−1295. doi: 10.1016/j.jqsrt.2010.01.036
    [3] Chatterjee A, Gierach M M, Sutton A J, et al. 2017. Influence of El Niño on atmospheric CO2 over the tropical Pacific Ocean: Findings from NASA’s OCO-2 mission [J]. Science, 358(6360): eaam5776. doi: 10.1126/science.aam5776
    [4] Crisp D, Fisher B M, O’Dell C, et al. 2012. The ACOS CO2 retrieval algorithm—Part II: Global $ {\rm{X}}_{{\rm{co}}_2} $ data characterization [J]. Atmos. Meas. Tech., 5(4): 687−707. doi: 10.5194/amt-5-687-2012
    [5] Crisp D, Pollock H R, Rosenberg R, et al. 2017. The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products [J]. Atmos. Meas. Tech., 10(1): 59−81. doi: 10.5194/amt-10-59-2017
    [6] Fontenla J, White O R, Fox P A, et al. 1999. Calculation of solar irradiances. I. Synthesis of the solar spectrum [J]. Astrophys. J., 518(1): 480−499. doi: 10.1086/307258
    [7] Frankenberg C, Pollock R, Lee R A M, et al. 2015. The Orbiting Carbon Observatory (OCO-2): Spectrometer performance evaluation using pre-launch direct sun measurements [J]. Atmos. Meas. Tech., 8(1): 301−313. doi: 10.5194/amt-8-301-2015
    [8] Liu X, Chance K, Sioris C E, et al. 2005. Ozone profile and tropospheric ozone retrievals from the Global Ozone Monitoring Experiment: Algorithm description and validation [J]. J. Geophys. Res. :Atmos., 110(D20): D20307. doi: 10.1029/2005JD006240
    [9] Liu X, Bhartia P K, Chance K, et al. 2010. Ozone profile retrievals from the Ozone Monitoring Instrument [J]. Atmos. Chem. Phys., 10(5): 2521−2537. doi: 10.5194/acp-10-2521-2010
    [10] Miller C E, Crisp D, DeCola P L, et al. 2007. Precision requirements for space-based $ {\rm{X}}_{{\rm{co}}_2} $ data [J]. J. Geophys. Res.: Atmos., 112(D10): D10314. doi: 10.1029/2006JD007659
    [11] Munro R, Lang R, Klaes D, et al. 2016. The GOME-2 instrument on the Metop series of satellites: Instrument design, calibration, and level 1 data processing—An overview [J]. Atmos. Meas. Tech., 9(3): 1279−1301. doi: 10.5194/amt-9-1279-2016
    [12] O’ Dell C W, Connor B, Bösch H, et al. 2012. The ACOS CO2 retrieval algorithm—Part 1: Description and validation against synthetic observations [J]. Atmos. Meas. Tech., 5(1): 99−121. doi: 10.5194/amt-5-99-2012
    [13] Schwandner F M, Gunson M R, Miller C E, et al. 2017. Spaceborne detection of localized carbon dioxide sources [J]. Science, 358(6360): eaam5782. doi: 10.1126/science.aam5782
    [14] Sun K, Liu X, Nowlan C R, et al. 2017. Characterization of the OCO-2 instrument line shape functions using on-orbit solar measurements [J]. Atmos. Meas. Tech., 10(3): 939−953. doi: 10.5194/amt-10-939-2017
    [15] Yang Z D, Zhen Y Q, Yin Z S, et al. 2018. Laboratory spectral calibration of the TanSat atmospheric carbon dioxide grating spectrometer [J]. Geosci. Instrum. , Method. Data Syst., 7(3): 245–252. doi: 10.5194/gi-7-245-2018
    [16] Yang Z D, Bi Y M, Wang Q, et al. 2020. Inflight performance of the TanSat atmospheric carbon dioxide grating spectrometer [J]. IEEE Trans. Geosci. Remote Sens., 58(7): 4691−4703. doi: 10.1109/TGRS.2020.2966113
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  423
  • HTML全文浏览量:  63
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-22
  • 录用日期:  2021-08-27
  • 网络出版日期:  2021-09-09
  • 刊出日期:  2022-05-19

目录

    /

    返回文章
    返回