高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

夏季热带大西洋海温变化对华南前汛期降水的影响

覃皓 伍丽泉 何慧

覃皓, 伍丽泉, 何慧. 2022. 夏季热带大西洋海温变化对华南前汛期降水的影响[J]. 大气科学, 46(X): 1−16 doi: 10.3878/j.issn.1006-9895.2108.21108
引用本文: 覃皓, 伍丽泉, 何慧. 2022. 夏季热带大西洋海温变化对华南前汛期降水的影响[J]. 大气科学, 46(X): 1−16 doi: 10.3878/j.issn.1006-9895.2108.21108
QIN Hao, WU Liquan, HE Hui. 2022. Impact of the Summer Tropical Atlantic Sea Temperature on the First Rainy Season Precipitation in South China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(X): 1−16 doi: 10.3878/j.issn.1006-9895.2108.21108
Citation: QIN Hao, WU Liquan, HE Hui. 2022. Impact of the Summer Tropical Atlantic Sea Temperature on the First Rainy Season Precipitation in South China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(X): 1−16 doi: 10.3878/j.issn.1006-9895.2108.21108

夏季热带大西洋海温变化对华南前汛期降水的影响

doi: 10.3878/j.issn.1006-9895.2108.21108
基金项目: 广西科技计划项目桂科AB21075008,广西自然科学基金项目2020GXNSFAA159092,国家自然科学基金项目42065004,广西壮族自治区气象局短时临近天气预报技术创新团队项目
详细信息
    作者简介:

    覃皓,男,1991年出生,硕士,工程师,主要从事天气、气候诊断分析及机理研究。E-mail: 289055112@qq.com

    通讯作者:

    何慧,E-mail: hi.hehui@163.com

  • 中图分类号: P461

Impact of the Summer Tropical Atlantic Sea Temperature on the First Rainy Season Precipitation in South China

Funds: Science and Technology Program of Guangxi (Grant GuiKeAB21075008), Natural Science Foundation of Guangxi (Grant 2020GXNSFAA159092), National Natural Science Foundation of China (Grant 42065004), Severe Convection Weather Nowcasting Technology Innovation Team Foundation of Guangxi Meteorological Service
  • 摘要: 利用1979~2019年全国160站逐月降水资料、Hadley中心海表面温度资料、NOAA的向外长波辐射资料以及NCEP/NCAR再分析资料,结合相关分析、信息流以及合成分析方法,分析了夏季热带大西洋海温变化对华南前汛期降水的影响。结果表明:前一年夏季热带大西洋海温升高(降低)在一定程度上导致了华南前汛期降水的减少(增多)。关键区(10°S~5°N,35°W~10°E)海温偏暖增强了Walker环流导致赤道太平洋下沉辐散增强,造成赤道中西部太平洋上空的东风异常,在海气相互作用下促进了随后秋冬季La Niña的发展。海温负异常时形势则大致相反,促进了El Niño的发展。冬季太平洋La Niña(El Niño)发展到最盛期,西太平洋的对流增强(减弱)在其北侧低对流层激发出异常气旋(反气旋)。直到第二年的前汛期,仍存在残余的海温异常形势,这一方面使得西北太平洋异常气旋(反气旋)依然维持,有利于西太平洋副热带高压减弱东退(加强西伸),减少(增多)了南海水汽向华南的输送;另一方面有利于热带地区对流活跃(抑制)从而增强(减弱)了局地Hadley环流,造成华南地区为下沉(上升)运动异常,抑制(增强)了对流。除此之外,赤道东太平洋的海温负(正)异常激发了指向北美洲的类太平洋—北美波列,北大西洋的海温异常在其基础上进一步激发了向下游传播的欧亚波列,使得欧亚中高纬呈现负(正)—正(负)—负(正)的位势高度异常特征,不利于(有利于)冷空气南下影响华南,最终造成前汛期降水负(正)异常。
  • 图  1  华南15站分布

    Figure  1.  Distribution of 15 stations in South China

    图  2  1979~2019年(a)前一年夏季、(b)前一年秋季、(c)前期冬季和(d)前期春季海温与华南前汛期降水(FRSP)指数ISC的相关系数分布。打点区域表示通过95%信度水平的显著性检验

    Figure  2.  Correlation coefficient distribution between the FRSP (First Rainy Season Precipitation in South China) index ISC and previous (a) summer, (b) autumn, (c) winter, and (d) spring SST from 1979 to 2019. The dotted areas indicate the coefficients passing the significance test at a 95% confidence level

    图  3  1979~2019年(a)前一年夏季、(b)前一年秋季、(c)前期冬季和(d)前期春季海温对华南前汛期降水指数ISC的信息流分布(单位:nats a−1)。打点区域表示通过95%信度水平的显著性检验

    Figure  3.  Distribution of information flow from the previous (a) summer, (b) autumn, (c) winter, and (d) spring SST to the FRSP index ISC (units: nats a−1) from 1979 to 2019. The dotted areas denote values that pass the 95% confidence level significance test

    图  4  1979~2019年前一年夏季关键区海温与华南前汛期降水的(a)相关系数以及(b)信息流(单位:nats a−1)分布。打点区域表示通过95%信度水平的显著性检验

    Figure  4.  Distribution of (a) correlation coefficient between the FRSP and previous summer SST in the key region, (b) the information flow (units: nats a−1) from preceding summer SST to FRSP from 1979 to 2019 (the dotted areas indicate the values passing significance test at 95% confidence level)

    图  5  华南前汛期降水指数ISC(黑色实线)和前一年夏季关键区海温(SST)指数ITA(蓝色虚线)的标准化序列。TTA→SC表示ITAISC的信息流,单位:nats a−1RTA-SC为两个指数的相关系数

    Figure  5.  Standardized time series for the FRSP index ISC (black line) and the previous SST index for the summer critical area ITA (blue dashed line). TTA→SC indicates the information flow from ITA to ISC, units: nats a−1, RTA-SC denotes the correlation coefficient between ITA and ISC

    图  6  海温(a)偏暖年、(b)偏冷年以及(c)偏冷和偏暖年差值的华南前汛期(FRS)500 hPa位势高度异常合成(单位:gpm)分布。黄色实线和蓝色虚线分别为气候态和海温异常年的副高特征等值线,打点区域通过95%信度水平的显著性检验

    Figure  6.  Composite distribution of the 500 hPa geopotential height anomaly observed during FRS (First Rainy Season in South China) in (a) warm SST years, (b) cold SST years, and (c) the difference between cold and warm years (units: gpm). Yellow solid and blue dashed line indicate the climatological and the anomaly SST years composite 500 hPa geopotential height of 5880 gpm, respectively. The dotted areas indicate the coefficients passing significance test at 95% confidence level

    图  7  海温偏冷与偏暖年华南前汛期105°~120°E平均垂直剖面上温度的差值合成(单位:K)分布

    Figure  7.  Composite difference in vertical cross sections of temperature (shaded, units: K) averaged along 105°–120°E between cold and warm SST years during FRS

    图  8  海温(a)偏暖年、(b)偏冷年华南前汛期1000~300 hPa整层水汽通量(箭矢,单位:kg m−1 s−1)和水汽通量散度(填色,单位:g m−2 s−1)的异常合成分布

    Figure  8.  Composite distribution of water vapor flux (arrows, units: kg m−1 s−1) and divergence of water vapor flux divergence (shaded, units: g m−2 s−1) integrated from 1000 to 300 hPa anomaly during FRS in (a) warm SST years and (b) cold SST years

    图  9  海温偏暖年(左列)和偏冷年(右列)的SST异常合成(填色,单位:°C)分布:(a、e)夏季(JJA);(b、f)秋季(SON);(c、g)冬季(DJF);(d、h)次年4~6月(AMJ)

    Figure  9.  Composite distribution of SST (shaded, units: °C) anomaly in (a–d) warm SST and (e–h) cold SST years: (a, e) Summer (JJA); (b, f) autumn (SON); (c, g) winter (DJF); (d, h) April–June of next year (AMJ)

    图  10  图3,但为夏季热带大西洋海温对(a)同期以及(b)冬季Niño 3指数的信息流分布

    Figure  10.  Same as in Fig.3, but for distribution of information flow from summer TA SST to (a) JJA and (b) DJF Niño 3 index

    图  11  海温偏暖年(左列)和偏冷年(右列)的向外长波辐射OLR(填色,单位:W m−2)和850 hPa风场(箭矢,仅显示通过95%信度水平显著性检验的区域,单位:m s−1)异常的合成分布:(a、e)夏季(JJA);(b、f)秋季(SON);(c、g)冬季(DJF);(d、h)次年4~6月(AMJ)

    Figure  11.  Composite distribution of OLR (outgoing longwave radiation, shaded, units: W·m−2) and 850 hPa wind field (arrows, only indicate only locations that pass the 95% confidence level, units: m s−1) anomaly in (a–d) warm SST and (e–h) cold SST years: (a, e) Summer (JJA); (b, f) autumn (SON); (c, g) winter (DJF); (d, h) April–June of next year (AMJ)

    图  12  海温(a)偏暖年和(b)偏冷年夏季5°S~5°N平均垂直剖面上纬圈环流(流线)的和垂直速度(填色,单位:10−2 Pa s−1)异常合成分布

    Figure  12.  Composite of vertical cross sections of zonal circulation (stream) and vertical velocity (shaded, units: 10−2 Pa·s−1) anomalies averaged along 5°S–5°N throughout the summer in (a) warm SST years and (b) cold SST years

    图  13  海温(a)偏暖和(b)偏冷年华南前汛期105°E~120°E平均垂直剖面上绝对湿度(填色,单位:g kg−1)和水平散度(等值线,单位:10−7 s−1)以及经圈环流(箭矢,单位:m s−1)的异常合成分布

    Figure  13.  Composite of vertical cross sections of absolute humidity (shaded, units: g kg−1), horizontal divergence (contours, units: 10−7 s−1), and meridional circulation (arrows, units: m s−1) anomalies averaged along 105°E –120°E during FRS in (a) warm SST and (b) cold SST years

    图  14  海温偏冷与偏暖年华南前汛期500 hPa位势高度(等值线,单位:gpm)、波作用通量(箭矢,单位:m2 s−2)及其散度(填色,单位:10−6 m s−2)的差值合成分布

    Figure  14.  Composite difference of the 500-hPa geopotential height (contours, units: gpm) and wave-activity fluxes (arrows, units: m2 s−2) and their divergence (shaded, units: 10−6 m s−2) between cold and warm SST years during FRSP

    表  1  海温偏暖、偏冷年华南前汛期降水异常的合成分析

    Table  1.   Composite of FRSP anomaly in the warm SST and cold SST years

    海温偏暖年海温偏冷年
    降水异常
    /mm
    降水异常
    百分率
    降水异常
    /mm
    降水异常
    百分率
    区域平均−74.5−11%43.76%
    桂林−114−12%8.6 0.9%
    河池−33.5−5.3%−22.9−3.6%
    百色−52.4−12.8%−21.8−5.3%
    梧州−91.6−13.9%64.2 9.8%
    南宁−76.4−16.5%−7.3−1.6%
    钦州−155.2−20.8%123.816.6%
    韶关−149.3−20.1%66.3 8.9%
    广州−76.5−9.2%−22.7−2.7%
    东源−132.1−14.4%169.118.4%
    汕头−116.3−17.9%43 6.6%
    汕尾−141.1−17.1%122.214.8%
    阳江−97.8−9.2%297.228%
    海口68.413.3%−54.6−10.6%
    东方−8.5−3.6%−46.1−20%
    琼海58.311.4%−63.3−12.44%
    下载: 导出CSV

    表  2  关键区海温对副高特征指数的信息流(TTA→WPSH

    Table  2.   Information flow from key region SST to WPSH indices (TTA→WPSH)

    特征指数
    强度指数面积指数西伸脊点脊线
    TTA→WPSH−0.033*−0.020*−0.085*−0.001
    *表示通过95%信度水平的显著性检验。
    下载: 导出CSV
  • [1] Alexander M A, Bladé I, Newman M, et al. 2002. The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans [J]. J. Climate, 15(16): 2205−2231. doi: 10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2
    [2] Cai W J, Wu L X, Lengaigne M, et al. 2019. Pantropical climate interactions [J]. Science, 363(6430): eaav4236. doi: 10.1126/science.aav4236
    [3] 陈晓光, 徐祥德, 朱乾根. 1996. 河套华北地区旱涝的前期环流异常与大西洋海温的关系及其数值模拟 [J]. 气象学报, 54(1): 102−107. doi: 10.11676/qxxb1996.010

    Chen Xiaoguang, Xu Dexiang, Zhu Qian’gen. 1996. The numerical experiment on effect of Atlantic heating and the relationship between the abnormal circulation of preceding stage on the drought and flood in the Hetao Huabei region and Atlantic SSTA [J]. Acta Meteor. Sinica (in Chinese), 54(1): 102−107. doi: 10.11676/qxxb1996.010
    [4] 陈长胜, 林开平, 王盘兴. 2004. 华南前汛期降水异常与水汽输送的关系 [J]. 南京气象学院学报, 27(6): 721−727. doi: 10.13878/j.cnki.dqkxxb.2004.06.001

    Chen Changsheng, Lin Kaiping, Wang Panxing. 2004. Relation between pre-flood season precipitation anomalies in South China and water vapor transportation [J]. J. Nanjing Instit. Meteor. (in Chinese), 27(6): 721−727. doi: 10.13878/j.cnki.dqkxxb.2004.06.001
    [5] 程守长, 胡德强, 杨扬, 等. 2017. 华南前汛期印度洋海温异常与海南岛降水的关系 [J]. 气象与环境学报, 33(1): 87−92. doi: 10.3969/j.issn.1673-503X.2017.01.012

    Cheng Shouchang, Hu Deqiang, Yang Yang, et al. 2017. Relationship between sea surface temperature anomaly over the Indian Ocean and precipitation anomaly in Hainan Island during the pre-flood season in South China [J]. J. Meteor. Environ. (in Chinese), 33(1): 87−92. doi: 10.3969/j.issn.1673-503X.2017.01.012
    [6] 邓立平, 王谦谦. 2002. 华南前汛期(4~6月) 降水异常特征及其与我国近海海温的关系 [J]. 热带气象学报, 18(1): 45−55. doi: 10.3969/j.issn.1004-4965.2002.01.006

    Deng Liping, Wang Qianqian. 2002. On the relationship between precipitation anomalies in the first raining season (April~June) in southern China and SST over offshore waters in China [J]. J. Trop. Meteor. (in Chinese), 18(1): 45−55. doi: 10.3969/j.issn.1004-4965.2002.01.006
    [7] 丁菊丽, 徐志升, 费建芳, 等. 2009. 华南前汛期起止日期的确定及降水年际变化特征分析 [J]. 热带气象学报, 25(1): 59−65. doi: 10.3969/j.issn.1004-4965.2009.01.007

    Ding Juli, Xu Zhisheng, Fei Jianfang, et al. 2009. Analysis of the definition of the onset and ending dates of the annually first rainy season in South China and its interannual variation characteristics [J]. J. Trop. Meteor. (in Chinese), 25(1): 59−65. doi: 10.3969/j.issn.1004-4965.2009.01.007
    [8] Ding H, Keenlyside N S, Latif M. 2012. Impact of the equatorial Atlantic on the El Niño Southern Oscillation [J]. Climate Dyn., 38(9–10): 1965–1972. doi:10.1007/s00382-011-1097-y
    [9] Exarchou E, Ortega P, Rodríguez-Fonseca B, et al. 2021. Impact of equatorial Atlantic variability on ENSO predictive skill [J]. Nat. Commun., 12(1): 1612. doi: 10.1038/s41467-021-21857-2
    [10] Fan L L, Xu J J, Li J J. 2020. Differences in pre-flood season rainfall in South China between spring and summer El Niño events [J]. Atmosphere-Ocean, 58(2): 144−156. doi: 10.1080/07055900.2020.1752139
    [11] Gill A E. 1980. Some simple solutions for heat-induced tropical circulation [J]. Quart. J. Roy. Meteor. Soc., 106(449): 447−462. doi: 10.1002/qj.49710644905
    [12] 宫湛秋, 孙诚, 李建平, 等. 2019. 基于信息流理论的因果分析在辨析大西洋多年代际振荡物理机制中的应用 [J]. 大气科学, 43(5): 1081−1094. doi: 10.3878/j.issn.1006-9895.1810.18181

    Gong Zhanqiu, Sun Cheng, LI Jianping, et al. 2019. The application of causality analysis based on the theory of information flow in distinguishing the Atlantic multi-decadal oscillation driving mechanism [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(5): 1081−1094. doi: 10.3878/j.issn.1006-9895.1810.18181
    [13] 何超, 周天军, 吴波. 2015. 影响夏季西北太平洋副热带高压年际变率的关键海区及影响机制 [J]. 气象学报, 73(5): 940−951. doi: 10.11676/qxxb2015.064

    He Chao, Zhou Tianjun, Wu Bo. 2015. The key oceanic regions responsible for the interannual variability of the western North Pacific subtropical high and their impacting mechanisms [J]. Acta Meteor. Sinica (in Chinese), 73(5): 940−951. doi: 10.11676/qxxb2015.064
    [14] 何慧, 廖雪萍, 陆虹, 等. 2016. 华南地区1961–2014年夏季长周期旱涝急转特征 [J]. 地理学报, 71(1): 130−141. doi: 10.11821/dlxb201601010

    He Hui, Liao Xueping, Lu Hong, et al. 2016. Features of long-cycle drought–flood abrupt alternation in South China during summer in 1961–2014 [J]. Acta Geogr. Sinica (in Chinese), 71(1): 130−141. doi: 10.11821/dlxb201601010
    [15] Hong C C, Chang T C, Hsu H H. 2014. Enhanced relationship between the tropical Atlantic SST and the summertime western North Pacific subtropical high after the early 1980s [J]. J. Geophys. Res., 119(7): 3715−3722. doi: 10.1002/2013JD021394
    [16] 胡亮, 李耀东, 何金海. 2010. 东亚热带季风与副热带季风降水特征研究的回顾与展望 [J]. 热带气象学报, 26(6): 813−818. doi: 10.3969/j.issn.1004-4965.2010.06.023

    Hu Liang, Li Yaodong, He Jinhai. 2010. Review of and outlook on the study of precipitation associated with East Asian subtropical monsoon and tropical monsoon [J]. J. Trop. Meteor. (in Chinese), 26(6): 813−818. doi: 10.3969/j.issn.1004-4965.2010.06.023
    [17] 黄荣辉, 孙凤英. 1994. 热带西太平洋暖池的热状态及其上空的对流活动对东亚夏季气候异常的影响 [J]. 大气科学, 18(2): 141−151. doi: 10.3878/j.issn.1006-9895.1994.02.02

    Huang Ronghui, Sun Fengying. 1994. Impacts of the thermal state and the convective activities in the tropical western warm pool on the summer climate anomalies in East Asia [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 18(2): 141−151. doi: 10.3878/j.issn.1006-9895.1994.02.02
    [18] 黄先香, 炎利军, 施能. 2006. 华南前汛期旱涝影响因子和预报方法 [J]. 热带气象学报, 22(5): 431−438. doi: 10.3969/j.issn.1004-4965.2006.05.003

    Huang Xianxiang, Yan Lijun, Shi Neng. 2006. Influence factors and prediction method on flood/drought during the first rainy season in South China [J]. J. Trop. Meteor. (in Chinese), 22(5): 431−438. doi: 10.3969/j.issn.1004-4965.2006.05.003
    [19] Jin D C, Huo L W. 2018. Influence of tropical Atlantic sea surface temperature anomalies on the East Asian summer monsoon [J]. Quart. J. Roy. Meteor. Soc., 144(714): 1490−1500. doi: 10.1002/qj.3296
    [20] Keenlyside N S, Latif M. 2007. Understanding equatorial Atlantic interannual variability [J]. J. Climate, 20(1): 131−142. doi: 10.1175/JCLI3992.1
    [21] 况雪源, 黄梅丽, 林振敏, 等. 2008. 广西前汛期降水年代际变化与南半球印度洋海温的关系 [J]. 热带气象学报, 24(3): 279−284. doi: 10.3969/j.issn.1004-4965.2008.03.011

    Kuang Xueyuan, Huang Meili, Lin Zhenmin, et al. 2008. Study on the relationship between the decadal variation of annually first rainy season precipitation of Guangxi and sea surface temperature of the Indian Ocean in Southern Hemisphere [J]. J. Trop. Meteor. (in Chinese), 24(3): 279−284. doi: 10.3969/j.issn.1004-4965.2008.03.011
    [22] 李秀珍, 梁卫, 温之平. 2010. 华南秋、冬、春季水汽输送特征及其与降水异常的联系 [J]. 热带气象学报, 26(5): 626−632. doi: 10.3969/j.issn.1004-4965.2010.05.016

    Li Xiuzhen, Liang Wei, Wen Zhiping. 2010. Characteristics of the atmospheric water vapor and its relationship with rainfall in South China in northern autumn, winter and spring [J]. J. Trop. Meteor. (in Chinese), 26(5): 626−632. doi: 10.3969/j.issn.1004-4965.2010.05.016
    [23] 李丽平, 周林, 俞子闲. 2018. 华南前汛期降水的年代际异常特征及其成因 [J]. 大气科学学报, 41(2): 186−197. doi: 10.13878/j.cnki.dqkxxb.20160224001

    Li Liping, Zhou Lin, Yu Zixian. 2018. Interdecadal anomaly of rainfall during the first rainy season in South China and its possible causes [J]. Trans. Atmos. Sci. (in Chinese), 41(2): 186−197. doi: 10.13878/j.cnki.dqkxxb.20160224001
    [24] 李海燕, 孙家仁, 谌志刚, 等. 2019. 两类El Niño事件对华南前汛期降水异常的影响 [J]. 热带气象学报, 35(4): 491−503. doi: 10.16032/j.issn.1004-4965.2019.045

    Li Haiyang, Sun Jiaren, Chen Zhigang, et al. 2019. Influences of two types of El Niño events on percipitation anomalies in the April–June rainy season over South China [J]. J. Trop. Meteor. (in Chinese), 35(4): 491−503. doi: 10.16032/j.issn.1004-4965.2019.045
    [25] Li J P, Zheng F, Sun C, et al. 2019. Pathways of influence of the Northern Hemisphere mid–high latitudes on East Asian climate: A review [J]. Adv. Atmos. Sci., 36(9): 902−921. doi: 10.1007/s00376-019-8236-5
    [26] 李忠贤, 陈晨, 曾刚, 等. 2019a. 春季热带大西洋北部海温异常与我国盛夏降水异常的联系 [J]. 热带气象学报, 35(6): 756−766. doi: 10.16032/j.issn.1004-4965.2019.068

    Li Zhongxian, Chen Chen, Zeng Gang, et al. 2019a. Characteristic of north tropical Atlantic SSTA in spring and its relationship with midsummer precipitation in China [J]. J. Trop. Meteor. (in Chinese), 35(6): 756−766. doi: 10.16032/j.issn.1004-4965.2019.068
    [27] 李忠贤, 于怡秋, 邓伟涛, 等. 2019b. 春季北大西洋三极型海温异常变化及其与NAO和ENSO的联系 [J]. 气象科学, 39(6): 721−730. doi: 10.3969/2018jms.0105

    Li Zhongxian, Yu Yiqiu, Deng Weitao, et al. 2019b. Variation characteristics of North Atlantic tri-polar sea surface temperature in spring and its relationship with NAO and ENSO [J]. J. Meteor. Sci. (in Chinese), 39(6): 721−730. doi: 10.3969/2018jms.0105
    [28] 李忠贤, 余滔, 曾刚, 等. 2019c. 夏季大西洋Niño基本特征及其与中国夏季降水异常的联系 [J]. 大气科学学报, 42(6): 835−844. doi: 10.13878/j.cnki.dqkxxb.20171229001

    Li Zhongxian, Yu Tao, Zeng Gang, et al. 2019c. Basic characteristics of summer Atlantic Niño and its association with summer rainfall anomaly in China [J]. Trans. Atmos. Sci. (in Chinese), 42(6): 835−844. doi: 10.13878/j.cnki.dqkxxb.20171229001
    [29] Liang X S. 2008. Information flow within stochastic dynamical systems [J]. Phys. Rev. E, 78(3): 031113. doi: 10.1103/PhysRevE.78.031113
    [30] Liang X S. 2013. The Liang-Kleeman information flow: Theory and applications [J]. Entropy (Basel), 15(1): 327−360. doi: 10.3390/e15010327
    [31] Liang X S. 2014. Unraveling the cause–effect relation between time series [J]. Phys. Rev. E, 90(5): 052150. doi: 10.1103/PhysRevE.90.052150
    [32] 刘永强, 丁一汇. 1995. ENSO事件对我国季节降水和温度的影响 [J]. 大气科学, 19(2): 200−208. doi: 10.3878/j.issn.1006-9895.1995.02.09

    Liu Yongqiang, Ding Yihui. 1995. Reappraisal of the influence of ENSO events on seasonal precipitation and temperature in China [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 19(2): 200−208. doi: 10.3878/j.issn.1006-9895.1995.02.09
    [33] 刘毓赟, 陈文. 2012. 北半球冬季欧亚遥相关型的变化特征及其对我国气候的影响 [J]. 大气科学, 36(2): 423−432. doi: 10.3878/j.issn.1006-9895.2011.11066

    Liu Yuyun, Chen Wen. 2012. Variability of the Eurasian teleconnection pattern in the Northern Hemisphere winter and its influences on the climate in China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36(2): 423−432. doi: 10.3878/j.issn.1006-9895.2011.11066
    [34] 刘晨, 张杰, 徐玮平. 2020. 春季欧亚大陆积雪主模态及其与北大西洋海温的关系 [J]. 大气科学, 44(4): 792−807. doi: 10.3878/j.issn.1006-9895.1911.19140

    Liu Chen, Zhang Jie, Xu Weiping. 2020. Main modes of spring snow depth in Eurasia and their relationship with the North Atlantic SST [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(4): 792−807. doi: 10.3878/j.issn.1006-9895.1911.19140
    [35] 马慧, 陈桢华, 姜丽萍, 等. 2009. 华南前汛期降水与我国近海海温的SVD分析 [J]. 热带气象学报, 25(2): 241−245. doi: 10.3969/j.issn.1004-4965.2009.02.017

    Ma Hui, Chen Zhenhua, Jiang Liping, et al. 2009. SVD analysis between the annually first raining period precipitation in the south of China and the SST over offshore waters in China [J]. J. Trop. Meteor. (in Chinese), 25(2): 241−245. doi: 10.3969/j.issn.1004-4965.2009.02.017
    [36] Polo I, Martin-Rey M, Rodriguez-Fonseca B, et al. 2015. Processes in the Pacific La Niña onset triggered by the Atlantic Niño [J]. Climate Dyn., 44(1): 115−131. doi: 10.1007/s00382-014-2354-7
    [37] 强学民, 杨修群. 2008. 华南前汛期开始和结束日期的划分 [J]. 地球物理学报, 51(5): 1333−1345. doi: 10.3321/j.issn:0001-5733.2008.05.007

    Qiang Xuemin, Yang Xiuqun. 2008. Onset and end of the first rainy season in South China [J]. Chinese J. Geophys. (in Chinese), 51(5): 1333−1345. doi: 10.3321/j.issn:0001-5733.2008.05.007
    [38] 覃皓, 郭栋, 施春华, 等. 2018. 南亚高压与邻近地区臭氧变化的相互作用 [J]. 大气科学, 42(2): 421−434. doi: 10.3878/j.issn.1006-9895.1710.17159

    Qin Hao, Guo Dong, Shi Chunhua, et al. 2018. The interaction between variations of South Asia high and ozone in the adjacent regions [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(2): 421−434. doi: 10.3878/j.issn.1006-9895.1710.17159
    [39] 覃皓, 郑凤琴, 伍丽泉. 2022. 台风威马逊(1409)强度与降水变化的相互作用 [J]. 应用气象学报, 33(4): 477−488. doi: 10.11898/1001-7313.20220408

    Qin Hao, Zheng Fengqin, Wu Liquan. 2022. The interaction between intensity and rainfall of typhoon Rammasun(1409) [J]. Journal of Applied Meteorological Science (in Chinese), 33(4): 477−488. doi: 10.11898/1001-7313.20220408
    [40] Rodríguez-Fonseca B, Polo I, García-Serrano J, et al. 2009. Are Atlantic Niños enhancing Pacific ENSO events in recent decades? [J] Geophys. Res. Lett. , 36(20): 20705. doi:10.1029/2009GL040048
    [41] 容新尧, 张人禾, Li T. 2010. 大西洋海温异常在ENSO影响印度-东亚夏季风中的作用 [J]. 科学通报, 55(14): 1397–1408. Rong Xinyao, Zhang Renhe, Li T. 2010. Impacts of Atlantic sea surface temperature anomalies on Indo-East Asian summer monsoon–ENSO relationship [J]. Chin. Sci. Bull., 55(22): 2458–2468. doi:10.1360/csb2010-55-14-1397
    [42] Stips A, Macias D, Coughlan C, et al. 2016. On the causal structure between CO2 and global temperature [J]. Sci. Rep., 6(1): 21691. doi: 10.1038/srep21691
    [43] Takaya K, Nakamura H. 2001. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow [J]. J. Atmos. Sci., 58(6): 608−627. doi: 10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2
    [44] Wang C Z. 2002. Atlantic climate variability and its associated atmospheric circulation cells [J]. J. Climate, 15(13): 1516−1536. doi: 10.1175/1520-0442(2002)015<1516:ACVAIA>2.0.CO;2
    [45] Wang Y F, Fujiyoshi Y. 2004. A case study on the relationship between a preceding La Niña event and East Asian summer atmospheric circulation [J]. Acta Meteor. Sinica, 18(4): 387−396.
    [46] Wang J Z, Wang C Z. 2021. Joint Boost to Super El Niño from the Indian and Atlantic Oceans [J]. J. Climate, 34: 4937−4954. doi: 10.1175/JCLI-D-20-0710.1
    [47] Wang B, Wu R G, Li T. 2003. Atmosphere–warm ocean interaction and its impacts on Asian–Australian Monsoon variation [J]. J. Climate, 16(8): 1195−1211. doi: 10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2
    [48] 伍红雨, 吴遥. 2018. 不同类型和强度的厄尔尼诺事件对次年华南前汛期降水的可能影响 [J]. 大气科学, 42(5): 1081−1095. doi: 10.3878/j.issn.1006-9895.1711.17178

    Wu Hongyu, Wu Yao. 2018. Possible impacts of El Niño events of different types and intensity on precipitation in the subsequent first rainy season in South China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(5): 1081−1095. doi: 10.3878/j.issn.1006-9895.1711.17178
    [49] 吴志伟, 江志红, 何金海. 2006. 近50年华南前汛期降水、江淮梅雨和华北雨季旱涝特征对比分析 [J]. 大气科学, 30(3): 391−401. doi: 10.3878/j.issn.1006-9895.2006.03.03

    Wu Zhiwei, Jiang Zhihong, He Jinhai. 2006. The Comparison analysis of flood and drought features among the first flood period in South China, Meiyu period in the Yangtze river and the Huaihe River valleys and rainy season in North China in the last 50 years [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30(3): 391−401. doi: 10.3878/j.issn.1006-9895.2006.03.03
    [50] 徐海明. 1996. 1991年夏季大西洋东部海温异常对江淮洪涝的影响 [J]. 南京气象学院学报, 19(3): 329−334. doi: 10.13878/j.cnki.dqkxxb.1996.03.010

    Xu Haiming. 1996. Effects of eastern Atlantic SSTA on flood over Jiang-Huai valleys in summer of 1991 [J]. J. Nanjing Inst. Meteor. (in Chinese), 19(3): 329−334. doi: 10.13878/j.cnki.dqkxxb.1996.03.010
    [51] 徐蕾如, 邓良炎. 1989. ENSO与亚洲中低纬若干海气因子的遥相关及与华南降水的关系[J]. 热带气象, 5(3): 235–244

    Xu Leiru, Deng Liangyan. Ahe teleconnection between ENSO and a few sea–atmosphere factors for Asian mid-low latitudes and its relation to the South China rainfall [J]. J. Trop. Meteor. (in Chinese), 5(3): 235–244. doi:10.16032/j.issn.1004-4965.1989.03.006
    [52] Yang H, Sun S Q. 2005. The Characteristics of longitudinal movement of the subtropical high in the western Pacific in the pre-rainy season in South China [J]. Adv. Atmos. Sci., 22(3): 392−400. doi: 10.1007/BF02918752
    [53] 杨修群, 谢倩, 黄土松. 1992. 大西洋海温异常对东亚夏季大气环流影响的数值试验 [J]. 气象学报, 50(3): 349−354. doi: 10.11676/qxxb1992.042

    Yang Xiuqun, Xie Qian, Huang Tudong. 1992. Numerical experiments of effect of warm SST anomalies in Atlantic Ocean on the East Asian general circulation during the Northern Hemisphere summer [J]. Acta Meteor. Sinica (in Chinese), 50(3): 349−354. doi: 10.11676/qxxb1992.042
    [54] 应明, 孙淑清. 2000. 西太平洋副热带高压对热带海温异常响应的研究 [J]. 大气科学, 24(2): 193−206. doi: 10.3878/j.issn.1006-9895.2000.02.08

    Ying Ming, Sun Shuqing. 2000. A study on the response of Subtropical High over the western Pacific on the SST anomaly [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 24(2): 193−206. doi: 10.3878/j.issn.1006-9895.2000.02.08
    [55] Zhang R H, Sumi A, Kimoto M. 1999. A diagnostic study of the impact of El Niño on the precipitation in China [J]. Adv. Atmos. Sci., 16(2): 229−241. doi: 10.1007/BF02973084
    [56] 张洁, 周天军, 宇如聪, 等. 2009. 中国春季典型降水异常及相联系的大气水汽输送 [J]. 大气科学, 33(1): 121−134. doi: 10.3878/j.issn.1006-9895.2009.01.11

    Zhang Jie, Zhou Tianjun, Yu Rucong, et al. 2009. Atmospheric water vapor transport and corresponding typical anomalous spring rainfall patterns in China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33(1): 121−134. doi: 10.3878/j.issn.1006-9895.2009.01.11
    [57] 张成扬, 蒋跃林, 杨崧, 等. 2015. 5月华南降雨前期海温信号特征分析 [J]. 气象与环境科学, 38(2): 29−35. doi: 10.3969/j.issn.1673-7148.2015.02.006

    Zhang Chengyang, Jiang Yuelin, Yang Song, et al. 2015. Characteristics analysis of preceding sea surface temperature signals of may rainfall in southern China [J]. Meteor. Environ. Sci. (in Chinese), 38(2): 29−35. doi: 10.3969/j.issn.1673-7148.2015.02.006
    [58] Zhang W J, Jiang F, Stuecker M F, et al. 2021. Spurious North Tropical Atlantic precursors to El Niño [J]. Nat. Commun., 12(1): 3096. doi: 10.1038/s41467-021-23411-6
    [59] 郑建, 刘秦玉. 2010. 热带太平洋与热带大西洋海表温度主模态的相互作用 [J]. 海洋与湖沼, 41(6): 799−806. doi: 10.11693/hyhz201006001001

    Zheng Jian, Liu Qinyu. 2010. The interactions between dominating modes of the sea surface temperature in Tropical Pacific and Tropical Atlantic [J]. Oceanol. Limnol. Sinica (in Chinese), 41(6): 799−806. doi: 10.11693/hyhz201006001001
    [60] Zheng J Y, Wang C Z. 2021. Influences of three oceans on record-breaking rainfall over the Yangtze River valley in June 2020 [J]. Sci. China Earth Sci., 64(10): 1607−1618. doi: 10.1007/s11430-020-9758-9
    [61] 周天军, 宇如聪, 郜永祺, 等. 2006. 北大西洋年际变率的海气耦合模式模拟Ⅱ: 热带太平洋强迫 [J]. 气象学报, 64(1): 18−30. doi: 10.3321/j.issn:0577-6619.2006.01.002

    Zhou Tianjun, Yu Rucong, Gao Yongqi, et al. 2006. Ocean–atmosphere coupled model simulation of North Atlantic interannual variability Ⅱ: Tropical tele-connection [J]. Acta Meteor. Sinica (in Chinese), 64(1): 18−30. doi: 10.3321/j.issn:0577-6619.2006.01.002
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  212
  • HTML全文浏览量:  25
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-26
  • 录用日期:  2021-10-22
  • 网络出版日期:  2022-11-17

目录

    /

    返回文章
    返回