Relationship between February–March Tropical Indian Ocean Sea Surface Temperature Anomaly and Onset Date of Spring Soaking Rain in Northeast China
-
摘要: 利用1961~2019年中国东北地区测站逐日降水资料、美国国家环境预报中心/大气研究中心的月平均再分析资料、NOAA重构的月平均海温和向外长波辐射资料,采用统计诊断方法,从年际时间尺度上分析了东北春季透雨早晚环流特征和前期海温,尤其是热带印度洋海温强迫的联系。结果表明:春季透雨日期与4月降水量的变化具有显著的一致性,典型透雨偏早年的开始时间集中在4月中下旬,偏晚年的开始时间集中在5月中下旬;4月东北亚上空500 hPa位势高度场上,若呈自西向东的“− +”异常环流分布,东北地区以偏南风和气旋性环流为主,有利于水汽输送,春季透雨开始偏早,反之,春季透雨开始偏晚;2~3月热带印度洋暖海温异常是中国东北地区春季透雨偏早的重要稳定影响源之一,其可能机制是,若热带印度洋全区一致海温模态呈正位相,有利于4月西北太平洋地区呈异常反气旋,东北亚地区500 hPa环流异常类似春季透雨偏早年形势,东北地区位于200 hPa西风急流出口区右侧,垂直上升运动增强,呈现出多雨形势。Abstract: We analyzed the climatic characteristics of early and late years of spring soaking rain (SSR) in Northeast China (NEC) and the relationship with sea surface temperature (SST) especially the tropical Indian Ocean SST forcing from the interannual time scale on the basis of the daily precipitation data from 1961 to 2019 at stations in NEC, monthly mean data of the National Centers for Environmental Prediction/ National Center for Atmospheric Research (NCEP/NCAR) reanalysis, sea surface temperature (SST) data reconstructed using NOAA, and outgoing longwave radiation (OLR) data using statistical diagnostic methods such as causal analysis, correlation analysis and regression analysis. Results showed that the onset date of SSR and April precipitation were considerably consistent. The onset date of typical SSR was concentrated in mid–late April during the early years (1964, 1968, 1969, 1979, 1983, 1988, 1990, 1991, 1999, 2002, 2005, 2010, 2013, 2015, 2016) and in mid–late May during late years (1965, 1970, 1971, 1972, 1985, 1986, 1989, 1993, 1994, 1997, 2001, 2003, 2006, 2014, 2017, 2019). If 500-hPa geopotential height fields over Northeast Asia in April showed a “− +” anomalous circulation distribution from west to east with southerly winds and cyclonic circulation dominating in Northeast Asia, which were conducive to water vapor transport, SSR started early, and vice versa. The warm sea surface temperature anomaly (SSTA) in the tropical Indian Ocean during February–March was one of the important sources of stable influence in the early years of the SSR in NEC. The possible impact mechanism was that the Indian Ocean Basin warming (IOBW) in a positive phase was favorable to the anomalous anticyclone in Northwest Pacific during April and the 500-hPa atmospheric circulation anomaly over Northeast Asia was similar to that of the early years of SSR. The NEC was situated in the right of the 200-hPa westerly jet stream exit area with an enhanced vertical upward motion, resulting in increased precipitation.
-
Key words:
- Northeast China /
- Spring soaking rain /
- Interannual /
- Circulation /
- Indian Ocean basin warming
-
图 4 中国东北春季透雨偏早年和偏晚年对应的4月(a)200 hPa纬向风(单位:m s−1)、(b)500 hPa位势高度(单位:gpm)、(c)850 hPa流场(单位:m s−1,填色区域代表经向风)、(d)整层水汽通量散度(单位:10−5 kg m−2 s−1)合成差值场。黑点表示通过90%的信度检验
Figure 4. Composite difference field of zonal wind at (a) 200 hPa (units: m s−1), (b) geopotential height at 500h Pa (units: gpm), (c) flow field at 850 hPa (units: m s−1, color-filled indicates meridional wind) and (d) whole layer moisture flux dispersion (units: 10−5kg m−2 s−1)during April in the early and late SSR years. Dark dots denote statistical significance at the 90% confidence level
图 6 中国东北春季透雨开始日期与月际NINO4-I和IOBW-I间的反相关系数。虚线表示通过90%、95%、99%的信度检验
Figure 6. Anticorrelation coefficients between the onset date of SSR in NEC and monthly NINO4-I (Niño4 SSTA Index) and IOBW-I (Indian Ocean Basin-Wide Index). Dashed lines denote statistical significance at the 90%, 95%, and 99% confidence level
图 7 1961~2019年(a)2~3月IOBW-I和东北春季透雨开始日期的标准化时间序列;(b)2~3月IOBW-I与东北透雨日期的11年滑动反相关系数。虚线:相关系数的90%信度检验
Figure 7. (a) Standardized time series of February–March IOBW-I and the onset date of SSR in NEC; (b) 11-year slipping anticorrelation coefficients between February–March IOBW-I and the onset date of SSR (dashed line denote statistical significance at the 90% confidence level) during 1961–2019
图 9 1961~2019年2~3月IOBW-I和东北春季透雨开始日期的(a)相关关系和(b)因果关系(从IOBW-I到透雨日期的信息流结果)。红点表示通过90%信度检验的站点
Figure 9. (a) Correlations and (b) causalities (information flowing from IOBW-I to SSR) between February and March IOBW-I and the onset date of SSR in NEC during 1961–2019. Red dots denote statistical significance at the 90% confidence level
图 10 1961~2019年2~3月IOBW-I与4月(a)200 hPa纬向风(单位:m s−1)、(b)500 hPa位势高度(单位:gpm)、(c)850 hPa流场(单位:m s−1,填色区域代表经向风)、(d)整层水汽通量散度(单位:10−5 kg m−2 s−1)的回归分析。黑点表示通过90%的信度检验
Figure 10. Linear regression of April (a) 200 hPa latitudinal wind (units: m s−1), (b) 500 hPa potential height (units: gpm), (c) 850 hPa flow field (units: m s−1, color-filled indicates meridional wind), and (d) whole layer moisture flux dispersion (units: 10−5 kg m−2 s−1) against the February–March IOBW-I during 1961–2019. Dark dots denote statistical significance at the 90% confidence level
图 11 1961~2019年2—3月IOBW-I与(a)4月向外长波辐射(OLR,单位:W m−2)和(b)500 hPa 垂直速度(ω,单位:10−2 Pa s−1)的回归分析。黑点表示通过90%的信度检验
Figure 11. Linear regression of (a) the outgoing longwave radiation (OLR, units: W m−2) in April and (b) the vertical velocity at 500 hPa (ω, units: 10−2 Pa s−1) against the February–March IOBW-I during 1961–2019. Dark dots denote statistical significance at the 90% confidence level
图 12 1961~2019年2~3月IOBW-I与4月(a)沿47.5°N剖面和(b)沿127.5°E剖面垂直速度(单位:10−2 Pa s−1)的回归分析。白点表示通过90%的信度检验
Figure 12. Linear regression of the vertical velocity(10−2 Pa s−1)in April along (a) the 47.5°N profile and (b) the 127.5°E profile against the February–March IOBW-I during 1961–2019. (White dots denote statistical significance at the 90% confidence level
-
[1] 陈丽娟, 袁媛, 杨明珠, 等. 2013. 海温异常对东亚夏季风影响机理的研究进展 [J]. 应用气象学报, 24(5): 521−532. doi: 10.3969/j.issn.1001-7313.2013.05.002Chen Lijuan, Yuan Yuan, Yang Mingzhu, et al. 2013. A review of physical mechanisms of the global SSTA impact on EASM [J]. Journal of Applied Meteorological Science (in Chinese), 24(5): 521−532. doi: 10.3969/j.issn.1001-7313.2013.05.002 [2] 程红军, 蒲晓明. 2007. 吉林省中西部地区春季第一场透雨气候预测方法初探 [J]. 吉林气象(1): 16−18.Cheng Hongjun, Pu Xiaoming. 2007. A preliminary study on climate prediction methods for the first spring rainfall in the mid-west region of Jilin Province [J]. Jilin Qixiang (in Chinese)(1): 16−18. [3] 丁一汇. 2005. 高等天气学[M]. 2版. 北京: 气象出版社, 138–149Ding Yihui. 2005. Advanced Synoptic Meteorology (in Chinese) [M]. 2nd ed. Beijing: China Meteorological Press, 138–149. [4] Han T T, He S P, Wang H J, et al. 2018. Enhanced influence of early-spring tropical Indian Ocean SST on the following early-summer precipitation over Northeast China [J]. Climate Dyn., 51(11): 4065−4076. doi: 10.1007/s00382-017-3669-y [5] 黄刚, 胡开明, 屈侠, 等. 2016. 热带印度洋海温海盆一致模的变化规律及其对东亚夏季气候影响的回顾 [J]. 大气科学, 40(1): 121−130. doi: 10.3878/j.issn.1006-9895.1505.15143Huang Gang, Hu Kaiming, Qu Xia, et al. 2016. A review about Indian Ocean basin mode and its impacts on East Asian summer climate [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(1): 121−130. doi: 10.3878/j.issn.1006-9895.1505.15143 [6] Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project [J]. Bull. Amer. Meteor. Soc., 77(3): 437−472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 [7] Klein S A, Soden B J, Lau N C. 1999. Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge [J]. J. Climate, 12(4): 917−932. doi: 10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2 [8] 李辑, 胡春丽, 王艳, 等. 2008. 辽宁春播期第一场透雨的气候特征及其变化规律 [J]. 气象与环境学报, 24(6): 1−6. doi: 10.3969/j.issn.1673-503X.2008.06.001Li Ji, Hu Chunli, Wang Yan, et al. 2008. Climatic characteristics of the first soaking rain in spring sowing season of Liaoning Province and its variation [J]. Journal of Meteorology and Environment (in Chinese), 24(6): 1−6. doi: 10.3969/j.issn.1673-503X.2008.06.001 [9] Li T M, Wang B, Wu B, et al. 2017. Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review [J]. J. Meteor. Res., 31(6): 987−1006. doi: 10.1007/s13351-017-7147-6 [10] 李尚锋, 姜大膀, 廉毅, 等. 2018. 冬季中国东北极端低温事件环流背景特征分析 [J]. 大气科学, 42(5): 963−976. doi: 10.3878/j.issn.1006-9895.1710.17119Li Shangfeng, Jiang Dabang, Lian Yi, et al. 2018. Circulation characteristics of extreme cold events in Northeast China during wintertime [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(5): 963−976. doi: 10.3878/j.issn.1006-9895.1710.17119 [11] Liang X S. 2014. Unraveling the cause–effect relation between time series [J]. Phys. Rev. E, 90(5): 052150. doi: 10.1103/PhysRevE.90.052150 [12] Liang X S. 2016. Information flow and causality as rigorous notions ab initio [J]. Phys. Rev. E, 94(5): 052201. doi: 10.1103/PhysRevE.94.052201 [13] Liebmann B, Smith C A. 1996. Description of a complete (interpolated) outgoing longwave radiation dataset [J]. Bull. Amer. Meteor. Soc., 77(6): 1275−1277. [14] 林纾, 倪荣环, 郭江勇. 2005. 甘肃河东春季第一场区域性透雨日期的气候特征 [J]. 成都信息工程学院学报, 20(3): 347−353. doi: 10.3969/j.issn.1671-1742.2005.03.026Lin Shu, Ni Ronghuan, Guo Jiangyong. 2005. Climate feature of first soaking spring rain to the east of Yellow River over Gansu Province [J]. Journal of Chengdu University of Information Technology (in Chinese), 20(3): 347−353. doi: 10.3969/j.issn.1671-1742.2005.03.026 [15] Meyers G. 1996. Variation of Indonesian throughflow and the El Niño–Southern Oscillation [J]. J. Geophys. Res. :Oceans, 101(C5): 12255−12263. doi: 10.1029/95JC03729 [16] 纳丽, 沈跃琴, 丁永红, 等. 2007. 宁夏春季首场透雨出现日期及环流背景分析 [J]. 干旱区研究, 24(3): 344−348.Na Li, Shen Yueqin, Ding Yonghong, et al. 2007. Analysis on the occurrence of first soaking rainfall and its circulation background in the typical years in Ningxia [J]. Arid Zone Research (in Chinese), 24(3): 344−348. [17] 沈柏竹, 刘实, 廉毅, 等. 2011. 2009年中国东北夏季低温及其与前期海气系统变化的联系 [J]. 气象学报, 69(2): 320−333. doi: 10.11676/qxxb2011.027Shen Baizhu, Liu Shi, Lian Yi, et al. 2011. An investigation into 2009 summer low temperature in Northeast China and its association with prophase changes of the air–sea system [J]. Acta Meteorologica Sinica (in Chinese), 69(2): 320−333. doi: 10.11676/qxxb2011.027 [18] 沈玉敏, 胡春丽, 李菲, 等. 2012. 辽宁春季透雨的环流背景及与海温相关分析 [J]. 气象与环境学报, 28(4): 28−32. doi: 10.3969/j.issn.1673-503X.2012.04.005Shen Yumin, Hu Chunli, Li Fei, et al. 2012. Circulation background of spring soaking rain and its correlation with sea surface temperature in Liaoning Province [J]. Journal of Meteorology and Environment (in Chinese), 28(4): 28−32. doi: 10.3969/j.issn.1673-503X.2012.04.005 [19] 施能. 2002. 气象科研与预报中的多元分析方法[M]. 2版. 北京: 气象出版社, 31–36Shi Neng. 2002. Multivariate Analysis Methods in Meteorological Research and Forecasting (in Chinese) [M]. 2nd ed. Beijing: China Meteorological Press, 31–36. [20] Smith T M, Reynolds R W, Peterson T C, et al. 2008. Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006) [J]. J. Climate, 21(10): 2283−2296. doi: 10.1175/2007JCLI2100.1 [21] 陶祖文, 裴步祥. 1983. 华北平原地区春季降水渗透深度和“透雨”的农业气象估算方法 [J]. 气象学报, 41(1): 97−105. doi: 10.11676/qxxb1983.011Tao Zuwen, Pei Buxiang. 1983. An agrometeorological method for estimating the infiltration depth and soaking rain in spring for North China plain [J]. Acta Meteorologica Sinica (in Chinese), 41(1): 97−105. doi: 10.11676/qxxb1983.011 [22] Wang L, Wu R G. 2012. In-phase transition from the winter monsoon to the summer monsoon over East Asia: Role of the Indian Ocean [J]. J. Geophys. Res. :Atmos., 117(D11): D11112. doi: 10.1029/2012JD017509 [23] 王会军, 贺圣平. 2013. 我国东北冬季降雪的年代际增多及其与冬季风减弱的关系 [J]. 科学通报, 58(8): 629–633. Wang Huijun, He Shengping. 2013. The increase of snowfall in Northeast China after the mid-1980s [J]. Chinese Science Bulletin, 58(12): 1350–1354. doi: 10.1360/csb2013-58-8-629 [24] Wang H J, He S P. 2015. The North China/northeastern Asia severe summer drought in 2014 [J]. J. Climate, 28(17): 6667−6681. doi: 10.1175/JCLI-D-15-0202.1 [25] 卫捷, 张庆云, 陶诗言. 2003. 近20年华北地区干旱期大气环流异常特征 [J]. 应用气象学报, 14(2): 140−151. doi: 10.3969/j.issn.1001-7313.2003.02.002Wei Jie, Zhang Qingyun, Tao Shiyan. 2003. Characteristics of atmospheric circulation anomalies during persistent droughts in North China for last two decades [J]. Journal of Applied Meteorological Science (in Chinese), 14(2): 140−151. doi: 10.3969/j.issn.1001-7313.2003.02.002 [26] 韦晋, 何金海, 苏志重, 等. 2013. 青藏高原东南侧南风演变特征及其与中国东部春季降水的关系分析 [J]. 气象, 39(2): 129−136. doi: 10.7519/j.issn.1000-0526.2013.02.001Wei Jin, He Jinhai, Su Zhizhong, et al. 2013. Characteristics of south wind in east southern Tibetan Plateau and its relationship with eastern China spring rain [J]. Meteorological Monthly (in Chinese), 39(2): 129−136. doi: 10.7519/j.issn.1000-0526.2013.02.001 [27] 武炳义, 张人禾, Rosanne D. 2008. 北极偶极子异常与中国东北夏季降水 [J]. 科学通报, 53(12): 1422–1428. Wu Bingyi, Zhang Renhe, Rosanne D. 2008. Arctic dipole anomaly and summer rainfall in northeast China [J]. Chinese Science Bulletin, 53(14): 2222–2229. doi: 10.3321/j.issn:0023-074X.2008.12.011 [28] 吴香华, 牛生杰, 金德镇, 等. 2014. 吉林春旱期降水潜在影响因子的分离时间尺度分析 [J]. 大气科学学报, 37(5): 548−557. doi: 10.13878/j.cnki.dqkxxb.20130420006Wu Xianghua, Niu Shengjie, Jin Dezhen, et al. 2014. Application of time-scale decomposition model in influence factors selection during spring drought period in Jilin Province [J]. Transactions of Atmospheric Sciences (in Chinese), 37(5): 548−557. doi: 10.13878/j.cnki.dqkxxb.20130420006 [29] Xie S P, Hu K M, Hafner J, et al. 2009. Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño [J]. J. Climate, 22(3): 730−747. doi: 10.1175/2008JCLI2544.1 [30] 徐士琦, 李栋梁. 2016. 东北地区春季首场透雨的变化特征及与青藏高原地面加热场强度的关系 [J]. 气象, 42(3): 271−279. doi: 10.7519/j.issn.1000-0526.2016.3.002Xu Shiqi, Li Dongliang. 2016. Characteristics of the first soaking rain in northeast China and its response to surface heat source over the Tibetan Plateau [J]. Meteorological Monthly (in Chinese), 42(3): 271−279. doi: 10.7519/j.issn.1000-0526.2016.3.002 [31] Yuan Y, Yang S. 2012. Impacts of different types of El Niño on the East Asian climate: Focus on ENSO cycles [J]. J. Climate, 25(21): 7702−7722. doi: 10.1175/JCLI-D-11-00576.1 [32] 张强, 王有民, 姚佩珍. 2003. 我国三北地区春季第一场透雨指标的确定 [J]. 中国农业气象, 24(2): 28−30,54. doi: 10.3969/j.issn.1000-6362.2003.02.009Zhang Qiang, Wang Youmin, Yao Peizhen. 2003. Determination of indices for the first soaking rain in spring in north of China [J]. Chinese Journal of Agrometeorology (in Chinese), 24(2): 28−30,54. doi: 10.3969/j.issn.1000-6362.2003.02.009 [33] 张脉惠, 王传辉, 江春, 等. 2012. 中国东北地区春雨开始期变化特征研究 [J]. 中国农学通报, 28(35): 269−274. doi: 10.3969/j.issn.1000-6850.2012.35.050Zhang Maihui, Wang Chuanhui, Jiang Chun, et al. 2012. Characteristics of variation of beginning period of the spring rainy season in northeast area of China [J]. Chinese Agricultural Science Bulletin (in Chinese), 28(35): 269−274. doi: 10.3969/j.issn.1000-6850.2012.35.050 [34] 赵振国. 1999. 中国夏季旱涝及环境场. 北京: 气象出版社, 297pp. Zhao Zhenguo. 1999. Drought/Flood and Environment Field of Summer in China. Beijing: China Meteorological Press, 297pp. Zhao J H, Zhou J, Xiong K G, et al. 2019. Relationship between tropical Indian Ocean SSTA in spring and precipitation of northeast China in late summer [J]. J. Meteor. Res., 33(6): 1060−1074. doi: 10.1007/s13351-019-9026-9 -