Snow Accumulation Efficiency Difference and Mechanism during the Two Snowstorm Events in Jiangsu Province in January 2018
-
摘要: 2018年1月3~5日江苏省第一次暴雪过程中降雪量大、积雪效率偏低,而1月24~28日第二次暴雪过程降雪量小、积雪效率高。基于ERA-Interim再分析资料和中国气象局积雪、近地气温等观测资料,利用等熵大气质量环流理论从温度、水汽条件差异对2018年1月江苏省两次暴雪过程积雪效率差异进行了深入分析。研究表明:(1)第一次过程前期,深厚且强盛的向极地暖支将大量暖空气输送至江苏南部,导致该地区整层增温;第二次过程中,低层强大的向赤道冷支输送使地面温度在整个降雪期间均低于0°C,低温条件使得积雪效率偏高。(2)第一次过程,江苏地区深厚、强盛的水汽质量流入层配合大范围上升运动,将水汽携带至高层产生更大降雪量,低层经向水汽质量输送强,纬向水汽质量流出较弱,使得近地面比湿相应增加,积雪效率偏低;第二次过程,低层深厚的水汽质量流出层不利于水汽在江苏省汇聚,低湿条件利于积雪累积,贡献于偏高的积雪效率。因此,异常强的经向干冷空气质量输送和弱的经向和纬向水汽质量输送引起的低温、低湿环境条件是造成第二次暴雪过程比第一次过程积雪效率偏高的主要原因。积雪效率与温度和湿度空间分布型的对比分析还表明:在相对高温、高湿的环境条件下,积雪效率对局地温度和湿度的响应更为敏感。Abstract: The first snowstorm event in Jiangsu during 3–5 January 2018 had heavier snowfall but lower snow accumulation efficiency, whereas the second snowstorm event during 24–28 January had lighter snowfall but higher snow accumulation efficiency. This study investigated the temperature and humidity conditions in these two snowstorm events using the ERA-Interim reanalysis data and observation data from the China Meteorological Administration and explored the underlying physical processes in the framework of isentropic atmospheric mass circulation. The main findings are as follows: (1) Compared with the second snowstorm event, the early stage of the first snowstorm event was characterized by higher temperature in the entire troposphere, which was attributed to a relatively deeper and stronger poleward warm air branch of isentropic atmospheric mass circulation to the south of Jiangsu. In contrast, the stronger equatorward cold air branch of isentropic atmospheric mass circulation resulted in a temperature lower than 0°C in the second snowstorm event, promoting higher snow accumulation efficiency. (2) The deep water vapor mass inflow layer in lower isentropic layers collaborated with the wide range of ascending motions during the first snowstorm and further brought lower-level water vapor to higher layers for the formation of larger snowfall. Stronger meridional water vapor transport but weaker zonal water vapor net mass outflow in the lower isentropic layers increased near-ground specific humidity, contributing to the lower snow accumulation efficiency. However, there was a deep layer of water vapor mass outflow in the lower isentropic layers during the second snowstorm event, which contributed to the greater snow accumulation efficiency. Colder and dryer conditions resulting from the abnormal meridional cold air transport and weak water vapor transport in both meridional and zonal directions caused higher snow accumulation efficiency in the second snowstorm event. The comparison of the spatial distribution of temperature and humidity with snow accumulation efficiency further reveals that under high temperature and humidity conditions, snow accumulation efficiency is more sensitive to the local temperature and humidity changes.
-
图 1 2018年1月3~5日(a–c)日降雪量(单位:mm)、(d–f)08时(北京时,下同)积雪深度(单位:cm)、(g–i)08时积雪增量(单位:cm)、(j–l)积雪效率(单位:cm mm−1)
Figure 1. (a–c) Daily snowfall (units: mm), (d–f) snow depth (units: cm) at 0800 BJT (Beijing time), (g–i) snow accumulation increment (units: cm) at 0800 BJT, and (j–l) snow accumulation efficiency (units: cm mm−1) on 3–5 January 2018
图 2 2018年1月24~28日(a–e)日降雪量(单位:mm)、(f–j)08时积雪深度(单位:cm)、(k–o)08时积雪增量(单位:cm)、(p–t)积雪效率(单位:cm mm−1)
Figure 2. (a–e) Daily snowfall (units: mm), (f–j) snow depth (units: cm) at 0800 BJT, (k–o) snow accumulation increment (unit: cm) at 0800 BJT, and (p–t) snow accumulation efficiency (units: cm mm−1) on 24–28 January 2018
图 7 (a)2018年1月1~7日和(b)2018年1月22~31日江苏地区区域平均的等熵经向质量通量(等值线,单位:108 kg s−1)及其质量净流出量(阴影,单位:108 kg s−1)的高度—时间演变。红色实线表示由NCEP/NCAR Reanalysis 1再分析资料对流层顶温度和气压数据(https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.tropopause.html [2022-01-13])计算所得的对流层顶位温(单位:K)
Figure 7. Height–time evolution of regional average isentropic meridional mass flux (contours, units: 108 kg s−1) and its net mass outflow (shadings, units: 108 kg s−1) in Jiangsu on (a) 1–7 January 2018, and (b) 22–31 January 2018. Red lines represent the potential temperature (units: K) at tropopause derived from the data on air temperature and pressure at tropopause level in the NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) Reanalysis 1 dataset (https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.tropopause.html [2022-01-13])
图 8 2018年1月2~5日江苏地区(a–d)纬向(116.25°E~121.5°E)积分的等熵经向质量通量(等值线,单位:108 kg s−1)及其质量净流出(阴影,单位:108 kg s−1)的垂直—经向剖面,(e–h)经向(30°N~36°N)积分的等熵纬向质量通量(等值线,单位:108 kg s−1)及其质量净流出(阴影,单位:108 kg s−1)的垂直—纬向剖面
Figure 8. (a–d) Vertical–meridional cross sections of the zonal (116.25°E–121.5°E) integration of meridional mass flux (contours, units: 108 kg s−1) and its net mass outflow (shadings, units: 108 kg s−1), (e–h) vertical–zonal cross sections of the meridional (30°N–36°N) integration of zonal mass flux (contours, units: 108 kg s−1) and its net mass outflow (shadings, units: 108 kg s−1) in Jiangsu on 2–5 January 2018
图 9 2018年1月24~29日江苏地区(a–f)纬向(116.25°E~121.5°E)积分的等熵经向质量通量(等值线,单位:108 kg s−1)及其质量净流出(阴影,单位:108 kg s−1)的垂直—经向剖面,(g–l)经向(30°N~36°N)积分的等熵纬向质量通量(等值线,单位:108 kg s−1)及其质量净流出(阴影,单位:108 kg s−1)的垂直—纬向剖面
Figure 9. (a–f) Vertical–meridional cross sections of the zonal (116.25°E–121.5°E) integration of meridional mass flux (contours, units: 108 kg s−1) and its net mass outflow (shadings, units: 108 kg s−1), (g–l) vertical–zonal cross sections of the meridional (30°N–36°N) integration of zonal mass flux (contours, units: 108 kg s−1) and its net mass outflow (shadings, units: 108 kg s−1) in Jiangsu on 24–29 January 2018
图 10 2018年1月(a–c)3~5日和(d–h)24~28日江苏地区低于280 K等熵层积分的经向质量通量(等值线,单位:103 kg s−1)及其质量净流出(阴影,单位:103 kg s−1)
Figure 10. Isentropic layer integration of meridional mass flux (contours, units: 103 kg s−1) and its net mass outflow (shadings, units: 103 kg s−1) below 280 K in Jiangsu on (a–c) 3–5 January 2018 and (d–h) 24–28 January 2018
图 12 2018年1月(a)1~7日和(b)22~31日江苏地区区域平均等熵经向水汽质量通量(等值线,单位:106 kg s−1)及其质量净流出(阴影,单位:106 kg s−1)的高度—时间演变。红实线表示对流层顶位温(单位:K)
Figure 12. Height–time evolution of regional average isentropic meridional water vapor flux (contours, units: 106 kg s−1) and its net mass outflow (shadings, units: 106 kg s−1) in Jiangsu on (a) 1–7 January 2018 and (b) 22–31 January 2018. Red lines represent the potential temperature (units: K) at the tropopause
图 13 2018年1月2~5日江苏地区(a–d)纬向(116.25°E~121.5°E)积分的等熵经向水汽质量通量(等值线,单位:106 kg s−1)及其质量净流出(阴影,单位:106 kg s−1)的垂直—经向剖面,(e–h)经向(30°N~36°N)积分的等熵纬向水汽质量通量(等值线,单位:106 kg s−1)及其质量净流出(阴影,单位:106 kg s−1)的垂直—纬向剖面
Figure 13. (a–d) Vertical–meridional cross sections of the zonal (116.25°E–121.5°E) integration of meridional water vapor mass flux (contours, units: 106 kg s−1) and its net mass outflow (shadings, units: 106 kg s−1), (e–h) vertical–zonal cross sections of the meridional (30°N–36°N) integration of zonal water vapor mass flux (contours, units: 106 kg s−1) and its net mass outflow (shadings, units: 106 kg s−1) in Jiangsu on 2–5 January 2018
图 14 2018年1月24~29日江苏地区(a–f)纬向(116.25°E~121.5°E)积分的等熵经向水汽质量通量(等值线,单位:106 kg s−1)及其质量净流出(阴影,单位:106 kg s−1)的垂直—经向剖面,(g–l)经向(30°N~36°N)积分的等熵纬向水汽质量通量(等值线,单位:106 kg s−1)及其质量净流出(阴影,单位:106 kg s−1)的垂直—纬向剖面
Figure 14. (a–f) Vertical–meridional cross sections of the zonal (116.25°E–121.5°E) integration of meridional water vapor mass flux (contours, units: 106 kg s−1) and its net mass outflow (shadings, units: 106 kg s−1), (g–l) vertical–zonal cross sections of the meridional (30°N–36°N) integration of zonal water vapor mass flux (contours, units: 106 kg s−1) and its net mass outflow (shadings, units: 106 kg s−1) in Jiangsu on 24–29 January 2018
图 15 2018年1月(a–c)3~5日和(d–h)24~28日江苏地区低于280 K等熵层积分的经向水汽质量通量(等值线,单位:10 kg s−1)及其质量净流出(阴影,单位:10 kg s−1)
Figure 15. Isentropic layer integration of meridional water vapor mass flux (contours, units: 10 kg s−1) and its net mass outflow (shadings, units: 10 kg s−1) below 280 K in Jiangsu on (a–c) 3–5 January 2018 and (d–h) 24–28 January 2018
图 16 2018年1月(a–c)3~5日和(d–h)24~28日江苏地区低于280 K等熵层积分的纬向水汽质量通量(等值线,单位:10 kg s−1)及其质量净流出(阴影,单位:10 kg s−1)
Figure 16. Isentropic layer integration of zonal water vapor mass flux (contours, units: 10 kg s−1) and its net mass outflow (shadings, units: 10 kg s−1) below 280 K in Jiangsu on (a–c) 3–5 January 2018 and (d–h) 24–28 January 2018
表 1 第一次降雪过程、第二次降雪过程的逐日积雪效率和站点气温、站点比湿的空间相关系数
Table 1. Spatial correlation coefficient between daily snow accumulation efficiency and stations temperature, stations specific humidity in the first snowfall process and the second snowfall process
相关系数 第一次降雪过程 第二次降雪过程 1月3日 1月4日 1月5日 1月24日 1月25日 1月26日 1月27日 站点气温 −0.70* −0.15 0.74* −0.34* 0.40* −0.11 −0.43* 站点比湿 −0.46* −0.26 0.76* −0.33* 0.21 −0.00 −0.33* 注:*表示通过99%置信水平的显著性检验。 -
[1] 白淑英, 史建桥, 沈渭寿, 等. 2014. 近30年西藏雪深时空变化及其对气候变化的响应 [J]. 国土资源遥感, 26(1): 144−151. doi: 10.6046/gtzyyg.2014.01.25Bai Shuying, Shi Jianqiao, Shen Weishou, et al. 2014. Spatial–temporal variation of snow depth in Tibet and its response to climatic change in the past 30 years [J]. Remote Sensing for Land & Resources (in Chinese), 26(1): 144−151. doi: 10.6046/gtzyyg.2014.01.25 [2] 陈红专, 叶成志, 龙丽华. 2012. 2011年1月湖南罕见持续性暴雪天气成因分析 [J]. 暴雨灾害, 31(2): 141−148. doi: 10.3969/j.issn.1004-9045.2012.02.006Chen Hongzhuan, Ye Chengzhi, Long Lihua. 2012. Cause analysis of rare continuous blizzard occurring in January 2011 in Hunan Province [J]. Torrential Rain and Disasters (in Chinese), 31(2): 141−148. doi: 10.3969/j.issn.1004-9045.2012.02.006 [3] 陈丽芳. 2007. 南方两次相似降雪(雨)过程的对比研究 [J]. 气象, 33(8): 68−75. doi: 10.3969/j.issn.1000-0526.2007.08.011Chen Lifang. 2007. Comparison study of two similar rain and snow processes in South China [J]. Meteorological Monthly (in Chinese), 33(8): 68−75. doi: 10.3969/j.issn.1000-0526.2007.08.011 [4] Dee D P, Uppala S M, Simmons A J, et al. 2011. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system [J]. Quart. J. Roy. Meteor. Soc., 137(656): 553−597. doi: 10.1002/qj.828 [5] ECMWF. 2012. ERA Interim, daily. https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/. [2021-07-01] [6] 傅云燕, 杨修群, 沈伟. 2013. 江苏省冬季气温、降水年代际异常及相关分析 [J]. 气象科学, 33(2): 178−183. doi: 10.3969/2012jms.0104Fu Yunyan, Yang Xiuqun, Shen Wei. 2013. The interdecadal variations and the correlation analysis of temperature and precipitation during winter in Jiangsu Province [J]. Journal of the Meteorological Sciences (in Chinese), 33(2): 178−183. doi: 10.3969/2012jms.0104 [7] 甘文强, 蓝伟, 杜小玲, 等. 2018. 2018年1月底至2月初贵州低温雨雪天气成因初探 [J]. 暴雨灾害, 37(5): 410−420. doi: 10.3969/j.issn.1004-9045.2018.05.003Gan Wenqiang, Lan Wei, Du Xiaoling, et al. 2018. Tentative analysis on the cause of a low-temperature, freezing rain and snow event in Guizhou between the end of January and the beginning of February in 2018 [J]. Torrential Rain and Disasters (in Chinese), 37(5): 410−420. doi: 10.3969/j.issn.1004-9045.2018.05.003 [8] 顾佳佳, 武威. 2015. 2014年2月4~7日河南暴雪过程的环流特征及其持续原因 [J]. 暴雨灾害, 34(2): 117−125. doi: 10.3969/j.issn.1004-9045.2015.02.003Gu Jiajia, Wu Wei. 2015. The circulation features and sustaining mechanism of a snowstorm event occurred in Henan from February 4 to 7 in 2014 [J]. Torrential Rain and Disasters (in Chinese), 34(2): 117−125. doi: 10.3969/j.issn.1004-9045.2015.02.003 [9] 胡淑娟, 雷晓云, 白磊, 等. 2016. 投影寻踪法在建立积雪深度模型上的应用 [J]. 水文, 36(5): 17−21. doi: 10.3969/j.issn.1000-0852.2016.05.004Hu Shujuan, Lei Xiaoyun, Bai Lei, et al. 2016. Application of projection pursuit method in building snow depth model [J]. Journal of China Hydrology (in Chinese), 36(5): 17−21. doi: 10.3969/j.issn.1000-0852.2016.05.004 [10] Huang Jinlong, Tian Wenshou, Zhang Jiankai, et al. 2017. The connection between extreme stratospheric polar vortex events and tropospheric blockings [J]. Quart. J. Roy. Meteor. Soc., 143(703): 1148−1164. doi: 10.1002/qj.3001 [11] 姜有山, 束宇, 李力, 等. 2017. 基于湿位涡和积雪效率的降雪预报技术探讨 [J]. 气象科学, 37(5): 659−665. doi: 10.3969/2016jms.0055Jiang Youshan, Shu Yu, Li Li, et al. 2017. Investigation on snowfall forecasting skills based on moist potential vorticity and efficiency of snow accumulation [J]. Journal of the Meteorological Sciences (in Chinese), 37(5): 659−665. doi: 10.3969/2016jms.0055 [12] 李德俊, 熊守权, 柳草, 等. 2014. 鄂西北两次强降雪的滴谱特征和积雪深度预估方法 [J]. 气象, 40(5): 612−618. doi: 10.7519/j.issn.1000-0526.2014.05.012Li Dejun, Xiong Shouquan, Liu Cao, et al. 2014. Droplet spectrum characteristics and depth forecast method of two snowstorms in Northwest of Hubei [J]. Meteorological Monthly (in Chinese), 40(5): 612−618. doi: 10.7519/j.issn.1000-0526.2014.05.012 [13] 李隆基, 郗晓光, 贾志东, 等. 2017. 湿雪的导电性能及对其闪络特性的影响 [J]. 绝缘材料, 50(11): 38−43. doi: 10.16790/j.cnki.1009-9239.im.2017.11.008Li Longji, Xi Xiaoguang, Jia Zhidong, et al. 2017. Conductivity of wet snow and its influence on flashover characteristics [J]. Insulating Materials (in Chinese), 50(11): 38−43. doi: 10.16790/j.cnki.1009-9239.im.2017.11.008 [14] 李玉婷, 柳锦宝, 王增武, 等. 2016. 2003~2012年四川省积雪时空动态变化与气候响应研究 [J]. 冰川冻土, 38(6): 1491−1500. doi: 10.7522/j.issn.1000-0240.2016.0174Li Yuting, Liu Jinbao, Wang Zengwu, et al. 2016. Study of spatiotemporal dynamics and climate response of snow cover in Sichuan Province from 2003 to 2012 [J]. Journal of Glaciology and Geocryology (in Chinese), 38(6): 1491−1500. doi: 10.7522/j.issn.1000-0240.2016.0174 [15] 李正金, 李菁, 刘冬晴, 等. 2018. 南京2018年1月两次强降雪过程的对比分析[C]//第35届中国气象学会年会S1灾害天气监测、分析与预报. 合肥: 中国气象学会, 7.Li Zhengjin, Li Jing, Liu Dongqing, et al. 2018. Comparative analysis of two heavy snowfalls in Nanjing in January 2018 [C]//The 35th Chinese Meteorological Society S1 Disaster Weather Monitoring, Analysis and Forecast. Hefei: Chinese Meteorological Society, 7. [16] 刘超, 江琪, 桂海林. 2018. 2018年1月大气环流和天气分析 [J]. 气象, 44(4): 590−596. doi: 10.7519/j.issn.1000-0526.2018.04.013Liu Chao, Jiang Qi, Gui Hailin. 2018. Analysis of the January 2018 atmospheric circulation and weather [J]. Meteorological Monthly (in Chinese), 44(4): 590−596. doi: 10.7519/j.issn.1000-0526.2018.04.013 [17] 刘梅, 尹东屏, 张备, 等. 2008. 江淮流域暴雪天气形成的条件探讨 [J]. 安徽农业科学, 36(29): 12813−12818. doi: 10.3969/j.issn.0517-6611.2008.29.118Liu Mei, Yin Dongping, Zhang Bei, et al. 2008. Study on the formation condition of heavy snow in Jianghuai River basin [J]. Journal of Anhui Agricultural Sciences (in Chinese), 36(29): 12813−12818. doi: 10.3969/j.issn.0517-6611.2008.29.118 [18] Martin J E. 1998a. The structure and evolution of a continental winter cyclone. Part I: Frontal structure and the occlusion process [J]. Mon. Wea. Rev., 126(2): 303−328. doi: 10.1175/1520-0493(1998)126<0303:TSAEOA>2.0.CO;2 [19] Martin J E. 1998b. The structure and evolution of a continental winter cyclone. Part II: Frontal forcing of an extreme snow event [J]. Mon. Wea. Rev., 126(2): 329−348. doi: 10.1175/1520-0493(1998)126<0329:TSAEOA>2.0.CO;2 [20] Molarius R, Tuomaala P, Piira K, et al. 2014. Systemic vulnerability and resilience analysis of electric and transport network failure in cases of extreme winter storms [C]//Second International Conference on Vulnerability and Risk Analysis and Management (ICVRAM) and the Sixth International Symposium on Uncertainty, Modeling, and Analysis (ISUMA). Liverpool: ASCE, 608–617. [21] Pauluis O. 2008. Thermodynamic consistency of the anelastic approximation for a moist atmosphere [J]. J. Atmos. Sci., 65(8): 2719−2729. doi: 10.1175/2007JAS2475.1 [22] Pauluis O, Czaja A, Korty R. 2010. The global atmospheric circulation in moist isentropic coordinates [J]. J. Climate, 23(11): 3077−3093. doi: 10.1175/2009JCLI2789.1 [23] 沈玉伟, 孙琦旻. 2013. 2010年冬季浙江两次强降雪过程的对比分析 [J]. 气象, 39(2): 218−225. doi: 10.7519/j.issn.1000-0526.2013.02.011Shen Yuwei, Sun Qimin. 2013. Contrast analysis of two heavy snowfall events in Zhejiang [J]. Meteorological Monthly (in Chinese), 39(2): 218−225. doi: 10.7519/j.issn.1000-0526.2013.02.011 [24] Simmons A, Uppala S, Dee D, et al. 2006. ERA-interim: New ECMWF reanalysis products from 1989 onwards [J]. ECMWF Newsl, 110: 25−35. [25] 王东海, 柳崇健, 刘英, 等. 2008. 2008年1月中国南方低温雨雪冰冻天气特征及其天气动力学成因的初步分析 [J]. 气象学报, 66(3): 405−422. doi: 10.3321/j.issn:0577-6619.2008.03.011Wang Donghai, Liu Chongjian, Liu Ying, et al. 2008. A preliminary analysis of features and causes of the snow storm event over the southern China in January 2008 [J]. Acta Meteorologica Sinica (in Chinese), 66(3): 405−422. doi: 10.3321/j.issn:0577-6619.2008.03.011 [26] 吴庆梅, 杨波, 王国荣. 2014. 北京地区一次回流暴雪过程的锋区特征分析 [J]. 高原气象, 33(2): 539−547. doi: 10.7522/j.issn.1000-0534.2012.00194Wu Qingmei, Yang Bo, Wang Guorong. 2014. Analysis of the frontal characteristics of the backflow snowstorm process in Beijing area [J]. Plateau Meteorology (in Chinese), 33(2): 539−547. doi: 10.7522/j.issn.1000-0534.2012.00194 [27] 杨成芳, 刘畅. 2019. 一次江淮气旋暴雪的积雪特征及气象影响因子分析 [J]. 气象, 45(2): 191−202. doi: 10.7519/j.issn.1000-0526.2019.02.005Yang Chengfang, Liu Chang. 2019. Study on snow cover and its meteorological influence factors of Jianghuai cyclone snowstorm [J]. Meteorological Monthly (in Chinese), 45(2): 191−202. doi: 10.7519/j.issn.1000-0526.2019.02.005 [28] 杨成芳, 李泽椿, 李静, 等. 2008. 山东半岛一次持续性强冷流降雪过程的成因分析 [J]. 高原气象, 27(2): 442−451.Yang Chengfang, Li Zechun, Li Jing, et al. 2008. A diagnostic analyses on peculiar persistent cold airflow snowstorm process in Shandong Peninsula [J]. Plateau Meteorology (in Chinese), 27(2): 442−451. [29] 杨成芳, 周淑玲, 刘畅, 等. 2015. 一次入海气旋局地暴雪的结构演变及成因观测分析 [J]. 气象学报, 73(6): 1039−1051. doi: 10.11676/qxxb2015.082Yang Chengfang, Zhou Shuling, Liu Chang, et al. 2015. Case study of the cause and the dynamic structure for a small-scale snowstorm event associated with a cyclone [J]. Acta Meteorologica Sinica (in Chinese), 73(6): 1039−1051. doi: 10.11676/qxxb2015.082 [30] 杨琨, 薛建军. 2013. 使用加密降雪资料分析降雪量和积雪深度关系 [J]. 应用气象学报, 24(3): 349−355. doi: 10.3969/j.issn.1001-7313.2013.03.011Yang Kun, Xue Jianjun. 2013. Use encrypted snowfall data to analyze the relationship between snowfall and snow depth [J]. Journal of Applied Meteorological Science (in Chinese), 24(3): 349−355. doi: 10.3969/j.issn.1001-7313.2013.03.011 [31] 杨璐瑛, 张芹, 郭俊建, 等. 2018. 鲁南初冬一次罕见特大暴雪的成因分析 [J]. 海洋气象学报, 38(1): 100−107. doi: 10.19513/j.cnki.issn2096-3599.2018.01.012Yang Luying, Zhang Qin, Guo Junjian, et al. 2018. Case study on the historic blizzard in the southern region of Shandong in early winter [J]. Journal of Marine Meteorology (in Chinese), 38(1): 100−107. doi: 10.19513/j.cnki.issn2096-3599.2018.01.012 [32] 姚晨, 杨祖祥, 朱月佳, 等. 2018. 2018年初安徽省两次罕见大暴雪过程的对比分析 [J]. 暴雨灾害, 37(5): 401−409. doi: 10.3969/j.issn.1004-9045.2018.05.002Yao Chen, Yang Zuxiang, Zhu Yuejia, et al. 2018. Comparative analysis of two rare heavy snowstorm events in Anhui during January 2018 [J]. Torrential Rain and Disasters (in Chinese), 37(5): 401−409. doi: 10.3969/j.issn.1004-9045.2018.05.002 [33] 姚蓉, 叶成志, 田莹, 等. 2012. 2011年初湖南暴雪过程的成因和数值模拟分析 [J]. 气象, 38(7): 848−857. doi: 10.7519/j.issn.1000-0526.2012.7.011Yao Rong, Ye Chengzhi, Tian Ying, et al. 2012. The numerical simulation analysis and causes of snowstorm occurring in Hunan Province, early 2011 [J]. Meteorological Monthly (in Chinese), 38(7): 848−857. doi: 10.7519/j.issn.1000-0526.2012.7.011 [34] 尹东屏, 张备, 刘梅, 等. 2009. 2006年江苏两次降雪天气过程分析 [J]. 气象科学, 29(3): 398−402. doi: 10.3969/j.issn.1009-0827.2009.03.020Yin Dongping, Zhang Bei, Liu Mei, et al. 2009. The weather situation analysis of two snowfalls in Jiangsu [J]. Scientia Meteorologica Sinica (in Chinese), 29(3): 398−402. doi: 10.3969/j.issn.1009-0827.2009.03.020 [35] Yu Yueyue, Ren Rongcai, Hu Jinggao, et al. 2014. A mass budget analysis on the interannual variability of the polar surface pressure in the winter season [J]. J. Atmos. Sci., 71(9): 3539−3553. doi: 10.1175/JAS-D-13-0365.1 [36] 虞越越. 2015. 大气经向质量环流与北半球冬季寒潮爆发 [D]. 中国科学院大气物理研究所博士学位论文. Yu Yueyue. 2015. On the meridional mass circulation and cold air outbreaks in Northern Hemisphere winter [D]. Ph. D. dissertation (in Chinese), Institute of Atmospheric Physics, Chinese Academy of Sciences. [37] Zhang Jiankai, Tian Wenshou, Chipperfield M P, et al. 2016. Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades [J]. Nature Climate Change, 6(12): 1094−1099. doi: 10.1038/nclimate3136 [38] Zhang Jiankai, Tian Wenshou, Xie Fei, et al. 2020. The influence of zonally asymmetric stratospheric ozone changes on the Arctic polar vortex shift [J]. J. Climate, 33(11): 4641−4658. doi: 10.1175/JCLI-D-19-0647.1 [39] 张备, 尹东屏, 严雯莲, 等. 2012. 2008年江苏持续性降雪中的水汽和动力抬升机制分析 [J]. 灾害学, 27(2): 29−33,42. doi: 10.3969/j.issn.1000-811X.2012.02.006Zhang Bei, Yin Dongping, Yan Wenlian, et al. 2012. The water vapor and dynamic lifting mechanism of continuous snowfall in 2008 in Jiangsu [J]. Journal of Catastrophology (in Chinese), 27(2): 29−33,42. doi: 10.3969/j.issn.1000-811X.2012.02.006 [40] 张娟, 王维真, 梁继. 2020. 三江源腹地积雪过程中近地层空气温湿度垂直观测分析 [J]. 高原气象, 39(6): 1155−1166. doi: 10.7522/j.ssn.1000-0543.2019.00138Zhang Juan, Wang Weizhen, Liang Ji. 2020. Vertical characteristics on temperature and humidity of surface layer air during snow processes in the hinterland of Sanjiangyuan [J]. Plateau Meteorology (in Chinese), 39(6): 1155−1166. doi: 10.7522/j.ssn.1000-0543.2019.00138 [41] 张俊兰, 万瑜, 闵月. 2017. 乌鲁木齐“2015.12. 11”极端暴雪天气的综合分析 [J]. 沙漠与绿洲气象, 11(1): 1−10. doi: 10.12057/j.issn.1002-0799.2017.01.001Zhang Junlan, Wan Yu, Min Yue. 2017. Comprehensive analysis of an extreme blizzard in Ürümqi on December 11th, 2015 [J]. Desert and Oasis Meteorology (in Chinese), 11(1): 1−10. doi: 10.12057/j.issn.1002-0799.2017.01.001 [42] 周后福, 刘英, 翟菁, 等. 2018. 2008年安徽雪深全国之最的成因探讨 [J]. 安徽农业科学, 36(18): 7874−7877. doi: 10.3969/j.issn.0517-6611.2008.18.141Zhou Houfu, Liu Ying, Zhai Jing, et al. 2018. Discussion on the causation of depth snow in Anhui in 2008 [J]. Journal of Anhui Agricultural Sciences (in Chinese), 36(18): 7874−7877. doi: 10.3969/j.issn.0517-6611.2008.18.141 [43] 周石硚, 中尾正义, 桥本重将, 等. 2002. 湿雪的密实化与颗粒粗化过程研究 [J]. 冰川冻土, 24(3): 275−281. doi: 10.3969/j.issn.1000-0240.2002.03.009Zhou Shiqiao, Nakawo M, Hashimoto S, et al. 2002. Densification and grain coarsening of melting snow [J]. Journal of Glaciology and Geocryology (in Chinese), 24(3): 275−281. doi: 10.3969/j.issn.1000-0240.2002.03.009 [44] 周之栩, 尹浩, 向华. 2018. 2016年湖州地区两次降雪过程对比分析 [J]. 浙江气象, 39(3): 12−16.Zhou Zhixu, Yin Hao, Xiang Hua. 2018. Comparative analysis of two snowfall processes in Huzhou in 2016 [J]. Journal of Zhejiang Meteorology (in Chinese), 39(3): 12−16. -