高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雷暴电荷分布对正极性云闪放电特征影响的数值模拟

郑天雪 谭涌波 罗林洁

郑天雪, 谭涌波, 罗林洁. 2022. 雷暴电荷分布对正极性云闪放电特征影响的数值模拟[J]. 大气科学, 46(6): 1407−1424 doi: 10.3878/j.issn.1006-9895.2109.21079
引用本文: 郑天雪, 谭涌波, 罗林洁. 2022. 雷暴电荷分布对正极性云闪放电特征影响的数值模拟[J]. 大气科学, 46(6): 1407−1424 doi: 10.3878/j.issn.1006-9895.2109.21079
ZHENG Tianxue, TAN Yongbo, LUO Linjie. 2022. Numerical Simulation of the Effects of Thunderstorm Charge Distributions on the Discharge Characteristics of Positive Intracloud Lightning Flashes [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(6): 1407−1424 doi: 10.3878/j.issn.1006-9895.2109.21079
Citation: ZHENG Tianxue, TAN Yongbo, LUO Linjie. 2022. Numerical Simulation of the Effects of Thunderstorm Charge Distributions on the Discharge Characteristics of Positive Intracloud Lightning Flashes [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(6): 1407−1424 doi: 10.3878/j.issn.1006-9895.2109.21079

雷暴电荷分布对正极性云闪放电特征影响的数值模拟

doi: 10.3878/j.issn.1006-9895.2109.21079
基金项目: 国家重点研发计划项目2017YFC1501504,国家自然科学基金项目41875003,灾害天气国家重点实验室开放课题2019LASW-A03
详细信息
    作者简介:

    郑天雪,男,1994年出生,博士研究生,主要从事雷电物理及模式研究。E-mail: 13813006359@163.com

    通讯作者:

    谭涌波, E-mail: ybtan@ustc.edu

  • 中图分类号: P427.32

Numerical Simulation of the Effects of Thunderstorm Charge Distributions on the Discharge Characteristics of Positive Intracloud Lightning Flashes

Funds: National Key Research Development Program of China (Grant 2017YFC1501504), National Natural Science Foundation of China (Grant 41875003), Open Research Program of the State Key Laboratory of Severe Weather (Grant 2019LASW-A03)
  • 摘要: 本研究将云闪随机放电参数化方案植入到偶极电荷结构中,固定主负电荷区的参数和位置,通过不断调整上部正电荷区的参数(电荷浓度和水平范围)和位置以此来模拟不同高度处起始的正极性云闪,进而探讨正云闪放电特征与雷暴电荷分布之间的关系。模拟结果表明在偶极电荷结构中,抬升上部正电荷区的高度,能够产生如观测所示的高海拔正云闪,不同于普通正云闪起始于向上传播的负先导及水平或稍向下延伸的正先导,高海拔处起始的正云闪以大范围向下传播的正先导及水平或轻微向上延伸的负先导为主要特征。随着上部正电荷区位置的抬升,正云闪起始高度也随之升高,当上部正电荷区抬升到一定高度后(本研究中当上部正电荷区下边界超过12 km),云闪通常起始于主正电荷区内,且上部正电荷区的浓度以及水平半径对于云闪的起始高度没有显著影响。此外,云闪正、负先导通道的长度与电荷区的浓度、水平半径以及起始点和负、正电荷区之间的距离存在显著的正相关关系。
  • 图  1  雷暴背景电荷示意图。rx为主正电荷区的水平半径,d为主正和主负电荷区中心之间的距离,ρ0为主正电荷区中心的电荷浓度,P为主正电荷区,N为主负电荷区

    Figure  1.  Schematic of the thunderstorm background charge, where rx is the horizontal radius of the main positive charge region, d is the distance between the centers of the upper positive charge and the main negative charge region, ρ0 is the charge concentration at the center of the main positive charge region, P is the upper positive charge region, and N is the main negative charge region

    图  2  (a–h)8次低海拔云闪个例(记为IC1至IC8)及其对应的雷暴电荷结构分布:主正电荷水平半径分别为(a、b)3 km、(c、d)4 km、(e、f)5 km、(g、h)6 km。黑色菱形代表云闪的起始点,红线代表正先导,蓝线代表负先导。图中黑色等值线代表正电荷区,虚线代表负电荷区,等势线数值从±0.1 nC m−3开始,间隔为0.5 nC m−3

    Figure  2.  (a–h) Eight low-altitude intracloud (IC) flash cases (marked as IC1 to IC8) and the corresponding thunderstorm charge distributions. Horizontal radii of the upper positive charge region are (a, b) 3, (c, d) 4, (e, f) 5, and (g, h) 6 km. The black diamonds represent the IC flash initiation points, the red channels represent downward positive leaders, and the blue channels represent upward negative leaders. The positive charge region is represented by the black solid lines, while the negative charge region is represented by the dashed lines, with contour values starting at ±0.1 nC m−3 with intervals of 0.5 nC m−3

    图  3  (a–h)8次高海拔云闪个例(记为IC9至IC16)及其对应的雷暴电荷结构分布:主正电荷水平半径分别为(a、b)3 km、(c、d)4 km、(e、f)5 km、(g、h)6 km。图中标识、颜色、线型等的含义同图2

    Figure  3.  (a–h) Eight high-altitude IC flash cases (marked as IC9 to IC16) and the corresponding thunderstorm charge distributions. Horizontal radii of the upper positive charge region are (a, b) 3 km, (c, d) 4 km, (e, f) 5 km, and (g, h) 6 km. The meanings of marker, color, line type, etc. are the same as Fig. 2

    图  4  云闪数量和累计概率随(a)起始高度和(b)主正电荷区高度的变化,蓝色水平线代表云闪数量超过30次的分割线。(c)不同主正电荷半径(3 km、4 km、5 km和6 km)下云闪的数量变化,图例代表四种不同主正电荷区半径下的电荷区中心浓度,电荷浓度数值参照表1

    Figure  4.  Variations of the number and cumulative probability of IC flashes with (a) initiation altitude and (b) positive charge center height; the blue solid line is the dividing line where the number of IC flashes exceeds 30. (c) Distribution of the number of IC flashes for the four upper positive charge radii (3, 4, 5, 6 km). The legend represents the center density of the upper positive charge region for the four upper positive charge radii. Refer to Table 1 for charge density values

    图  5  云闪起始高度随主正、主负电荷区间高度差的变化:主正电荷区水平半径分别为(a)3 km、(b)4 km、(c)5 km和(d)6 km。横坐标表示主正和主负电荷区边界之间的最小距离,纵坐标表示云闪起始高度,图例表示主正电荷区的中心浓度,PCR表示主正电荷区水平半径

    Figure  5.  Variations of IC flash initiation altitude with the height difference between the upper positive charge and main negative charge. Horizontal radii of the upper positive charge region are (a) 3 km, (b) 4 km, (c) 5 km, and (d) 6 km. The abscissa represents the minimum distance between the boundaries of the upper positive charge and main negative charge; the ordinate represents the initiation altitude of IC flashes. The legend represents the concentration of the upper positive charge center, and PCR represents the horizontal radius of the upper positive charge region

    图  6  四种主正电荷区半径下云闪起始高度的分布(选取主正中心浓度范围为3.2~4.0 nC m−3)。图中红线代表中位数,蓝框下上边界分别代表第一和第三四分位数,黑线代表上下限,红色加号代表离群值,下同

    Figure  6.  Distributions of IC flash initiation altitude at different upper positive charge region radii (the concentration range of the upper positive charge center is 3.2–4.0 nC m−3). The red line is the median; the lower and upper boundaries of the blue box are the first and third quartiles; the black line represents the upper and lower limits, and the red plus sign is the outlier, the same below

    图  7  主正电荷量分别与云闪(a)负先导、(b)正先导平均长度之间关系

    Figure  7.  Upper positive charge amount versus the average length of IC flash (a) negative and (b) positive leaders

    图  8  不同主正电荷区半径下云闪(a、c)负先导长度和(b、d)正先导长度的分布:(a、b)每种半径下对应的电荷浓度范围相同(五种电荷浓度,间隔为0.2 nC m−3);(c、d)每种半径下对应的电荷浓度范围不同(三种电荷浓度,间隔为0.2 nC m−3

    Figure  8.  Distributions of the IC flash (a, c) negative and (b, d) positive leader length at different radii of the upper positive charge region. The concentration range of the upper positive charge center for each horizontal radius. (a, b) The charge concentration range is the same for each horizontal radius (five charge concentrations with an interval of 0.2 nC m−3). (c, d) The charge concentration range is different for each horizontal radius (three charge concentrations with an interval of 0.2 nC m−3)

    图  9  云闪(a)负先导和(b)正先导通道长度随主正电荷区高度的分布

    Figure  9.  Distributions of the IC flash (a) negative and (b) positive leader length at different upper positive charge center heights

    图  10  云闪负先导长度与云闪起始位置和(a)主正、(b)主负电荷区中心的高度差之间关系的散点图;正先导长度与云闪起始位置距(c)主正、(d)主负电荷区中心的高度差之间关系的散点图。红线为拟合曲线,R为相关系数,P值用来描述数据的统计显著性

    Figure  10.  Scatterplots of the IC flash negative leader length versus the height difference between the IC flash initiation point and (a) upper positive, (b) main negative charge center. Scatterplots of the IC flash positive leader length versus the height difference between the IC flash initiation point and (c) upper positive, (d) main negative charge center. The red line is the fitted curve. R represents the correlation coefficient, and P-value represents the statistical significance of the data

    表  1  雷暴背景电荷的配置

    Table  1.   Parameters of thunderstorm background charge configurations

    配置序号电荷区电荷结构的配置
    高度
    /km
    水平半径
    /km
    垂直半径
    /km
    电荷浓度
    /nC m−3
    #1P9.7~15.531.53.2~4.8
    N6.561.52.8
    #2P9.7~15.541.52.8~4.4
    N6.561.52.8
    #3P9.7~15.551.52.6~4.2
    N6.561.52.8
    #4P9.7~15.561.52.4~4.0
    N6.561.52.8
    下载: 导出CSV

    表  2  低海拔处起始的云闪放电特征参数统计

    Table  2.   Statistics of the characteristic parameters of IC flashes initiated at low altitudes

    云闪放电特征参数
    主正半径
    /km
    主正中心
    浓度/nC m−3
    正负电荷区
    高度差/km
    起始高度
    /km
    负先导
    长度/km
    正先导
    长度/km
    IC133.40.68.417.433.9
    IC234.00.68.323.632.3
    IC343.20.28.117.229.4
    IC443.21.08.231.825.3
    IC552.60.68.222.024.8
    IC652.61.08.622.137.4
    IC763.40.68.335.835.9
    IC864.00.68.250.836.5
    注:正负电荷区高度差指主正和主负电荷区椭圆边界垂直方向上的最小距离
    下载: 导出CSV

    表  3  高海拔处起始的云闪放电特征参数统计

    Table  3.   Statistics of characteristic parameters of IC flashes initiated at high altitudes

    云闪放电特征参数
    主正半径
    /km
    主正中心
    浓度/nC m−3
    正负电荷区
    高度差/km
    起始高度
    /km
    负先导
    长度/km
    正先导
    长度/km
    IC933.64.013.34.0106.6
    IC1034.04.013.34.2142.2
    IC1143.84.213.68.3123.2
    IC1243.85.613.916.7152.1
    IC1354.25.213.431.6169.0
    IC1454.25.814.027.9195.7
    IC1563.06.014.833.5108.6
    IC1663.86.014.558.0167.8
    下载: 导出CSV
  • [1] Bruning E C, MacGorman D R. 2013. Theory and observations of controls on lightning flash size spectra [J]. J. Atmos. Sci., 70(12): 4012−4029. doi: 10.1175/jas-d-12-0289.1
    [2] Byrne G J, Few A A, Weber M E. 1983. Altitude, thickness and charge concentration of charged regions of four thunderstorms during trip 1981 based upon in situ balloon electric field measurements [J]. Geophys. Res. Lett., 10(1): 39−42. doi: 10.1029/GL010i001p00039
    [3] Calhoun K M, MacGorman D R, Ziegler C L, et al. 2013. Evolution of lightning activity and storm charge relative to dual-Doppler analysis of a high-precipitation supercell storm [J]. Mon Wea Rev, 141(7): 2199−2223. doi: 10.1175/mwr-d-12-00258.1
    [4] Coleman L M, Marshall T C, Stolzenburg M, et al. 2003. Effects of charge and electrostatic potential on lightning propagation [J]. J. Geophys. Res., 108(D9): 4298. doi: 10.1029/2002JD002718
    [5] 董万胜, 刘欣生, 张义军, 等. 2003. 云闪放电通道发展及其辐射特征 [J]. 高原气象, 22(3): 221−225. doi: 10.3321/j.issn:1000-0534.2003.03.003

    Dong Wansheng, Liu Xinsheng, Zhang Yijun, et al. 2003. Propagation of the lightning channel and electromagnetic radiation in IC flashes [J]. Plateau Meteor. (in Chinese), 22(3): 221−225. doi: 10.3321/j.issn:1000-0534.2003.03.003
    [6] Dwyer J R. 2003. A fundamental limit on electric fields in air [J]. Geophys. Res. Lett., 30(20): 2055. doi: 10.1029/2003gl017781
    [7] Fuchs B R, Bruning E C, Rutledge S A, et al. 2016. Climatological analyses of LMA data with an open-source lightning flash-clustering algorithm [J]. J. Geophys. Res., 121(14): 8625−8648. doi: 10.1002/2015JD024663
    [8] 郭凤霞, 张义军, 言穆弘. 2007. 青藏高原那曲地区雷暴云电荷结构特征数值模拟研究 [J]. 大气科学, 31(1): 28−36. doi: 10.3878/j.issn.1006-9895.2007.01.03

    Guo Fengxia, Zhang Yijun, Yan Muhong. 2007. A numerical study of the charge structure in thunderstorm in Nagqu area of the QinghaiXizang Plateau [J]. Chinese J. Atmos. Sci. (in Chinese), 31(1): 28−36. doi: 10.3878/j.issn.1006-9895.2007.01.03
    [9] Gurevich A V, Milikh G M, Roussel-Dupre R. 1992. Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm [J]. Phys. Lett. A, 165(5–6): 463–468. doi:10.1016/0375-9601(92)90348-p
    [10] Iudin D I, Rakov V A, Mareev E A, et al. 2017. Advanced numerical model of lightning development: Application to studying the role of LPCR in determining lightning type [J]. J. Geophys. Res., 122(12): 6416−6430. doi: 10.1002/2016JD026261
    [11] 刘恒毅, 董万胜, 张义军. 2017. 云闪K过程的三维时空特征 [J]. 应用气象学报, 28(6): 700−713. doi: 10.11898/1001-7313.20170606

    Liu Hengyi, Dong Wansheng, Zhang Yijun. 2017. The 3D spatial and temporal evolution of K process in intra-cloud flash [J]. J. Appl. Meteor. Sci. (in Chinese), 28(6): 700−713. doi: 10.11898/1001-7313.20170606
    [12] Lund N R, MacGorman D R, Schuur T J, et al. 2009. Relationships between lightning location and polarimetric radar signatures in a small mesoscale convective system [J]. Mon. Wea. Rev., 137(12): 4151−4170. doi: 10.1175/2009mwr2860.1
    [13] Ma Z L, Jiang R B, Qie X S, et al. 2021. A low frequency 3D lightning mapping network in North China [J]. Atmos. Res., 249: 105314. doi: 10.1016/j.atmosres.2020.105314
    [14] Mansell E R, MacGorman D R, Ziegler C L, et al. 2002. Simulated three-dimensional branched lightning in a numerical thunderstorm model [J]. J. Geophys. Res., 107(D9): 4075. doi: 10.1029/2000jd000244
    [15] Marchand M, Hilburn K, Miller S D. 2019. Geostationary lightning mapper and Earth networks lightning detection over the contiguous United States and dependence on flash characteristics [J]. J. Geophys. Res. :Atmos., 124(21): 11552−11567. doi: 10.1029/2019JD031039
    [16] Marshall T C, McCarthy M P, Rust W D. 1995. Electric field magnitudes and lightning initiation in thunderstorms [J]. J. Geophys. Res., 100(D4): 7097−7103. doi: 10.1029/95jd00020
    [17] Mecikalski R M, Carey L D. 2017. Lightning characteristics relative to radar, altitude and temperature for a multicell, MCS and supercell over northern Alabama [J]. Atmos. Res., 191: 128−140. doi: 10.1016/j.atmosres.2017.03.001
    [18] Montanyà J, van der Velde O, Williams E R. 2015. The start of lightning: Evidence of bidirectional lightning initiation [J]. Sci. Rep., 5: 15180. doi: 10.1038/srep15180
    [19] Nag A, Rakov V A. 2009. Some inferences on the role of lower positive charge region in facilitating different types of lightning [J]. Geophys. Res. Lett., 36(5): L05815. doi: 10.1029/2008GL036783
    [20] Proctor D E. 1991. Regions where lightning flashes began [J]. J. Geophys. Res., 96(D3): 5099−5112. doi: 10.1029/90jd02120
    [21] Proctor D E. 1997. Lightning flashes with high origins [J]. J. Geophys. Res., 102(D2): 1693−1706. doi: 10.1029/96JD02635
    [22] 郄秀书, 张义军, 张其林. 2005. 闪电放电特征和雷暴电荷结构研究 [J]. 气象学报, 63(5): 646−658. doi: 10.3321/j.issn:0577-6619.2005.05.010

    Qie Xiushu, Zhang Yijun, Zhang Qilin. 2005. Study on the characteristics of lightning discharges and the electric structure of thunderstorm [J]. Acta Meteor. Sinica (in Chinese), 63(5): 646−658. doi: 10.3321/j.issn:0577-6619.2005.05.010
    [23] Qie X S, Zhang T L, Zhang G S, et al. 2009. Electrical characteristics of thunderstorms in different plateau regions of China [J]. Atmos. Res. , 91(2–4): 244–249. doi: 10.1016/j.atmosres.2008.04.014
    [24] Qie X S, Pu Y J, Jiang R B, et al. 2017. Bidirectional leader development in a preexisting channel as observed in rocket-triggered lightning flashes [J]. J. Geophys. Res., 122(2): 586−599. doi: 10.1002/2016JD025224
    [25] Rison W, Thomas R J, Krehbiel P R, et al. 1999. A GPS-based three-dimensional lightning mapping system: Initial observations in central New Mexico [J]. Geophys. Res. Lett., 26(23): 3573−3576. doi: 10.1029/1999gl010856
    [26] Rust W D, MacGorman D R, Bruning E C, et al. 2005. Inverted-polarity electrical structures in thunderstorms in the severe thunderstorm electrification and precipitation study (STEPS) [J]. Atmos. Res., 76(1–4): 247–271. doi:10.1016/j.atmosres.2004.11.029
    [27] Scholten O, Hare B M, Dwyer J, et al. 2021. The initial stage of cloud lightning imaged in high-resolution [J]. J. Geophys. Res., 126(4): e2020JD033126. doi: 10.1029/2020JD033126
    [28] Shao X M, Krehbiel P R. 1996. The spatial and temporal development of intracloud lightning [J]. J. Geophys. Res., 101(D21): 26641−26668. doi: 10.1029/96JD01803
    [29] Solomon R, Schroeder V, Baker M B. 2001. Lightning initiation-conventional and runaway-breakdown hypotheses [J]. Quart. J. Roy. Meteor. Soc., 127(578): 2683−2704. doi: 10.1002/qj.49712757809
    [30] Stolzenburg M, Marshall T C, Rust W D, et al. 2007. Electric field values observed near lightning flash initiations [J]. Geophys. Res. Lett., 34(4): L04804. doi: 10.1029/2006GL028777
    [31] Symbalisty E M D, Roussel-Dupre R A, Yukhimuk V A. 1998. Finite volume solution of the relativistic Boltzmann equation for electron avalanche studies [J]. IEEE Trans. Plasma Sci., 26(5): 1575−1582. doi: 10.1109/27.736065
    [32] Syssoev A A, Iudin D I, Bulatov A A, et al. 2020. Numerical simulation of stepping and branching processes in negative lightning leaders [J]. J. Geophys. Res., 125(7): e2019JD031360. doi: 10.1029/2019JD031360
    [33] Takahashi T. 1978. Riming electrification as a charge generation mechanism in thunderstorms [J]. J. Atmos. Sci., 35(8): 1536−1548. doi: 10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2
    [34] 谭涌波. 2006. 闪电放电与雷暴云电荷、电位分布相互关系的数值模似 [D]. 中国科学技术大学博士学位论文. Tan Y B. 2006. Numerical simulation of the relationship of the lightning discharge with the space charge and potential distribution in thundercloud [D]. Ph. D. dissertation (in Chinese), University of Science and Technology of China.
    [35] Tan Y B, Tao S C, Zhu B Y. 2006. Fine-resolution simulation of the channel structures and propagation features of intracloud lightning [J]. Geophys. Res. Lett., 33(9): L09809. doi: 10.1029/2005GL025523
    [36] Tan Y B, Tao S C, Zhu B Y, et al. 2007. A simulation of the effects of intra-cloud lightning discharges on the charges and electrostatic potential distributions in a thundercloud [J]. Chinese J. Geophys., 50(4): 916−930. doi: 10.1002/cjg2.1109
    [37] Tan Y B, Tao S C, Liang Z W, et al. 2014. Numerical study on relationship between lightning types and distribution of space charge and electric potential [J]. J. Geophys. Res., 119(2): 1003−1014. doi: 10.1002/2013JD019983
    [38] Thomas R J, Krehbiel P R, Rison W, et al. 2000. Comparison of ground-based 3-dimensional lightning mapping observations with satellite-based LIS observations in Oklahoma [J]. Geophys. Res. Lett., 27(12): 1703−1706. doi: 10.1029/1999gl010845
    [39] Wang F, Zhang Y J, Zheng D, et al. 2017. Semi-idealized modeling of lightning initiation related to vertical air motion and cloud microphysics [J]. J. Meteor. Res., 31(5): 976−986. doi: 10.1007/s13351-017-6201-8
    [40] Warner T A, Saba M M F, Schumann C, et al. 2016. Observations of bidirectional lightning leader initiation and development near positive leader channels [J]. J. Geophys. Res., 121(15): 9251−9260. doi: 10.1002/2016jd025365
    [41] Wilkes R A, Uman M A, Pilkey J T, et al. 2016. Luminosity in the initial breakdown stage of cloud-to-ground and intracloud lightning [J]. J. Geophys. Res., 121(3): 1236−1247. doi: 10.1002/2015JD024137
    [42] Williams E R. 1989. The tripole structure of thunderstorms [J]. J. Geophys. Res., 94(D11): 13151−13167. doi: 10.1029/jd094id11p13151
    [43] Williams E R. 2006. Problems in lightning physics-the role of polarity asymmetry [J]. Plasma Sources Sci. Technol., 15(2): S91−S108. doi: 10.1088/0963-0252/15/2/s12
    [44] Wu T, Yoshida S, Akiyama Y, et al. 2015. Preliminary breakdown of intracloud lightning: Initiation altitude, propagation speed, pulse train characteristics, and step length estimation [J]. J. Geophys. Res., 120(18): 9071−9086. doi: 10.1002/2015JD023546
    [45] Wu, T., Wang, D., & Takagi, N. (2019). Intracloud lightning flashes initiated at high altitudes and dominated by downward positive leaders. Journal of Geophysical Research: Atmospheres, 124, 6982–6998. doi:10.1029/2018JD029907
    [46] Zhang Y J, Krehbiel P R, Liu X S. 2002. Polarity inverted intracloud discharges and electric charge structure of thunderstorm [J]. Chinese Sci. Bull., 47(20): 1725−1729. doi: 10.1007/BF03183317
    [47] 张义军, Krehbiel P R, 刘欣生, 等. 2003. 闪电放电通道的三维结构特征 [J]. 高原气象, 22(3): 217−220. doi: 10.3321/j.issn:1000-0534.2003.03.002

    Zhang Yijun, Krehbiel P R, Liu Xinsheng, et al. 2003. Three dimensions structure of lightning discharge channel [J]. Plateau Meteor. (in Chinese), 22(3): 217−220. doi: 10.3321/j.issn:1000-0534.2003.03.002
    [48] 张廷龙, 郄秀书, 袁铁, 等. 2008. 中国内陆高原地区典型雷暴过程的地闪特征及电荷结构反演 [J]. 大气科学, 32(5): 1221−1228. doi: 10.3878/j.issn.1006-9895.2008.05.19

    Zhang Tinglong, Qie Xiushu, Yuan Tie. et al 2008. The characteristics of cloud-to-ground lightning flashes and charge structure of a typical thunderstorm in Chinese inland Plateau [J]. Chinese J. Atmos. Sci. (in Chinese), 32(5): 1221−1228. doi: 10.3878/j.issn.1006-9895.2008.05.19
    [49] 张广庶, 王彦辉, 郄秀书, 等. 2010. 基于时差法三维定位系统对闪电放电过程的观测研究 [J]. 中国科学: 地球科学, 40(4): 523–534. Zhang Guangshu, Wang Yanhui, Qie Xiushu, et al. 2010. Using lightning locating system based on time-of-arrival technique to study three-dimensional lightning discharge processes [J]. Sci. China Earth Sci. , 53(4): 591–602. doi: 10.1007/s11430-009-0116-x
    [50] Zheng D, MacGorman D R. 2016. Characteristics of flash initiations in a supercell cluster with tornadoes [J]. Atmos. Res., 167: 249−264. doi: 10.1016/j.atmosres.2015.08.015
    [51] Zheng D, Zhang Y J, Meng Q. 2018. Properties of negative initial leaders and lightning flash size in a cluster of supercells [J]. J. Geophys. Res., 123(22): 12857−12876. doi: 10.1029/2018JD028824
    [52] Zheng D, Shi D D, Zhang Y, et al. 2019a. Initial leader properties during the preliminary breakdown processes of lightning flashes and their associations with initiation positions [J]. J. Geophys. Res., 124(14): 8025−8042. doi: 10.1029/2019jd030300
    [53] Zheng D, Wang D H, Zhang Y J, et al. 2019b. Charge regions indicated by LMA lightning flashes in Hokuriku’s winter thunderstorms [J]. J. Geophys. Res., 124(13): 7179−7206. doi: 10.1029/2018jd030060
    [54] Zheng T X, Tan Y B, Wang Y R. 2021. Numerical simulation to evaluate the effects of upward lightning discharges on thunderstorm electrical parameters [J]. Adv. Atmos. Sci., 38(3): 446−459. doi: 10.1007/s00376-020-0154-z
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  15
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-08
  • 录用日期:  2021-09-13
  • 网络出版日期:  2021-10-08
  • 刊出日期:  2022-11-24

目录

    /

    返回文章
    返回