高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于遥感数据光流场的2021年郑州“7·20”特大暴雨动力条件和水凝物输送特征分析

孙跃 肖辉 杨慧玲 丁建芳 付丹红 郭学良 冯亮

孙跃, 肖辉, 杨慧玲, 等. 2021. 基于遥感数据光流场的2021年郑州“7·20”特大暴雨动力条件和水凝物输送特征分析[J]. 大气科学, 45(6): 1384−1399 doi: 10.3878/j.issn.1006-9895.2109.21155
引用本文: 孙跃, 肖辉, 杨慧玲, 等. 2021. 基于遥感数据光流场的2021年郑州“7·20”特大暴雨动力条件和水凝物输送特征分析[J]. 大气科学, 45(6): 1384−1399 doi: 10.3878/j.issn.1006-9895.2109.21155
SUN Yue, XIAO Hui, YANG Huiling, et al. 2021. Analysis of Dynamic Conditions and Hydrometeor Transport of Zhengzhou Superheavy Rainfall Event on 20 July 2021 Based on Optical Flow Field of Remote Sensing Data [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(6): 1384−1399 doi: 10.3878/j.issn.1006-9895.2109.21155
Citation: SUN Yue, XIAO Hui, YANG Huiling, et al. 2021. Analysis of Dynamic Conditions and Hydrometeor Transport of Zhengzhou Superheavy Rainfall Event on 20 July 2021 Based on Optical Flow Field of Remote Sensing Data [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(6): 1384−1399 doi: 10.3878/j.issn.1006-9895.2109.21155

基于遥感数据光流场的2021年郑州“7·20”特大暴雨动力条件和水凝物输送特征分析

doi: 10.3878/j.issn.1006-9895.2109.21155
基金项目: 国家重点研发计划项目2019YFC1510304、2016YFE0201900,中国科学院特别研究助理资助项目,国家自然科学基金项目41575037
详细信息
    作者简介:

    孙跃,男,1988年出生,博士后,主要从事云降水物理、强风暴遥感探测研究。E-mail: sunyue1@mail.iap.ac.cn

    通讯作者:

    肖辉,E-mail: hxiao@mail.iap.ac.cn

  • 中图分类号: P458

Analysis of Dynamic Conditions and Hydrometeor Transport of Zhengzhou Superheavy Rainfall Event on 20 July 2021 Based on Optical Flow Field of Remote Sensing Data

Funds: National Key Research and Development Plan of China (Grants 2019YFC1510304, 2016YFE0201900), Special Research Assistant Project of Chinese Academy of Sciences, National Natural Science Foundation of China (Grant 41575037)
  • 摘要: 本文针对2021年7月20日河南省郑州市发生的“7·20”特大暴雨天气过程,主要基于FY-4A静止气象卫星成像仪和地基天气雷达遥感数据,利用光流法分别计算遥感数据图像的光流场(Optical Flow Field)。经与FNL数据水平风和地面风速观测对比表明,气象卫星和雷达光流场可以近似反映大气和云系的高空和低空的运动特征。在此基础上,分析了与暴雨天气过程有关的动力条件和水凝物输送特征。结果显示,在20日午后,存在从华南经河南延伸至华北“西南—东北”走向的水汽和云水输送带,其中对流活动非常明显,并一直延伸至河南中北部的既有云系中,为河南郑州地区特大暴雨的形成提供了有利的水汽和云水输送条件。20日午后至16时(北京时)最强降水发生前,郑州地区低空由辐散转为强烈的气旋状辐合,并且高空的反气旋涡度增强,表明郑州地区整个降水系统上升运动增强。在最强降水发生前,从郑州地区南侧输入的水凝物急剧增加。这些结果表明,郑州地区不仅存在大量水汽输入,同时还有大量水凝物随强对流云输送进入到大范围降水系统的上升运动区,可能极大地加速了水汽转化为云水进而形成降水的微物理过程转化速率,这可能是此次郑州特大暴雨快速增强的主要成因。本文提出的基于遥感数据光流场的分析方法在暴雨短临预报和预警中有显著的应用潜力。
  • 图  1  2021年7月(a)19日08时至21日08时郑州雨量站观测的逐小时累计降水量,(b)19日08时至20日17时河南地区累计的观测降水量,粗黑线圆圈代表郑州雨量站位置

    Figure  1.  (a) Hourly accumulated precipitation observed in Zhengzhou rainfall station from 0800 BJT (Beijing time) 19 July to 0800 BJT 21 July 2021, (b) accumulated precipitation observed in Henan Province from 0800 BJT 19 July to 1700 BJT 20 July 2021, the bold black circle represents the location of Zhengzhou rainfall station

    图  2  2021年7月20日14时FNL数据的(a)200 hPa、(b)500 hPa、(c)850 hPa位势高度场(等值线,单位:dagpm)、风场(风羽,单位:m s−1),(d)500 hPa以下整层水汽通量(箭头,单位:103 kg m−1 s−1)、水汽通量散度(阴影,单位:10−4 kg m−2 s−1)。图中红圈为郑州雨量站位置,图c、d中黑色粗实线圈为海拔超过3000 m的高原范围

    Figure  2.  Geopotential height (contours, units: dagpm) and wind (barbs, units: m s−1) at (a) 200 hPa, (b) 500 hPa, (c) 850 hPa, (d) integrated water vapor fluxes (arrows, units: 103 kg m−1 s−1) and their divergences (shadings, units: 10−4 kg m−2 s−1) below the 500-hPa level from the FNL (Final Operational Global Analysis) dataset at 1400 BJT 20 July 2021. The red circles represent the location of the Zhengzhou rainfall station. The bold black lines in Figs. c and d represent the plateau areas with an altitude of at least 3000 m above sea level

    图  3  2021年7月20日14时(a)FY-4A云顶高度产品、(b)FY-4A云顶气压产品以及(c)FY-4A通道10计算的光流场(蓝色箭头)和FNL数据400~200 hPa平均水平风(红色箭头)。图中黑色圈为郑州雨量站位置,下同

    Figure  3.  (a) Cloud top height products of FY-4A, (b) cloud top pressure products of FY-4A, (c) the optical flow field (blue arrows) derived from FY-4A Channel No.10 and mean horizontal wind field (red arrows) of FNL data within the layer 400–200 hPa at 1400 BJT 20 July 2021. The black circles represent the location of Zhengzhou rainfall station, the same below

    图  4  2021年7月20日14时(a)雷达低仰角组合反射率光流场(蓝色箭头)与FNL数据1000~700 hPa平均水平风(红色箭头),(b)雷达低仰角组合反射率(阴影)及光流场(黑色箭头),(c)2021年7月21日郑州雨量站附近的雷达光流场、郑州雨量站观测的10 m高度处的最大风速和FNL数据10 m高度处的风速变化,(d)同c,但为风向

    Figure  4.  (a) The optical flow field (blue arrows) derived from radar low-level composite reflectivity and mean horizontal wind field (red arrows) of FNL data within the layer 1000–700 hPa, (b) radar low-level composite reflectivity (shadings) and optical flow field (black arrows) at 1400 BJT 20 July 2021, (c) time series of radar optical flow field near Zhengzhou rainfall station, maximum 10 m-height wind speed observation at Zhengzhou rainfall station, and 10 m-height wind of FNL data on 21 July 2021, (d) as in Fig. c, but for wind direction

    图  5  2021年7月20日14:06 FY-4A AGRI的(a)通道9亮温、(b)通道10亮温、(c)通道4灰度值、(d)由通道10计算的光流场

    Figure  5.  (a) Brightness temperature of Channel No.9, (b) brightness temperature of Channel No.10, (c) digital number value of Channel No.4 from FY-4A AGRI, (d) optical flow field derived from Channel No.10 at 1406 BJT 20 July 2021

    图  6  2021年7月20日(a)10:32、(b)12:32、(c)14:32、(d)16:32郑州雨量站附近卫星光流场(黑色箭头)。填色为FY-4A AGRI通道10亮温,图中黑色框范围为郑州附近区域,下同

    Figure  6.  Optical flow field (black arrows) from FY-4A AGRI at (a) 1032 BJT, (b) 1232 BJT, (c) 1432 BJT, (d) 1632 BJT on 20 July 2021. Color shadings represent the brightness temperature of FY-4A Channel No.10. The black boxes represent the surrounding area of Zhengzhou, the same below

    图  7  2021年7月20日(a)10:32、(b)12:32、(c)14:32、(d)16:32郑州雨量站附近雷达光流场(黑色箭头)。填色为雷达低仰角组合反射率

    Figure  7.  Optical flow field (black arrows) from radar at (a) 1032 BJT, (b) 1232 BJT, (c) 1432 BJT, (d) 1632 BJT on 20 July 2021. Color shadings represent low-level radar composite reflectivity

    图  8  2021年7月20日FY-4A AGRI通道10计算的光流场计算的区域平均散度和涡度变化。图中粗虚线为15点滑动平均线,区域平均范围为郑州周边地区(图6中黑色方框区,33°~36°N,112°~115°E),下同

    Figure  8.  Regional average divergence and vorticity of the optical flow field derived from Channel No.10 of FY-4A AGRI data on 20 July 2021. The bold dash lines represent the 15-point moving average. The regional average area covers the surrounding areas of Zhengzhou (black boxes in Fig. 6, 33°–36°N, 112°–115°E), the same below

    图  9  2021年7月20日雷达低仰角组合反射率光流场计算得到的郑州附近区域平均散度和涡度变化。平均时取组合反射率大于0 dBZ的格点

    Figure  9.  Regional average divergence and vorticity of optical flow field derived from low-level radar composite reflectivity on July 2021. The regional average is with the radar composite reflectivity over 0 dBZ

    图  10  2021年7月20日由雷达数据和FNL数据计算的郑州附近区域低层南侧边界水凝物向北净通量

    Figure  10.  Net northward hydrometeor fluxes derived from radar data and FNL data at low levels at the south boundary of Zhengzhou region on 20 July 2021

    图  11  2021年7月20日由雷达数据估算的郑州附近区域低层不同方向边界上水凝物的(a)向内正通量、(b)向内净通量

    Figure  11.  (a) Inward positive fluxes and (b) inward net fluxes of hydrometeor estimated using radar data at low levels at boundaries of different directions transporting into Zhengzhou region on 20 July 2021

    图  12  2021年7月20日由雷达数据估算的郑州附近区域低层水凝物输送收支与郑州雨量站小时降水量

    Figure  12.  Hydrometeor transport budgets at low levels over the Zhengzhou region estimated using radar data and hourly precipitation at Zhengzhou rainfall station on 20 July 2021

    表  1  FY-4A卫星AGRI 4 km分辨率1级数据的通道类型、波长范围、变量及用途概况

    Table  1.   Channel types, wavelength ranges, variables, and applications of satellite FY-4A AGRI (Advanced Geosynchronous Radiation Imager) Level 1 data in a resolution of 4 km

    通道号通道类型波长范围/μm变量主要用途
    1可见光与
    近红外
    0.45~0.49灰度值 气溶胶
    20.55~0.75灰度值 雾、云
    30.75~0.90灰度值 植被
    4短波红外1.36~1.39灰度值 卷云
    51.58~1.64灰度值 云、雪
    62.10~2.35灰度值 卷云、气溶胶
    7中波红外3.5~4.0(high)亮温  火点
    83.5~4.0(low)亮温  地表
    9水汽5.8~6.7亮温  水汽和云导风
    106.9~7.3亮温  水汽和云导风
    11长波红外8.0~9.0亮温  云导风
    1210.3~11.3亮温  海表温度
    1311.5~12.5亮温  海表温度
    1413.2~13.8亮温  云顶高度
    下载: 导出CSV
  • [1] Bechini R, Chandrasekar V. 2017. An enhanced optical flow technique for radar nowcasting of precipitation and winds [J]. J. Atmos. Oceanic Technol., 34(12): 2637−2658. doi: 10.1175/JTECH-D-17-0110.1
    [2] 曹春燕, 陈元昭, 刘东华, 等. 2015. 光流法及其在临近预报中的应用 [J]. 气象学报, 73(3): 471−480. doi: 10.11676/qxxb2015.034

    Cao Chunyan, Chen Yuanzhao, Liu Donghua, et al. 2015. The optical flow method and its application to nowcasting [J]. Acta Meteorologica Sinica, 73(3): 471−480. doi: 10.11676/qxxb2015.034
    [3] 邓伟, 陈海波, 马振升, 等. 2009. NCEP FNL全球分析资料的解码及其图形显示 [J]. 气象与环境科学, 32(3): 78−82. doi: 10.16765/j.cnki.1673-7148.2009.03.009

    Deng Wei, Chen Haibo, Ma Zhensheng, et al. 2009. Decoding and graphic display of the NCEP FNL global analysis data [J]. Meteorological and Environmental Sciences, 32(3): 78−82. doi: 10.16765/j.cnki.1673-7148.2009.03.009
    [4] 勾亚彬, 刘黎平, 杨杰, 等. 2014. 基于雷达组网拼图的定量降水估测算法业务应用及效果评估 [J]. 气象学报, 72(4): 731−748. doi: 10.11767/qxxb2014.050

    Gou Yabin, Liu Liping, Yang Jie, et al. 2014. Operational application and evaluation of the quantitative precipitation estimates algorithm based on the multi-radar mosaic [J]. Acta Meteorologica Sinica, 72(4): 731−748. doi: 10.11767/qxxb2014.050
    [5] 洪延超. 1996. 积层混合云数值模拟研究(II)——云相互作用及暴雨产生机制 [J]. 气象学报, 54(6): 661−674. doi: 10.11676/qxxb1996.069

    Hong Yanchao. 1996. The numerical simulation study of convective–stratiform mixed cloud (II)—Interaction of clouds and formative mechanism of the heavy rain [J]. Acta Meteorologica Sinica, 54(6): 661−674. doi: 10.11676/qxxb1996.069
    [6] Horn B K P, Schunck B G. 1981. Determining optical flow [J]. Artif. Intell., 17(1-3): 185−203. doi: 10.1016/0004-3702(81)90024-2
    [7] 黄守友, 徐国强. 2020. FY4A的LMIE闪电数据对云信息初始化的影响及数值试验 [J]. 高原气象, 39(2): 378−392. doi: 10.7522/j.issn.1000-0534.2019.00110

    Huang Shouyou, Xu Guoqiang. 2020. Influence of LMIE lightning data of FY4A on cloud information initialization and numerical experiment [J]. Plateau Meteorology, 39(2): 378−392. doi: 10.7522/j.issn.1000-0534.2019.00110
    [8] 黄美元, 徐华英, 洪延超. 1986. 混合云系中的层状云对对流云发展影响的数值模拟研究 [J]. 成都气象学院学报(1): 48−54.

    Huang Meiyuan, Xu Huaying, Hong Yanchao. 1986. A numerical simulation study for effects of stratiform cloud in mixed cloud system on growth of convective cloud [J]. Journal of Chengdu Meteorological Institute(1): 48−54.
    [9] 黄治勇, 王婧羽, 周文. 2021. 2020年7月4~8日长江中游极端暴雨特征分析 [J]. 暴雨灾害, 40(4): 333−341. doi: 10.3969/j.issn.1004-9045.2021.04.001

    Huang Zhiyong, Wang Jingyu, Zhou Wen. 2021. Characteristics analysis of an extreme heavy rain event in the middle reaches of the Yangtse River from July 4 to 8 in 2020 [J]. Torrential Rain and Disasters, 40(4): 333−341. doi: 10.3969/j.issn.1004-9045.2021.04.001
    [10] 李国翠, 刘黎平, 连志鸾, 等. 2014. 利用雷达回波三维拼图资料识别雷暴大风统计研究 [J]. 气象学报, 72(1): 168−181. doi: 10.11767/qxxb2014.003

    Li Guocui, Liu Liping, Lian Zhiluan, et al. 2014. Statistical study of the identification of thunderstorm gale based on the radar 3D mosaic data [J]. Acta Meteorologica Sinica, 72(1): 168−181. doi: 10.11767/qxxb2014.003
    [11] Liu B, Huo J, Lyu D R, et al. 2021. Assessment of FY-4A and Himawari-8 cloud top height retrieval through comparison with ground-based millimeter radar at sites in Tibet and Beijing [J]. Adv. Atmos. Sci., 38(8): 1334−1350. doi: 10.1007/s00376-021-0337-2
    [12] Lucas B D, Kanade, T. 1981. An iterative image registration technique with an application to stereo vision [C]//Proceedings of the 7th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc. , 674–679.
    [13] Meinhardt-Llopis E, Pérez J S, Kondermann D. 2013. Horn-schunck optical flow with a multi-scale strategy [J]. Image Processing on Line, 3: 151−172. doi: 10.5201/ipol.2013.20
    [14] 瞿建华, 张烺, 陆其峰, 等. 2019. 基于ERA5的快速辐射传输模式与FY-4A成像仪观测结果的偏差分析 [J]. 气象学报, 77(5): 911−922. doi: 10.11676/qxxb2019.049

    Qu Jianhua, Zhang Lang, Lu Qifeng, et al. 2019. Characterization of bias in FY-4A advanced geostationary radiation imager observations from ERA5 background simulations using RTTOV [J]. Acta Meteorologica Sinica, 77(5): 911−922. doi: 10.11676/qxxb2019.049
    [15] Shao J L, Gao H, Wang X, et al. 2020. Application of Fengyun-4 satellite to flood disaster monitoring through a rapid multi-temporal synthesis approach [J]. J. Meteor. Res., 34(4): 720−731. doi: 10.1007/s13351-020-9184-9
    [16] 孙婵, 徐国强. 2019. 闪电定位和雷达观测资料在云分析中的应用及数值试验 [J]. 大气科学, 43(1): 131−141. doi: 10.3878/j.issn.1006-9895.1804.17233

    Sun Chan, Xu Guoqiang. 2019. Application of lightning location and radar data in cloud analysis system and numerical experiments [J]. Chinese Journal of Atmospheric Sciences, 43(1): 131−141. doi: 10.3878/j.issn.1006-9895.1804.17233
    [17] 谭仲辉, 马烁, 韩丁, 等. 2019. 基于随机森林算法的FY-4A云底高度估算方法 [J]. 红外与毫米波学报, 38(3): 381−388. doi: 10.11972/j.issn.1001-9014.2019.03.020

    Tan Zhonghui, Ma Shuo, Han Ding, et al. 2019. Estimation of cloud base height for FY-4A satellite based on random forest algorithm [J]. Journal of Infrared and Millimeter Waves, 38(3): 381−388. doi: 10.11972/j.issn.1001-9014.2019.03.020
    [18] 田刚, 陈良华, 魏凡, 等. 2021. 基于光流法雷达外推的2020年长江致洪降水临近预报检验评估 [J]. 暴雨灾害, 40(3): 316−325. doi: 10.3969/j.issn.1004-9045.2021.03.010

    Tian Gang, Chen Lianghua, Wei Fan, et al. 2021. Evaluation of flood-producing rainfall nowcasting based on radar extrapolation with the variational optical flow method in the Yangtze River basin in 2020 [J]. Torrential Rain and Disasters, 40(3): 316−325. doi: 10.3969/j.issn.1004-9045.2021.03.010
    [19] Woo W C, Wong W K. 2017. Operational application of optical flow techniques to radar-based rainfall nowcasting [J]. Atmosphere, 8(3): 48. doi: 10.3390/atmos8030048
    [20] 熊得祥, 谭三清, 张贵, 等. 2020. 基于FY4遥感数据的森林火灾判别研究 [J]. 中南林业科技大学学报, 40(10): 42−50. doi: 10.14067/j.cnki.1673-923x.2020.10.005

    Xiong Dexiang, Tan Sanqing, Zhang Gui, et al. 2020. Forest fire discrimination research based on FY4 remote sensing data [J]. Journal of Central South University of Forestry & Technology, 40(10): 42−50. doi: 10.14067/j.cnki.1673-923x.2020.10.005
    [21] Yang J, Zhang Z Q, Wei C Y, et al. 2017. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4 [J]. Bull. Amer. Meteor. Soc., 98(8): 1637−1658. doi: 10.1175/BAMS-D-16-0065.1
    [22] 杨帅, 高守亭. 2007. 三维散度方程及其对暴雨系统的诊断分析 [J]. 大气科学, 31(1): 167−179. doi: 10.3878/j.issn.1006-9895.2007.01.17

    Yang Shuai, Gao Shouting. 2007. Three-dimensional divergence equation and its diagnosis analysis to storm rainfall system [J]. Chinese Journal of Atmospheric Sciences, 31(1): 167−179. doi: 10.3878/j.issn.1006-9895.2007.01.17
    [23] 于华英, 牛生杰, 梁明珠, 等. 2007. 一次强对流风暴含水量的雷达反演和数值模拟结果的对比分析 [J]. 高原气象, 26(5): 1112−1118.

    Yu Huaying, Niu Shengjie, Liang Mingzhu, et al. 2007. Comparison analyses on the radar retrieved and simulated water content in a severe converctive storm [J]. Plateau Meteorology, 26(5): 1112−1118.
    [24] 祝善友, 李佳敏, 向嘉敏, 等. 2020. 基于FY4A AGRI数据的气溶胶光学厚度反演研究 [J]. 地理与地理信息科学, 36(4): 26−32. doi: 10.3969/j.issn.1672-0504.2020.04.005

    Zhu Shanyou, Li Jiamin, Xiang Jiamin, et al. 2020. Research on aerosol optical depth inversion based on FY4A AGRI data [J]. Geography and Geo-Information Science, 36(4): 26−32. doi: 10.3969/j.issn.1672-0504.2020.04.005
    [25] 左璇, 朱业玉, 郭鹏, 等. 2021. 郑州市短历时强降水变化特征及重现期研究 [J]. 气象与环境科学, 44(2): 25−32. doi: 10.16765/j.cnki.1673-7148.2021.02.004

    Zuo Xuan, Zhu Yeyu, Guo Peng, et al. 2021. Research on variation characteristics and return periods of short-time heavy precipitation in Zhengzhou [J]. Meteorological and Environmental Sciences, 44(2): 25−32. doi: 10.16765/j.cnki.1673-7148.2021.02.004
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  145
  • HTML全文浏览量:  71
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-27
  • 录用日期:  2021-09-27
  • 网络出版日期:  2021-09-28
  • 刊出日期:  2021-11-25

目录

    /

    返回文章
    返回