高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2021年河南“7.20”极端暴雨动、热力和水汽特征观测分析

冉令坤 李舒文 周玉淑 杨帅 马淑萍 周括 申冬冬 焦宝峰 李娜

冉令坤, 李舒文, 周玉淑, 等. 2021. 2021年河南“7.20”极端暴雨动、热力和水汽特征观测分析[J]. 大气科学, 45(6): 1366−1383 doi: 10.3878/j.issn.1006-9895.2109.21160
引用本文: 冉令坤, 李舒文, 周玉淑, 等. 2021. 2021年河南“7.20”极端暴雨动、热力和水汽特征观测分析[J]. 大气科学, 45(6): 1366−1383 doi: 10.3878/j.issn.1006-9895.2109.21160
RAN Lingkun, LI Shuwen, ZHOU Yushu, et al. 2021. Observational Analysis of the Dynamic, Thermal, and Water Vapor Characteristics of the “7.20” Extreme Rainstorm Event in Henan Province, 2021 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(6): 1366−1383 doi: 10.3878/j.issn.1006-9895.2109.21160
Citation: RAN Lingkun, LI Shuwen, ZHOU Yushu, et al. 2021. Observational Analysis of the Dynamic, Thermal, and Water Vapor Characteristics of the “7.20” Extreme Rainstorm Event in Henan Province, 2021 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(6): 1366−1383 doi: 10.3878/j.issn.1006-9895.2109.21160

2021年河南“7.20”极端暴雨动、热力和水汽特征观测分析

doi: 10.3878/j.issn.1006-9895.2109.21160
基金项目: 中国科学院战略性先导科技专项XDA17010105,国家重点研发计划2018YFC1507104,吉林省科技发展计划项目20180201035SF
详细信息
    作者简介:

    冉令坤,男,1974年出生,研究员,主要从事中尺度动力学和暴雨机理、预测方法研究。E-mail: rlk@mail.iap.ac.cn

    通讯作者:

    冉令坤,E-mail: rlk@mail.iap.ac.cn

  • 中图分类号: P446

Observational Analysis of the Dynamic, Thermal, and Water Vapor Characteristics of the “7.20” Extreme Rainstorm Event in Henan Province, 2021

Funds: Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDA17010105), National Key Research and Development Program (Grant 2018YFC1507104), Key Scientific and Technology Research and Development Program of Jilin Province (Grant 20180201035SF)
  • 摘要: 利用MICAPS观测降水数据、欧洲气象中心ERA5再分析资料和FY-4A卫星云顶亮温数据,对2021年7月20日河南极端暴雨进行综合分析。结果表明,此次暴雨受200 hPa两槽一脊、大陆高压、副热带高压(副高)西伸北抬和台风“烟花”西移、“查帕卡”台风倒槽等多尺度天气系统共同影响,黄淮气旋的西南气流与副高和“烟花”之间的东南气流稳定控制河南地区,边界层急流供应充沛水汽,在太行山和嵩山迎风坡辐合抬升,致使河南暴雨长时间维持,产生极端降水量。西南气流穿过从广东和广西延伸到河南的高湿带,副高和“烟花”引导东南气流经过从东海洋面延伸到河南的相对较弱湿区,这两条水汽输送带在太行山和嵩山地形阻挡下汇合在河南北部,为暴雨供应水汽。丰富的可降水量、水汽过饱和、深厚暖云层以及降水系统较强的水汽消耗率为郑州高降水效率提供有利条件。郑州低层大气经历多次从强层结不稳定到弱层结不稳定的转化,边界层急流引起的垂直风切变和气流辐合对层结稳定度变化有重要影响。黄淮气旋内部中尺度涡旋对河南暴雨发生发展至关重要,不但提供西南气流,还产生较强的位势高度纬向平流,增强边界层急流。嵩山与太行山余脉构成喇叭口地形,边界层急流在嵩山北侧和东侧爬坡,促使山前水汽堆积,激发和加强暴雨。中尺度云团合并小尺度云团,发展成结构密实的孤立云团,稳定少动,对暴雨有重要影响。降水区上空广义湿位涡异常,由于广义湿位涡能够刻画中尺度系统的垂直风切变、涡度以及大气湿斜压性和层结不稳定等动力和热力因素垂直结构特点,所以对中尺度系统和降水落区有一定指示意义。
  • 图  1  2021 年7 月(a)18日,(b)19日,(c)20日和(d)21日24小时累计降水量分布(单位:mm),棕色线为省界,黑点代表郑州位置

    Figure  1.  Distribution of 24-hour cumulative precipitation on (a) July 18, (b) July 19, (c) July 20 and (d) July 21, 2021 (units: mm). The brown line represents the provincial boundary, and the black dot represents the location of Zhengzhou

    图  2  2021年7月20日00时(协调世界时,下同)(a)200 hPa位势高度(等值线,单位:m)和风速(填色,单位:m s−1)以及风矢量(风羽,单位:m s−1),(b)500 hPa位势高度(等值线;单位:m)和风速(填色,单位:m s−1),(c)700 hPa位势高度(等值线,单位:m)和风速(填色,单位:m s−1)以及风矢量(风羽,单位:m s−1)和(d)925 hPa位势高度(等值线,单位:m)和水汽比湿(填色,单位:g kg−1)以及风矢量(风羽,单位:m s−1)。红点代表郑州位置

    Figure  2.  (a) 200 hPa geopotential height (isoline, units: m), wind speed (shaded, units: m s−1) and wind vector (wind barb, units: m s−1), (b) 500 hPa geopotential height (isoline, units: m) and wind speed (shaded, units: m s−1), (c) 700 hPa geopotential height (isoline, units: m) and wind speed (shaded, units: m s−1) and wind vector (wind barb, units: m s−1) and (d) 925 hPa geopotential height (isoline, units: m) and water vapor specific humidity (shaded, units: g kg−1) and wind vector (wind barb, units: m s−1) at 0000 UTC 20 July 2021. The red dot represents the location of Zhengzhou

    图  3  2021年7月20日(a)00时和(b)12时大气可降水量(填色,单位:mm)与850 hPa风矢量(箭头,单位:m s−1),(c)00时和(d)12时1000~500 hPa水汽通量的垂直积分(箭头,单位:10 kg m−1 s−1)及其散度的垂直积分(填色,单位:10−4 kg m−2 s−1)的水平分布。红点代表郑州位置

    Figure  3.  Atmospheric precipitable water (shaded, units: mm) and 850 hPa wind vector (arrow, units: m s−1) at (a) 0000 UTC and (b) 1200 UTC 20 July 2021. 1000–500 hPa vertical integral of water vapor flux (arrow, units: 10 kg m−1 s−1) and its divergence (shaded, unit: 10−4 kg m−2 s−1) at (c) 0000 UTC and (d) 1200 UTC 20 July 2021. The red dot represents the location of Zhengzhou

    图  4  2021年7月20日(a)00 时和(b)08 时沿34.43°N水汽通量散度(填色,单位:10−7 g cm−2 hPa−1 s−1)和风矢量(箭头,m s−1)的纬向—垂直分布,其中红三角代表郑州位置

    Figure  4.  Zonal–vertical distribution of moisture flux divergence (shaded, units: 10−7 g cm−2 hPa−1 s−1) and wind vector (arrow, units: m s−1) along 34.43°N at (a) 0000 UTC and (b) 0800 UTC on July 20, 2021, where the red triangle represents the location of Zhengzhou

    图  5  2021年7月19日00时至21日00时郑州(34.43°N,113.39°E)(a)相对湿度、(b)液态水混合比含量(单位:10−4 kg kg−1)的高度—时间演变和2021年7月18日01时至22日00时(c)水汽保留率、(d)水汽消耗率的时间演变

    Figure  5.  Height–time evolution of (a) relative humidity, (b) mixing ratio content of liquid water (units: 10−4 kg kg−1) in Zhengzhou (34.43°N, 113.39°E) from 0000 UTC 19 July to 0000 UTC 21 July 2021, and time evolution of (c) water vapor reserved rate, (d) water vapor consumption rate from 0100 UTC 18 July to 0000 UTC 22 July 2021

    图  6  2021年7月20日00 时沿113.39°E(a)位涡(单位:PUV)和(b)相当位温(等值线,单位:K)、层结稳定度$ \partial {\theta _{se}}/\partial p$(填色,单位:10−4 K Pa−1)的经向—垂直分布。红三角形代表郑州位置

    Figure  6.  Meridional–vertical distribution of (a) potential vorticity (units: PUV), (b) equivalent potential temperature (isoline; units: K) and stratification stability $ \partial {\theta _{se}}/\partial p$ (shaded, units: 10−4 K Pa−1) along 113.39°E at 0000 UTC 20 July 2021. The red triangle represents the location of Zhengzhou

    图  7  2021年7月18日00时至22日00时郑州(34.43°N,113.39°E)(a)相当位温(等值线,单位:K)以及层结稳定度(填色,单位:10−4 K Pa−1)、(b)层结稳定度局地变化(单位:10−8 K s−1 Pa−1)、(c)水平平流项(单位:10−8 K s−1 Pa−1)、(d)垂直平流项(单位:10−8 K s−1 Pa−1)、(e)垂直风切变强迫项(单位:10−8 K s−1 Pa−1)和(f)散度强迫项(单位:10−8 K s−1 Pa−1)的高度—时间演变

    Figure  7.  Height–time evolution from 0000 UTC 18 July to 0000 UTC 22 July 2021, over Zhengzhou (34.43°N, 113.39°E): (a) Equivalent potential temperature (isoline, units: K) and stratification stability (shaded, units: 10−4 K Pa−1); (b) local changes of stratification stability (units: 10−8 K s−1 Pa−1); (c) horizontal advection term (units: 10−8 K s−1 Pa−1); (d) vertical advection term (units: 10−8 K s−1 Pa−1); (e) vertical wind shear forcing term (units: 10−8 K s−1 Pa−1); (f) divergence forcing term (units: 10−8 K s−1 Pa−1)

    图  8  2021年7月19日00时至21日00时郑州(34.43°N,113.39°E)(a)涡度(单位:单位:10−4 s−1),(b)散度(单位:10−4 s−1)和(c)垂直速度(单位:Pa s−1)的高度—时间演变

    Figure  8.  Height–time evolution of (a) vorticity (units: 10−4 s−1), (b) divergence (units: 10−4 s−1), and (c) vertical velocity (units: Pa s−1) in Zhengzhou (34.43°N, 113.39°E) from 0000 UTC 19 July to 0000 UTC 21 July 2021

    图  9  2021年7月20日00时(a)200 hPa、(b)500 hPa、(c)700 hPa、(d)925 hPa 风羽和涡度(填色,单位:10−4 s−1)水平分布以及(e)沿34.43°N涡度(单位:10−4 s−1)和(f)散度(单位:10−4 s−1)的纬向—垂直分布。箭头代表风矢量(单位:m s−1) ,红点和红三角代表郑州位置,蓝色实线代表地形高度(单位:m)

    Figure  9.  Horizontal distribution of wind barbs and vorticity (shaded, units: 10−4 s−1) at 0000 UTC July 20 2021: (a) 200 hPa; (b) 500 hPa; (c) 700 hPa; (d) 925 hPa. Zonal–vertical distribution along 34.43°N: (e) vorticity (units: 10−4 s−1); (f) divergence (units: 10−4 s−1). The arrow represents the wind vector (units: m s−1), the red dot and triangle represent the location of Zhengzhou, blue lines indicate the terrain height (units: m)

    图  10  2021年7月20日00 时沿34.43°N(a)K(等值线,单位:m2 s2)和 K / t(填色,单位:10−3 m2 s)、(b)$-u \cdot \partial \phi / \partial x$(单位:10−3 m2 s)、(c)$ -v \cdot \partial \phi / \partial y $(单位:m2 s)的纬向—垂直分布以及925 hPa(d)$ \phi $(单位:m2 s−2)、(e)$ u $(单位:m s−1)和(f)$ \partial \phi / \partial x $(单位:m s−2)的水平分布(填色)。蓝色线为地形高度(单位:m)等值线,红点和红三角代表郑州位置

    Figure  10.  Latitude–vertical distribution of (a) K (isoline, units: m2 s2) and ∂K/∂t (shaded, units: 10−3 m2 s), (b) $-u \cdot \partial \phi / \partial x$ (units: 10−3 m2 s), (c) $ -v \cdot \partial \phi / \partial y $ (units: 10−3 m2 s) along 34.43°N and horizontal distribution (shaded) of (d) $ \phi $(units: m2 s−2), (e) $ u $ (units: m s−1), and (f) $ \partial \phi / \partial x $ (unit: m s−2) 925 hPa at 0000 UTC 20 July 2021. Blue lines indicate the terrain height (units: m), and the red dot and triangle represent the location of Zhengzhou

    图  11  2021年7月20日(a)00时和(b)09时地形追随坐标系模式面第一层的风矢量(单位:m s−1)。填色代表地形高度(单位:km),红点代表郑州位置

    Figure  11.  Wind vector (units: m s−1) of the first layer on the model plane of the terrain-following coordinates at (a) 0000 UTC and (b) 0900 UTC 20 July 2021. The shaded represents the terrain height (units: km), and the red dot represents the location of Zhengzhou

    图  12  2021年7月20日(a)00时、(b)09时、(c)16时和(d)7月21日00时 FY-4A云顶亮温(小于−32 °C,单位:°C)分布。红点代表郑州位置

    Figure  12.  Distribution of FY-4A cloud-top brightness temperature (less than −32°C, units: °C) at (a) 0000 UTC, (b) 0900 UTC, and (c) 0000 UTC 20 July 2021 and at (d) 0000 UTC on 21 July 2021. The red dot represents the location of Zhengzhou

    图  13  2021年7月20日00时(a)925 hPa广义位温(单位:K)水平分布和(b)沿113.39°E广义位温的经向—垂直分布。红点和红三角代表郑州的位置

    Figure  13.  Generalized potential temperature (units: K) at 0000 UTC 20 July 2021: (a) Horizontal distribution at 925 hPa; (b) meridional–vertical distribution along 113.39°E. The red dot and triangle represent the location of Zhengzhou

    图  14  2021年7月20日(a)00时和(b)09时沿113.39°E广义位涡(单位:PVU)经向—垂直分布以及(c)00时、(b)11时、(e)13时和(f)22时 广义位涡绝对值的垂直积分(填色,单位:PVU)和观测1小时降水量(等值线,单位:mm)的分布。红点和红三角代表郑州的位置

    Figure  14.  Meridional–vertical distribution of generalized potential vorticity (units: PVU) along 113.39°E on 20 July 2021: (a) 0000 UTC and (b) 0900 UTC. Vertical integration of absolute values of generalized potential vorticity (shaded, units: PVU) and distribution of observed 1-hour precipitation (isoline, units: mm) on 20 July 2021: (c) 0000 UTC; (b) 1100 UTC; (e) 1300 UTC; (f) 2200 UTC. The red dot and triangle represent the location of Zhengzhou

  • [1] 蔡则怡, 宇如聪. 1997. LASG η坐标有限区域数值预报模式对一次登陆台风特大暴雨的数值试验 [J]. 大气科学, 21(4): 459−471. doi: 10.3878/j.issn.1006-9895.1997.04.08

    Cai Zeyi, Yu Rucong. 1997. A numerical simulation of an extraordinary storm rainfall caused by a landing typhoon with LASG mesoscale model [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica), 21(4): 459−471. doi: 10.3878/j.issn.1006-9895.1997.04.08
    [2] 丁一汇, 蔡则怡, 李吉顺. 1978. 1975年8月上旬河南特大暴雨的研究 [J]. 大气科学, 2(4): 276−289. doi: 10.3878/j.issn.1006-9895.1978.04.02

    Ding Yihui, Cai Zeyi, Li Jishun. 1978. A case study on the excessively severe rainstrom in Henan Province, early in August, 1975 [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica), 2(4): 276−289. doi: 10.3878/j.issn.1006-9895.1978.04.02
    [3] 胡燕平, 单铁良, 殷广亚, 等. 2009. 2008年河南黄淮地区暴雨过程个例分析 [J]. 气象科学, 29(6): 821−826. doi: 10.3969/j.issn.1009-0827.2009.06.018

    Hu Yanping, Shan Tieliang, Yin Guangya, et al. 2009. Case analysis of a heavy rainfall event between Yellow River and Huaihe River area of Henan in 2008 [J]. Scientia Meteorologica Sinica, 29(6): 821−826. doi: 10.3969/j.issn.1009-0827.2009.06.018
    [4] 矫梅燕, 毕宝贵, 鲍媛媛, 等. 2006. 2003年7月3~4日淮河流域大暴雨结构和维持机制分析 [J]. 大气科学, 30(3): 475−490. doi: 10.3878/j.issn.1006-9895.2006.03.11

    Jiao Meiyan, Bi Baogui, Bao Yuanyuan, et al. 2006. Thermal and dynamical structure of heavy rainstorm in the Huaihe River basin during 3–4 July 2003 [J]. Chinese Journal of Atmospheric Sciences, 30(3): 475−490. doi: 10.3878/j.issn.1006-9895.2006.03.11
    [5] 李宏宇, 王华, 洪延超. 2006. 锋面云系降水中的增雨潜力数值研究 [J]. 大气科学, 30(2): 341−350. doi: 10.3878/j.issn.1006-9895.2006.02.16

    Li Hongyu, Wang Hua, Hong Yanchao. 2006. A numerical study of precipitation enhancement potential in frontal cloud system [J]. Chinese Journal of Atmospheric Sciences, 30(2): 341−350. doi: 10.3878/j.issn.1006-9895.2006.02.16
    [6] 李博, 周天军, 吴春强, 等. 2009. 大气环流模式和耦合模式模拟的降水—海温关系之比较 [J]. 大气科学, 33(5): 1071−1086. doi: 10.3878/j.issn.1006-9895.2009.05.17

    Li Bo, Zhou Tianjun, Wu Chunqiang, et al. 2009. Relationship between rainfall and sea surface temperature simulated by LASG/IAP AGCM and CGCM [J]. Chinese Journal of Atmospheric Sciences, 33(5): 1071−1086. doi: 10.3878/j.issn.1006-9895.2009.05.17
    [7] 李俊, 王东海, 王斌. 2012. 中尺度对流系统中的湿中性层结结构特征 [J]. 气候与环境研究, 17(5): 617−627. doi: 10.3878/j.issn.1006-9585.2012.11085

    Li Jun, Wang Donghai, Wang Bin. 2012. Structure characteristics of moist neutral stratification in a mesoscale convective system [J]. Climatic and Environmental Research, 17(5): 617−627. doi: 10.3878/j.issn.1006-9585.2012.11085
    [8] 栗晗, 王新敏, 张霞, 等. 2018. 河南“7·19”豫北罕见特大暴雨降水特征及极端性分析 [J]. 气象, 44(9): 1136−1147. doi: 10.7519/j.issn.1000-0526.2018.09.002

    Li Han, Wang Xinmin, Zhang Xia, et al. 2018. Analysis on extremity and characteristics of the 19 July 2016 severe torrential rain in the north of Henan Province [J]. Meteorological Monthly, 44(9): 1136−1147. doi: 10.7519/j.issn.1000-0526.2018.09.002
    [9] 梁钰, 乔春贵, 董俊玲. 2020. 近34年河南首场暴雨时空分布特征及环流背景分析 [J]. 气象与环境科学, 43(2): 26−32. doi: 10.16765/j.cnki.1673-7148.2020.02.004

    Liang Yu, Qiao Chungui, Dong Junling. 2020. Spatial–temporal distribution and impact analysis of the first rainstorm in Henan Province over the recent 34 years [J]. Meteorological and Environmental Sciences, 43(2): 26−32. doi: 10.16765/j.cnki.1673-7148.2020.02.004
    [10] 刘冠华, 常俊超. 2020. 新乡“2016·07·09”特大暴雨洪涝防御思考 [J]. 河南水利与南水北调, 49(3): 25−26. doi: 10.3969/j.issn.1673-8853.2020.03.012

    Liu Guanhua, Chang Junchao. 2020. Review of prevention of extraordinary storm flood on July 9, 2016 in Xinxiang [J]. Henan Water Resources & South-to-North Water Diversion, 49(3): 25−26. doi: 10.3969/j.issn.1673-8853.2020.03.012
    [11] 刘璐, 冉令坤, 周玉淑, 等. 2015. 北京“7.21”暴雨的不稳定性及其触发机制分析 [J]. 大气科学, 39(3): 583−595. doi: 10.3878/j.issn.1006-9895.1407.14144

    Liu Lu, Ran Lingkun, Zhou Yushu, et al. 2015. Analysis on the instability and trigger mechanism of torrential rainfall event in Beijing on 21 July 2012 [J]. Chinese Journal of Atmospheric Sciences, 39(3): 583−595. doi: 10.3878/j.issn.1006-9895.1407.14144
    [12] 刘鸿波, 董理, 严若婧, 等. 2021. ERA5再分析资料对中国大陆区域近地层风速气候特征及变化趋势再现能力的评估 [J]. 气候与环境研究, 26(3): 299−311. doi: 10.3878/j.issn.1006-9585.2021.20101

    Liu Hongbo, Dong Li, Yan Ruojing, et al. 2021. Evaluation of near-surface wind speed climatology and long-term trend over China’s mainland region based on ERA5 reanalysis [J]. Climatic and Environmental Research, 26(3): 299−311. doi: 10.3878/j.issn.1006-9585.2021.20101
    [13] 马月枝, 张霞, 胡燕平. 2017. 2016年7月9日新乡暖区特大暴雨成因分析 [J]. 暴雨灾害, 36(6): 557−565. doi: 10.3969/j.issn.1004-9045.2017.06.009

    Ma Yuezhi, Zhang Xia, Hu Yanping. 2017. Cause analysis of a warm-sector excessive heavy rainfall event in Xinxiang on 9 July 2016 [J]. Torrential Rain and Disasters, 36(6): 557−565. doi: 10.3969/j.issn.1004-9045.2017.06.009
    [14] 孟智勇, 唐晓静, 岳健, 等. 2019. 地面和探空资料的EnKF同化对北京7·21极端暴雨模拟的影响 [J]. 北京大学学报(自然科学版), 55(2): 237−245. doi: 10.13209/j.0479-8023.2019.004

    Meng Zhiyong, Tang Xiaojing, Yue Jian, et al. 2019. Impact of EnKF surface and rawinsonde data assimilation on the simulation of the extremely heavy rainfall in Beijing on July 21, 2012 [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 55(2): 237−245. doi: 10.13209/j.0479-8023.2019.004
    [15] 牛淑贞, 张素芬, 席世平, 等. 2001. 河南一次特大暴雨过程的中尺度特征分析 [J]. 气象, 27(11): 31−34. doi: 10.3969/j.issn.1000-0526.2001.11.007

    Niu Shuzhen, Zhang Sufen, Xi Shiping, et al. 2001. Mesoscale analysis of a super rainstorm process on July 5th in 2000 [J]. Meteorological Monthly, 27(11): 31−34. doi: 10.3969/j.issn.1000-0526.2001.11.007
    [16] 覃丹宇. 2010. 用滤波方法进行MαCS云团形态差异的个例分析 [J]. 大气科学, 34(1): 154−162. doi: 10.3878/j.issn.1006-9895.2010.01.14

    Qin Danyu. 2010. A case study of Meso-α-scale convective system shape differences using filtering analysis [J]. Chinese Journal of Atmospheric Sciences, 34(1): 154−162. doi: 10.3878/j.issn.1006-9895.2010.01.14
    [17] 任轶. 2013. 2007年7月29~30日豫西暴雨过程的数值模拟和成因分析 [D]. 南京信息工程大学硕士学位论文. Ren Yi. 2013. Numerical simulation and genesis analysis of the rainstorm on 29–30 July 2007 in the west part of Henan Province [D]. M. S. thesis (in Chinese), Nanjing University of Information Science and Technology.
    [18] 苏爱芳, 张宁, 黄勇. 2016. "8.13”黄淮北部暴雨云团的组织结构和触发机制 [J]. 气象, 42(8): 905−919. doi: 10.7519/j.issn.1000-0526.2016.08.001

    Su Aifang, Zhang Ning, Huang Yong. 2016. Organizational structure and trigger mechanism of rainstorm cloud clusters over North Huanghuai region on 13 August 2010 [J]. Meteorological Monthly, 42(8): 905−919. doi: 10.7519/j.issn.1000-0526.2016.08.001
    [19] 孙建华, 张小玲, 齐琳琳, 等. 2004. 2002年中国暴雨试验期间一次低涡切变上发生发展的中尺度对流系统研究 [J]. 大气科学, 28(5): 675−691. doi: 10.3878/j.issn.1006-9895.2004.05.03

    Sun Jianhua, Zhang Xiaoling, Qi Linlin, et al. 2004. A study of vortex and its mesoscale convective system during China heavy rainfall experiment and study in 2002 [J]. Chinese Journal of Atmospheric Sciences, 28(5): 675−691. doi: 10.3878/j.issn.1006-9895.2004.05.03
    [20] 陶诗言. 1980. 中国之暴雨[M]. 北京: 科学出版社, 147–162

    Tao Shiyan. 1980. Heavy Rainfalls in China (in Chinese) [M]. Beijing: Science Press, 147–162.
    [21] Wang X R, Huang Y. 2018. Generalized dynamic equations related to condensation and freezing processes [J]. J. Geophys. Res.: Atmos., 123(2): 882−889. doi: 10.1002/2017jd027584
    [22] 王宁, 张立凤, 彭军, 等. 2014. 局部地形对北京“7.21”特大暴雨影响的数值研究 [J]. 暴雨灾害, 33(1): 10−18. doi: 10.3969/j.issn.1004-9045.2014.01.002

    Wang Ning, Zhang Lifeng, Peng Jun, et al. 2014. Numerical study of the effects of local terrain on “7.21” extreme torrential rain in Beijing [J]. Torrential Rain and Disasters, 33(1): 10−18. doi: 10.3969/j.issn.1004-9045.2014.01.002
    [23] 许焕斌, 丁正平. 1997. 湿中性垂直运动条件和中-β系统的形成 [J]. 气象学报, 55(5): 602−610. doi: 10.11676/qxxb1997.058

    Xu Huanbin, Ding Zhengping. 1997. The neutral condition of moist vertical motion and the formation of meso-βsystem [J]. Acta Meteorologica Sinica, 55(5): 602−610. doi: 10.11676/qxxb1997.058
    [24] 徐姝, 东高红, 熊明明. 2019. 冷池对引发新乡“7·9”特大暴雨的中尺度对流系统的影响分析 [J]. 气象, 45(10): 1426−1438. doi: 10.7519/j.issn.1000-0526.2019.10.009

    Xu Shu, Dong Gaohong, Xiong Mingming. 2019. Impact of cold pool on mesoscale convective system for extreme rainfall over Xinxiang on 9 July 2016 [J]. Meteorological Monthly, 45(10): 1426−1438. doi: 10.7519/j.issn.1000-0526.2019.10.009
    [25] 杨博雷, 闵锦忠, 王仕奇, 等. 2016. 北京7.21暴雨低涡演变的湿位涡分析 [J]. 气象科学, 36(6): 721−731. doi: 10.3969/2015jms.0057

    Yang Bolei, Min Jinzhong, Wang Shiqi, et al. 2016. Moist potential vorticity analysis of the mesoscale vortex in the heavy rainfall on July 21, 2012 of Beijing [J]. Journal of the Meteorological Sciences, 36(6): 721−731. doi: 10.3969/2015jms.0057
    [26] 张远. 2014. 河南省1961~2010年暴雨日数的时空分布特征 [J]. 气象与环境科学, 37(1): 103−106. doi: 10.3969/j.issn.1673-7148.2014.01.017

    Zhang Yuan. 2014. Spatial-temporal distribution characteristics of rainstorm days from 1961 to 2010 in Henan Province [J]. Meteorological and Environmental Sciences, 37(1): 103−106. doi: 10.3969/j.issn.1673-7148.2014.01.017
    [27] 赵思雄, 张立生, 孙建华. 2007. 2007年淮河流域致洪暴雨及其中尺度系统特征的分析 [J]. 气候与环境研究, 12(6): 713−727. doi: 10.3969/j.issn.1006-9585.2007.06.002

    Zhao Sixiong, Zhang Lisheng, Sun Jianhua. 2007. Study of heavy rainfall and related mesoscale systems causing severe flood in Huaihe River basin during the summer of 2007 [J]. Climatic and Environmental Research, 12(6): 713−727. doi: 10.3969/j.issn.1006-9585.2007.06.002
    [28] 周围, 包云轩, 冉令坤, 等. 2018. 一次飑线过程对流稳定度演变的诊断分析 [J]. 大气科学, 42(2): 339−356. doi: 10.3878/j.issn.1006-9895.1712.17126

    Zhou Wei, Bao Yunxuan, Ran Lingkun, et al. 2018. Diagnostic analysis of convective stability evolution during a squall line process [J]. Chinese Journal of Atmospheric Sciences, 42(2): 339−356. doi: 10.3878/j.issn.1006-9895.1712.17126
    [29] 周括, 冉令坤, 齐彦斌, 等. 2020. 包含冻结过程的广义位温及位涡特征分析 [J]. 大气科学, 44(4): 816−834. doi: 10.3878/j.issn.1006-9895.1908.19154

    Zhou Kuo, Ran Lingkun, Qi Yanbin, et al. 2020. Characteristic Analysis of generalized potential temperature and potential vorticity during freezing [J]. Chinese Journal of Atmospheric Sciences, 44(4): 816−834. doi: 10.3878/j.issn.1006-9895.1908.19154
    [30] 庄潇然, 闵锦忠, 王世璋, 等. 2017. 风暴尺度集合预报中的混合初始扰动方法及其在北京2012年“7.21”暴雨预报中的应用 [J]. 大气科学, 41(1): 30−42. doi: 10.3878/j.issn.1006-9895.1605.15233

    Zhuang Xiaoran, Min Jinzhong, Wang Shizhang, et al. 2017. A blending method for storm-scale ensemble forecast and its application to Beijing extreme precipitation event on July 21, 2012 [J]. Chinese Journal of Atmospheric Sciences, 41(1): 30−42. doi: 10.3878/j.issn.1006-9895.1605.15233
  • 加载中
图(14)
计量
  • 文章访问数:  187
  • HTML全文浏览量:  26
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-24
  • 网络出版日期:  2021-11-08
  • 刊出日期:  2021-11-15

目录

    /

    返回文章
    返回