Numerical Simulation on the Effect of Ice Nuclei on the Electrification Process of Thunderstorms
-
摘要: 利用已有的二维雷暴云起、放电模式模拟了一次雷暴天气,并通过敏感性试验研究了冰核浓度变化对雷暴云动力、微物理及电过程的影响。结果表明:随着大气冰核浓度的增加,雷暴云发展提前,上升气流速度和下沉气流速度均呈现降低的趋势。大气冰核浓度提升有利于异质核化过程增强,冰晶在高温区大量生成,而同质核化过程被抑制,因此冰晶整体含量降低,引起低温区中霰粒含量降低和高温区中霰粒尺度降低。在非感应起电过程中,正极性非感应起电率逐渐减小,负极性非感应起电率逐渐增大。由于液态水含量随大气冰核浓度的增加逐渐降低,高温度冰晶携带电荷的极性由负转变为正的时间有所提前。在感应起电过程中,由于霰粒尺度减小及云滴的快速消耗,感应起电率极值逐渐降低。冰晶优先在高温区生成而带负电,不同大气冰核浓度下的雷暴云空间电荷结构在雷暴云发展初期均呈现负的偶极性电荷结构。在雷暴云旺盛期,随着冰核浓度增加,空间电荷结构由三极性转变为复杂四极性。在雷暴云消散阶段不同个例均呈现偶极性电荷结构,且随着冰核浓度的增加电荷密度值逐渐减小。Abstract: This work is conducted based on an existing two-dimensional convective cloud model to investigate the role of ice nuclei in dynamic, microphysical, electrification, and charge structure in thunderstorm clouds by changing the concentration of ice nuclei. The results show that thunderstorm clouds develop ahead of time as ice nuclei increase and both updraft and downdraft velocities decrease. A high concentration of ice nuclei enhances the heterogeneous nucleation process. In the high-temperature region, a large number of ice crystals form while the homogeneous nucleation process is inhibited. Therefore, the overall content of ice crystals decreases, resulting in a decrease in graupel content in the low-temperature region and a decrease in graupel size in the high-temperature region. Therefore, the positive non-inductive electrification rate decreases while the negative non-inductive electrification rate increases. The time for the polarity of charge carried by high-temperature ice crystals to change from negative to positive is advanced as the liquid water content gradually decreases with increasing ice nuclei concentration. The extreme value of the inductive electrification rate gradually decreases during the process of inductive electrification due to the decrease in graupel particle size and the rapid consumption of cloud droplets. Because the ice crystals are preferentially generated in the high-temperature region and are negatively charged, the space charge structure of thunderstorm clouds with different ice nuclei concentrations presents a negative dipole charge structure at the initial stage of thunderstorm cloud development. With an increase in ice nuclei concentration, the space charge structure changes from three polarities to a complex four-order structure during the thunderstorm’s growing period. In the dissipation stage of a thunderstorm cloud, different cases show dipole charge structures, and the charge density decreases with the increased concentration of ice nuclei.
-
Key words:
- Ice nuclei /
- Charging rate /
- Charge structure /
- Numerical simulation
-
图 1 探空个例的(a)环境温度、湿度层结和(b)垂直风廓线。图a中实(虚)线代表环境(露点)温度;图b中实(虚)线代表水平(垂直)风速
Figure 1. (a) Environment temperature and humidity stratification and (b) vertical wind profile for a sounding example. In Fig. a. the solid (dashed) line represents the environment (dew point) temperature. In Fig. b, the solid (dashed) line represents horizontal (vertical) wind speed
图 4 不同冰核浓度个例(C个例、M个例、P个例)中最大核化率(单位:g kg−1 s−1)随高度的变化:(a)异质核化;(b)同质核化
Figure 4. Variations of the maximum ice nucleation rate (units: g kg−1 s−1) with height in different ice nucleus concentration cases (C case, M case, and P case): (a) Heterogeneous nucleation process; (b) homogeneous nucleation process
图 6 不同冰核浓度个例[C个例(左)、M个例(中)、P个例(右)]中(a–c)云滴、(d–f)雨滴及(g–i)霰粒最大混合比(单位:g kg−1)随时间的分布。橘色实线代表等温线
Figure 6. Distributions of the maximum mixing ratio (units: g kg−1) of (a–c) cloud droplet, (d–f) rain, and (g–i) graupel with time in different ice nucleus concentration cases [C case (left), M case (middle), and P case (right)]. The orange solid line represents the isotherm
图 9 (a、d)C个例、(b、e)M个例、(c、f)P个例的中感应起电率(单位:pC m−3 s−1)极值随时间的变化:(a–c)正感应起电率;(d–f)负感应起电率。黑色实线代表等温线
Figure 9. The time variations of the maximum inductive charging rates (units: pC m−3 s−1) for (a, d) C case, (b, e) M case, and (c, f) P case: (a–c) The positive inductive charging rates; (d–f) the negative inductive charging rates. The black solid line represents the isotherm
图 10 C个例(左)、M个例(中)、P个例(右)中雷暴云发展(a–c)22 min、(d–f)45 min、(g–i)65 min的风场(箭头,单位:m s−1)和空间电荷量(阴影,单位:nC m−3)结构分布。黑色粗线代表雷暴云的轮廓;红色实线代表等温线
Figure 10. Wind (arrows, units: m s−1) and structures of charge (shadings, units: nC m−3) of thunderstorm at (a–c) 22 min, (d–f) 45 min, (g–i) 65 min for C case (left), M case (middle), and P case (right). Thick black lines show the contour of thunderclouds; the red solid line represents the isotherm
表 1 同质核化参数
Table 1. The parameter for the homogeneous freezing process
i ci 0 −3020.684 1 −425.921 2 −25.9779 3 −0.868451 4 −1.66203×10−2 5 −1.71736×10−4 6 −7.46953×10−7 -
[1] Chen Y L, Kreidenweis S M, McInnes L M, et al. 1998. Single particle analyses of ice nucleating aerosols in the upper troposphere and lower stratosphere [J]. Geophys. Res. Lett., 25(9): 1391−1394. doi: 10.1029/97GL03261 [2] Chen Y L, DeMott P J, Kreidenweis S M, et al. 2000. Ice formation by sulfate and sulfuric acid aerosol particles under upper-tropospheric conditions [J]. J. Atmos. Sci., 57(22): 3752−3766. doi: 10.1175/1520-0469(2000)057<3752:IFBSAS>2.0.CO;2 [3] Cziczo D J, Murphy D M, Hudson P K, et al. 2004. Single particle measurements of the chemical composition of cirrus ice residue during CRYSTAL-FACE [J]. J. Atmos. Sci., 109(D4): D04201. doi: 10.1029/2003JD004032 [4] DeMott P J, Sassen K, Poellot M R, et al. 2003. African dust aerosols as atmospheric ice nuclei [J]. Geophys. Res. Lett., 30(14): 1732. doi: 10.1029/2003GL017410 [5] DeMott P J, Prenni A J, Liu X, et al. 2010. Predicting global atmospheric ice nuclei distributions and their impacts on climate [J]. Proc. Natl. Acad. Sci. USA, 107(25): 11217−11222. doi: 10.1073/pnas.0910818107 [6] DeMott P J, Prenni A J, McMeeking G R, et al. 2015. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles [J]. Atmos. Chem. Phys., 15(1): 393−409. doi: 10.5194/acp-15-393-2015 [7] Ekman A M L, Engström A, Wang C. 2007. The effect of aerosol composition and concentration on the development and anvil properties of a continental deep convective cloud [J]. Quart. J. Roy. Meteor. Soc., 133(627): 1439−1452. doi: 10.1002/qj.108 [8] Fan J W, Leung L R, Rosenfeld D, et al. 2017. Effects of cloud condensation nuclei and ice nucleating particles on precipitation processes and supercooled liquid in mixed-phase orographic clouds [J]. Atmos. Chem. Phys., 17(2): 1017−1035. doi: 10.5194/acp-17-1017-2017 [9] Fletcher N H. 1962. Surface structure of water and ice [J]. Philos. Mag., 7(74): 255−269. doi: 10.1080/14786436208211860 [10] Gonçalves F L T, Martins J A, Albrecht R I, et al. 2012. Effect of bacterial ice nuclei on the frequency and intensity of lightning activity inferred by the BRAMS model [J]. Atmos. Chem. Phys., 12(13): 5677−5689. doi: 10.5194/acp-12-5677-2012 [11] Heymsfield A J, Miloshevich L M, Schmitt C, et al. 2005. Homogeneous ice nucleation in subtropical and tropical convection and its influence on cirrus anvil microphysics [J]. J. Atmos. Sci., 62(1): 41−64. doi: 10.1175/JAS-3360.1 [12] 胡志晋, 何观芳. 1987. 积雨云微物理过程的数值模拟——(一)微物理模式 [J]. 气象学报, 45(4): 467−484. doi: 10.11676/qxxb1987.060Hu Z J, He G F. 1987. Numerical simulation of microprocesses in cumulonimbus clouds—(I) Microphysical model [J]. Acta Meteor. Sinica (in Chinese), 45(4): 467−484. doi: 10.11676/qxxb1987.060 [13] Jayaratne E R, Saunders C P R. 1983. Charge on ice crystals in laboratory clouds [J]. J. Geophys. Res. Oceans, 88(C9): 5494−5496. doi: 10.1029/JC088iC09p05494 [14] Jensen E J, Diskin G, Lawson R P, et al. 2013. Ice nucleation and dehydration in the tropical tropopause layer [J]. Proc. Natl. Acad. Sci. USA, 110(6): 2041−2046. doi: 10.1073/pnas.1217104110 [15] Kärcher B. 2004. Cirrus clouds in the tropical tropopause layer: Role of heterogeneous ice nuclei [J]. Geophys. Res. Lett., 31(12): L12101. doi: 10.1029/2004GL019774 [16] Knopf D A, Alpert P A, Zipori A, et al. 2020. Stochastic nucleation processes and substrate abundance explain time-dependent freezing in supercooled droplets [J]. npj Clim. Atmos. Sci., 3(1): 2. doi: 10.1038/s41612-020-0106-4 [17] Koop T, Murray B J. 2016. A physically constrained classical description of the homogeneous nucleation of ice in water [J]. J. Chem. Phys., 145(21): 211915. doi: 10.1063/1.4962355 [18] Koop T, Luo B P, Tsias A, et al. 2000. Water activity as the determinant for homogeneous ice nucleation in aqueous solutions [J]. Nature, 406(6796): 611−614. doi: 10.1038/35020537 [19] Li Z, Xue H W, Yang F. 2013. A modeling study of ice formation affected by aerosols [J]. J. Geophys. Res. Atmos., 118(19): 11213−11227. doi: 10.1002/jgrd.50861 [20] 李泽宇, 孙继明, 牛生杰. 2016. 沙尘冰核对积云起电过程影响的初步数值模拟试验 [J]. 气候与环境研究, 21(1): 107−120. doi: 10.3878/j.issn.1006-9585.2015.15115Li Z Y, Sun J M, Niu S J. 2016. Preliminary modelling for the effects of dust on the cumulus electrification process [J]. Climatic Environ. Res. (in Chinese), 21(1): 107−120. doi: 10.3878/j.issn.1006-9585.2015.15115 [21] Liu X H, Penner J E. 2005. Ice nucleation parameterization for global models [J]. Meteor. Z., 14(4): 499−514. doi: 10.1127/0941-2948/2005/0059 [22] Mansell E R, MacGorman D R, Ziegler C L, et al. 2005. Charge structure and lightning sensitivity in a simulated multicell thunderstorm [J]. J. Geophys. Res. Atmos., 110(D12): D12101. doi: 10.1029/2004JD005287 [23] Morrison H, Milbrandt J A, Bryan G H, et al. 2015. Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part II: Case study comparisons with observations and other schemes [J]. J. Atmos. Sci., 72(1): 312−339. doi: 10.1175/JAS-D-14-0066.1 [24] Pereyra R G, Avila E E, Castellano N E, et al. 2000. A laboratory study of graupel charging [J]. J. Geophys. Res., 105(D16): 20803−20812. doi: 10.1029/2000JD900244 [25] Phillips V T J, Andronache C, Sherwood S C, et al. 2005. Anvil glaciation in a deep cumulus updraught over Florida simulated with the Explicit Microphysics Model. I: Impact of various nucleation processes [J]. Quart. J. Roy. Meteor. Soc., 131(609): 2019−2046. doi: 10.1256/qj.04.85 [26] Phillips V T J, Donner L J, Garner S T. 2007. Nucleation processes in deep convection simulated by a cloud-system-resolving model with double-moment bulk microphysics [J]. J. Atmos. Sci., 64(3): 738−761. doi: 10.1175/JAS3869.1 [27] Phillips V T J, Demott P J, Andronache C. 2008. An empirical parameterization of heterogeneous ice nucleation for multiple chemical species of aerosol [J]. J. Atmos. Sci., 65(9): 2757−2783. doi: 10.1175/2007JAS2546.1 [28] Pruppacher H R, Klett J D. 1997. Microphysics of Clouds and Precipitation [M]. 2nd ed. Dordrecht: Kluwer Academic, 954pp. [29] Saunders C P R, Keith W D, Mitzeva R P. 1991. The effect of liquid water on thunderstorm charging [J]. J. Geophys. Res. Atmos., 96(D6): 11007. doi: 10.1029/91JD00970 [30] Shi X, Liu X. 2016. Effect of cloud‐scale vertical velocity on the contribution of homogeneous nucleation to cirrus formation and radiative forcing [J]. Geophys. Res. Lett., 43(12): 6588−6595. doi: 10.1002/2016GL069531 [31] 师正, 谭涌波, 唐慧强, 等. 2015. 气溶胶对雷暴云起电以及闪电发生率影响的数值模拟 [J]. 大气科学, 39(5): 941−952. doi: 10.3878/j.issn.1006-9895.1412.14230Shi Z, Tan Y B, Tang H Q, et al. 2015. A numerical study of aerosol effects on the electrification and flash rate of thunderstorms [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(5): 941−952. doi: 10.3878/j.issn.1006-9895.1412.14230 [32] Stith J L, Ramanathan V, Cooper W A, et al. 2009. An overview of aircraft observations from the Pacific Dust Experiment campaign [J]. J. Geophys. Res. Atmos., 114(D5): D05207. doi: 10.1029/2008JD010924 [33] Szyrmer W, Zawadzki I. 1997. Biogenic and anthropogenic sources of ice-forming nuclei: A review [J]. Bull. Amer. Meteor. Soc., 78(2): 209−228. doi: 10.1175/1520-0477(1997)078<0209:BAASOI>2.0.CO;2 [34] Takahashi T. 1978. Riming electrification as a charge generation mechanism in thunderstorms [J]. J. Atmos. Sci., 35(8): 1536−1548. doi: 10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2 [35] 谭涌波. 2006. 闪电放电与雷暴云电荷、电位分布相互关系的数值模似[D]. 中国科技大学博士学位论文, 173ppTan Y B. 2006. Numerical simulation of the relationship of the lightning discharge with the space charge and potential distribution in thundercloud [D]. Ph. D. dissertation (in Chinese), University of Science and Technology of China, 173pp. [36] 谭涌波, 陶善昌, 祝宝友, 等. 2006. 雷暴云内闪电双层、分枝结构的数值模拟 [J]. 中国科学 D辑: 地球科学, 36(5): 486–496. Tan Y B, Tao S C, Zhu B Y, et al. 2006. Numerical simulations of the bi-level and branched structure of intracloud lightning flashes [J]. Sci. China Ser. D, 49(6): 661–672. doi: 10.1007/s11430-006-0661-5 [37] Tan Y B, Tao S C, Liang Z W, et al. 2014. Numerical study on relationship between lightning types and distribution of space charge and electric potential [J]. J. Geophys. Res. Atmos., 119(2): 1003−1014. doi: 10.1002/2013JD019983 [38] 谭涌波, 杨忆, 师正, 等. 2015. 冰晶核化对雷暴云微物理过程和起电影响的数值模拟研究 [J]. 大气科学, 39(2): 289−302. doi: 10.3878/j.issn.1006-9895.1405.13330Tan Y B, Yang Y, Shi Z, et al. 2015. Numerical simulation research on the effect of ice nucleation on thundercloud microphysical process and electrification [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(2): 289−302. doi: 10.3878/j.issn.1006-9895.1405.13330 [39] Van Den Heever S C, Carrió G G, Cotton W R, et al. 2006. Impacts of nucleating aerosol on Florida storms. Part I: Mesoscale simulations [J]. J. Atmos. Sci., 63(7): 1752−1775. doi: 10.1175/JAS3713.1 [40] 王梦旖. 2019. 大气冰核浓度对雷暴云电过程影响的数值模拟研究 [D]. 南京信息工程大学硕士学位论文, 20pp. Wang M Y. 2019. Numerical simulation of the influence of atmospheric ice nuclei concentration on electrification [D]. Master dissertation (in Chinese), Nanjing university of information science and technology. 20pp [41] 杨磊, 银燕, 杨绍忠, 等. 2013. 南京地区大气冰核浓度的测量及分析 [J]. 大气科学, 37(3): 579−594. doi: 10.3878/j.issn.1006-9895.2012.11242Yang L, Yin Y, Yang S Z, et al. 2013. Measurement and analysis of atmospheric ice nuclei in Nanjing [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(3): 579−594. doi: 10.3878/j.issn.1006-9895.2012.11242 [42] Young K C. 1974. The role of contact nucleation in ice phase initiation in clouds [J]. J. Atmos. Sci., 31(3): 768−776. doi: 10.1175/1520-0469(1974)031<0768:TROCNI>2.0.CO;2 [43] Zeng X P, Tao W K, Zhang M H, et al. 2009. An indirect effect of ice nuclei on atmospheric radiation [J]. J. Atmos. Sci., 66(1): 41−61. doi: 10.1175/2008JAS2778.1 [44] Zhang K, Liu X, Wang M, et al. 2013. Evaluating and constraining ice cloud parameterizations in CAM5 using aircraft measurements from the SPARTICUS campaign [J]. Atmos. Chem. Phys., 13(9): 4963−4982. doi: 10.5194/acp-13-4963-2013 [45] Ziegler C L, MacGorman D R, Dye J E, et al. 1991. A model evaluation of noninductive graupel–ice charging in the early electrification of a mountain thunderstorm [J]. J. Geophys. Res., 96(D7): 12833−12855. doi: 10.1029/91JD01246 -