Bias Characteristics and Bias Correction of GIIRS Sounder onboard FY-4A Satellite for Data Assimilation
-
摘要: 干涉式大气垂直探测仪(Geostationary Interferometric Infrared Sounder,简称GIIRS)是国际上第一部对地静止卫星平台上的高光谱红外大气垂直探测仪,能为对流尺度区域模式预报提供所需的高时空和高光谱分辨率的大气状态信息。本文利用高分辨率区域模式WRF及其同化系统WRFDA对GIIRS观测的偏差(观测亮温减去模拟亮温,记为O−B)分布特征进行了全景分析,结果表明:长波通道O−B偏差和标准差普遍小于中波通道,且都存在一段受污染的通道。O−B偏差的日变化和偏差与卫星天顶角的关系相对较弱,而所有筛选通道的偏差都与亮温值及卫星的扫描阵列位置有关,偏差的水平分布主要表现出“阵列偏差”的特征。2020年重新定标后,GIIRS观测数据质量比2019年有明显提高。在此基础上进一步进行了偏差订正试验,试验发现选取扫描阵列作为偏差订正的主要因子,都能有效地改进2019年和2020年筛选出的GIIRS通道的偏差,订正后O−B和O−A的系统性误差(偏差)都变小。该研究结果可为全球/区域模式中同化GIIRS长波及中波通道的辐射资料提供参考。
-
关键词:
- 风云四号A星(FY-4A) /
- 干涉式大气垂直探测仪(GIIRS) /
- 偏差订正 /
- 卫星资料同化
Abstract: The geostationary interferometric infrared sounder (GIIRS) is the first hyperspectral infrared (IR) sounder onboard the geostationary meteorological satellite—FengYun-4A satellite. The GIIRS can provide atmospheric state information with a high temporal, spatial, and spectral resolution that could enhance the prediction of convective-scale regional models. This paper presents a panoramic analysis of the bias characteristics of the GIIRS with the high-resolution regional model WRF and its assimilation system WRFDA. Results reveal that the bias (observations minus simulations, or O−B) and standard deviation of long-wave infrared (LWIR) channels are generally smaller than those of middle-wave infrared (MWIR) channels, and both have some contaminated channels. The diurnal variation of biases is relatively unremarkable, and the O−B bias has a weak relationship with the satellite zenith angle. However, the biases in all selected channels are related to the value of brightness temperature observations and the scanning position of the satellite. In addition, the spatial distribution characteristics of the bias are relevant to the bias characteristics impacted by the scanning position. After re-calibration of the GIIRS in 2020, the quality of the GIIRS observation data is significantly improved compared with that in 2019. Based on this, further bias correction tests are carried out using correction factors relevant to the scanning position. Results reveal that both the systematic errors (bias) of O−B and O−A have been significantly reduced, implying the effectiveness of the bias correction scheme. This study provides implications for GIIRS radiance assimilation in global/regional models. -
图 1 2019年6月1日00:00(协调世界时,下同)(a)多通道扫描成像辐射计(AGRI)云掩膜产品(CLM) 和(b)干涉式大气红外高光谱探测仪(GIIRS)云检测的晴空视场分布。图红色和蓝色的圆点(即CLM=100% clear)代表该视场(Fields of View,简称FOV)云检测结果为完全晴空
Figure 1. Clear sky spatial distribution of (a) AGRI (Advanced Geosynchronous Radiation Imager) cloud mask products and (b) cloud detection results of the GIIRS (Geostationary Interferometric Infrared Sounder) at 0000 UTC on 1 June 2019. Red and blue dots in (a) and (b) represent the fields of view (FOV) with cloud mask products of 100% clear
图 2 (a)2019年6月3日00:00与(b)2020年8月3日00:00使用异常数据标示码(pclk)标识剔除异常值后通道6的观测亮温分布(单位:K)。缺少的FOV代表pclk标识剔除的异常FOV
Figure 2. Spatial distribution of the observed brightness temperature (units: K) of channel 6 after excluding the outliers using pclk marking at (a) 0000 UTC on 3 June 2019 and (b) 0000 UTC on 3 August 2020. The missing FOV represents the excluded outliers by pclk
图 3 (a)2019年6月和(b)2020年8月GIIRS通道O−B(观测亮温减去模拟亮温)的偏差(红色)和标准差(蓝色)的一个月统计结果,单位:K。粉色阴影为CO2吸收波段;灰色阴影为窗区和O3吸收波段;绿色阴影为H2O吸收波段;黄色阴影为CO2和N2O吸收波段,红色辅助线代表偏差为0 K
Figure 3. Statistical results of the bias (units: K, red lines) and standard deviation (STD, units: K, blue lines) between the observed and simulated brightness temperature (O−B) in all channels in (a) June 2019 and (b) August 2020. The pink shade denotes the CO2 band; the gray shade denotes the window and the O3 band; the green shade denotes the H2O band; the yellow shade denotes the CO2 and N2O bands; the red auxiliary line denotes the O−B bias at 0 K
图 4 2020年8月剔除观测异常后部分(a)长波通道及(b)中波通道O−B的偏差(红色)和标准差(蓝色)的一个月统计结果,单位: K。红色辅助线代表偏差为0 K
Figure 4. Statistical results of the bias (units: K, red lines) and standard deviation (STD, units: K, blue lines) between the observed and simulated brightness temperature (O−B) in August 2020 (a) in part of LWIR (long-wave infrared) channels with the elimination of the anomaly observation, (b) in part of MWIR (middle-wave infrared) channels with the elimination of the anomaly observation, units: K. The red auxiliary line denotes the O−B bias at 0 K
图 5 (a)GIIRS通道的模拟亮温分布(单位:K)及挑选出的(b)长波通道的Jacobian(dTb dT−1, 单位:K K−1)和(c)中波通道的Jacobian(dTb dlnq−1, 单位:K [ln(g kg−1)] −1)的垂直分布。(a)中黑色实线代表所有通道的模拟亮温分布,蓝色圆点代表挑选出的通道的模拟亮温分布,阴影部分含义与图3一致;(b)中加粗了通道6和121的Jacobian分布;(c)中加粗了通道942和1286的Jacobian分布
Figure 5. (a) Simulated bright temperature distribution of the GIIRS, units: K, and the vertical distribution of the Jacobian in selected (b) LWIR (dTb dT−1, units: K K−1) and (c) MWIR (dTb dlnq−1, units: K [ln(g kg−1)] −1 channels. The black lines represent the simulated brightness temperature in all channels, blue dots represent the simulated brightness temperature in selected channels, the colorful shade in Fig 5a have the same meaning as in Fig. 3; the Jacobian of channels 6 and 121 is bold in Fig 5b; the Jacobian of channels 942 and 1286 is bold in Fig 5c
图 6 2020年8月各通道O−B偏差(单位:K,红色)及标准差(单位:K,蓝色)的一个月时间序列:(a)通道6;(b)通道121;(c)通道942;(d)通道1286
Figure 6. Time series of the bias (units: K, red lines) and standard deviation (STD, units: K, blue lines) between the observed and simulated brightness temperature (O−B) in August 2020 in channels (a) 6, (b) 121, (c) 942, and (d) 1286
图 7 2020年8月00:00、06:00、12:00和18:00各通道O−B的偏差(单位:K,红色)及标准差(单位:K,蓝色)的一个月统计结果:(a)通道6;(b)通道121;(c)通道942;(d)通道1286
Figure 7. Statistical results of the bias (units: K, red bars) and standard deviation (STD, units: K, blue bars) between the observed and simulated brightness temperature (O−B) of 0000 UTC, 0600 UTC, 1200 UTC, and 1800 UTC in August 2020 in channels (a) 6, (b) 121, (c) 942, and (d) 1286
图 9 2020年8月通道(a、b)6、(c、d)121、(e、f)942和(g、h)1286 O−B偏差(左列;单位:K)和标准差(右列;单位:K)与阵列的关系(Col 1~4代表从西到东的4列扫描阵列)
Figure 9. Dependence of the bias (units: K; left column) and standard deviation (STD, units: K; right column) between the observed and simulated brightness temperature (O−B) in August 2020 in channels (a, b) 6, (c, d) 121, (e, f) 942, and (g, h) 1286. Cols 1–4 represent the 4 scanning positions from west to east
图 10 2020年8月通道(a、b)6、(c、d)121、(e、f)942和(g、h)1286 O−B偏差(左列,单位:K)和标准差(右列,单位:K)的空间分布
Figure 10. Spatial distribution characteristics of the bias (left column; units: K) and standard deviation (right column; units: K) between the observed and simulated brightness temperature (O−B) in August 2020 in channels (a, b) 6, (c, d) 121, (e, f) 942, and (g, h) 1286
图 11 2020年8月通道(a)6、(b)121、(c)942和(d)1286 O−B偏差(单位:K)和观测亮温值(单位:K)的关系(Cor代表相关系数,阴影代表观测数量)
Figure 11. Dependence of the bias (units: K) between the observed and simulated brightness temperature (O−B) in August 2020 in channels (a) 6, (b) 121, (c) 942, and (d) 1286 on the value of observed brightness temperature (OBS, units: K). Cor represents the correlation coefficient; observation counts are shaded
图 12 2020年8月通道(a)6、(b)121、(c)942和(d)1286 O−B偏差(单位:K)和卫星天顶角的关系(Cor代表相关系数,阴影代表观测数量)
Figure 12. Dependence of the bias (units: K) between the observed and simulated brightness temperature (O−B) in August 2020 in channels (a) 6, (b) 121, (c) 942, and (d) 1286 on the satellite zenith angle (units: °). Cor represents the correlation coefficient; observation counts are shaded
图 13 2019年6月(左列)和2020年8月(右列)挑选出的通道观测分别与(a、b)背景场、(c、d)分析场的模拟偏差,单位:K。红色和蓝色分别代表进行VarBC偏差订正和未进行VarBC偏差订正的结果
Figure 13. Bias in June 2019 (a) between the observed and simulated background brightness temperature (O−B, units: K) and (c) between the observed and analysis brightness temperature (O−A, units: K). Bias in August 2020 (b) between the observed and simulated background brightness temperature (O−B, units: K) and (d) between the observed and analysis brightness temperature (O−A, units: K) in all selected channels (Red lines represent the results with VarBC; blue lines represent the results without VarBC)
表 1 选定的292条GIIRS通道
Table 1. 292 selected GIIRS channels
GIIRS通道 CO2吸收波段 窗区和O3吸收波段 H2O吸收波段 CO2和 N2O吸收波段 2 4 151 154 159 163 166 935 937 939 1304 1310 6 8 168 170 172 174 176 942 951 953 1315 1317 10 12 178 180 182 184 186 955 957 959 1321 1325 14 16 188 190 192 194 196 961 965 989 1346 1348 18 20 198 200 202 204 206 1008 1010 1014 1353 1356 22 24 208 210 212 214 216 1016 1020 1023 1369 1382 26 28 218 220 222 224 226 1025 1028 1045 1389 1393 32 35 228 230 232 234 236 1047 1049 1053 1400 1402 67 69 238 240 242 244 246 1056 1058 1066 1406 1409 71 73 248 250 252 254 256 1072 1075 1081 1411 1415 75 77 258 260 262 264 266 1084 1086 1096 1420 1423 79 81 268 270 272 275 277 1103 1105 1107 1433 1436 83 85 279 281 287 294 296 1125 1129 1142 1444 1447 87 89 298 300 302 304 306 1144 1162 1165 1451 1457 91 93 308 310 312 314 316 1169 1177 1180 1467 1469 95 97 318 320 322 324 326 1182 1187 1189 1470 1472 99 101 328 331 333 335 337 1200 1202 1211 1474 1483 103 105 339 341 343 345 347 1213 1232 1236 1485 1494 107 109 349 351 353 357 361 1240 1247 1250 1508 1510 111 113 364 367 369 371 373 1262 1264 1266 1543 1549 115 117 375 377 379 381 383 1276 1278 1282 119 121 385 387 389 398 403 1286 1288 1294 123 125 406 410 413 416 419 127 129 421 435 439 474 476 131 133 478 480 482 484 486 135 137 488 490 492 550 587 139 141 143 145 148 -
[1] Auligné T, McNally A P, Dee D P. 2007. Adaptive bias correction for satellite data in a numerical weather prediction system [J]. Quart. J. Roy. Meteor. Soc., 133(624): 631−642. doi: 10.1002/qj.56 [2] Borbas E E and Ruston B C. 2010. The RTTOV UWiremis IR land surface emissivity module [EB/OL]. http://nwpsaf.eu/vs_reports/nwpsaf-mo-vs-042.pdf. [3] Cintineo R M, Otkin J A, Jones T A, et al. 2016. Assimilation of synthetic GOES-R ABI infrared brightness temperatures and WSR-88D radar observations in a high-resolution OSSE [J]. Mon. Wea. Rev., 144(9): 3159−3180. doi: 10.1175/MWR-D-15-0366.1 [4] Collard A D. 2007. Selection of IASI channels for use in numerical weather prediction [J]. Quart. J. Roy. Meteor. Soc., 133(629): 1977−1991. doi: 10.1002/qj.178 [5] Collard A D, McNally A P. 2009. The assimilation of infrared atmospheric sounding interferometer radiances at ECMWF [J]. Quart. J. Roy. Meteor. Soc., 135(641): 1044−1058. doi: 10.1002/qj.410 [6] Dee D P. 2004. Variational bias correction of radiance data in the ECMWF system [EB/OL]. https://www.ecmwf.int/sites/default/files/elibrary/2004/8930-variational-bias-correction-radiance-data-ecmwf-system.pdf [7] Dee D P. 2005. Bias and data assimilation [J]. Quart. J. Roy. Meteor. Soc., 131(613): 3323−3343. doi: 10.1256/qj.05.137 [8] 狄迪. 2019. 风云四号高光谱红外探测仪资料同化相关问题研究 [D]. 中国气象科学研究院博士学位论文. Di Di. 2019. Data assimilation research for geosynchronous interferometric infrared sounder onboard FengYun-4 satellite [D]. Ph. D. dissertation (in Chinese), Chinese Academy of Meteorological Sciences. [9] Di D, Li J, Han W, et al. 2018. Enhancing the fast radiative transfer model for FengYun-4 GIIRS by using local training profiles [J]. J. Geophys. Res., 123(22): 12583−12596. doi: 10.1029/2018JD029089 [10] Di D, Li J, Han W, et al. 2021. Geostationary hyperspectral infrared sounder channel selection for capturing fast-changing atmospheric information [J]. IEEE Trans. Geosci. Remote Sens., 60: 4102210. doi: 10.1109/TGRS.2021.3078829 [11] 董超华, 李俊, 张鹏. 2013. 卫星高光谱红外大气遥感原理和应用[M]. 北京: 科学出版社, 5–9Dong Chaohua, Li Jun, Zhang Peng. 2013. Atmospheric Remote Sensing Principle and Application of Hyperspectral Infrared Satellite Sounder (in Chinese) [M]. Beijing: Science Press, 5–9. [12] 董佩明, 薛纪善, 黄兵, 等. 2008. 数值天气预报中卫星资料同化应用现状和发展 [J]. 气象科技, 36(1): 1–7. Dong Peiming, Xue Jishan, Huang Bing, et al. 2008. Application status and development of satellite data assimilation in numerical weather forecast [J]. Meteorological Science and Technology (in Chinese), 36(1): 1−7. doi: 10.19517/j.1671-6345.2008.01.001 [13] ECMWF. 2014. The WMO Vision for global observing systems in 2025: To what extent will it be met by space agencies’ plans [EB/OL]. https://www.ecmwf.int/sites/default/files/elibrary/2015/9328-wmo-vision-global-observing-systems-2025-what-extent-will-it-be-met-space-agencies-plans.pdf. [14] ECMWF. 2020. Fact sheet: ECMWF’ s use of satellite observations [EB/OL]. https://www.ecmwf.int/en/about/media-centre/focus/2020/fact-sheet-ecmwfs-use-satellite-observations. [15] Eyre J R. 1992. A bias correction scheme for simulated TOVS brightness temperatures [M]. Reading: ECMWF, 81–109. https://www.ecmwf.int/en/elibrary/9330-bias-correction-scheme-simulated-tovs-brightness-temperatures. [16] Eyre J R, Kelly G A, McNally A P, et al. 1993. Assimilation of TOVS radiance information through one-dimensional variational analysis [J]. Quart. J. Roy. Meteor. Soc., 119(514): 1427−1463. doi: 10.1002/qj.49711951411 [17] Fan S H, Han W, Gao Z Q, et al. 2019. Denoising algorithm for the FY-4A GIIRS based on principal component analysis [J]. Remote Sens., 11(22): 2710. doi: 10.3390/rs11222710 [18] 耿晓雯, 闵锦忠, 杨春, 等. 2020. FY-4A AGRI辐射率资料偏差特征分析及订正试验 [J]. 大气科学, 44(4): 679–694. Geng Xiaowen, Min Jinzhong, Yang Chun, et al. 2020. Analysis of FY-4A AGRI radiance data bias characteristics and a correction experiment [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(4): 679−694. doi: 10.3878/j.issn.1006-9895.1907.18254 [19] Goldberg M D, Kilcoyne H, Cikanek H, et al. 2013. Joint polar satellite system: The United States next generation civilian polar–orbiting environmental satellite system [J]. J. Geophys. Res., 118(24): 13463−13475. doi: 10.1002/2013JD020389 [20] Gong X Y, Li Z L, Li J, et al. 2018. Intercomparison between VIIRS and CrIS by taking into account the CrIS subpixel cloudiness and viewing geometry [J]. J. Geophys. Res., 123(10): 5335−5345. doi: 10.1029/2017JD027849 [21] Gong X Y, Li Z L, Li J, et al. 2019. Monitoring the VIIRS sensor data records reflective solar band calibrations using DCC with collocated CrIS measurements [J]. J. Geophys. Res., 124(15): 8688−8706. doi: 10.1029/2018JD030019 [22] Harris B A, Kelly G. 2001. A satellite radiance–bias correction scheme for data assimilation [J]. Quart. J. Roy. Meteor. Soc., 127(574): 1453−1468. doi: 10.1002/qj.49712757418 [23] Honda T, Miyoshi T, Lien G Y, et al. 2018. Assimilating All-Sky Himawari-8 Satellite Infrared Radiances: A Case of Typhoon Soudelor (2015) [J]. Mon. Wea. Rev., 146(1): 213−229. doi: 10.1175/MWR-D-16-0357.1 [24] 靳双龙, 王根. 2017. 正则化变分同化AIRS红外高光谱水汽资料研究 [J]. 红外, 38(11): 11−15. doi: 10.3969/j.issn.1672-8785.2017.11.003Jin Shuanglong, Wang Gen. 2017. Research on regularization variational assimilation of water vapour data from atmospheric infrared sounder [J]. Infrared (in Chinese), 38(11): 11−15. doi: 10.3969/j.issn.1672-8785.2017.11.003 [25] Jones T A, Wang X G, Skinner P, et al. 2018. Assimilation of GOES-13 imager clear-sky water vapor (6.5 μm) radiances into a Warn-on-Forecast system [J]. Mon. Wea. Rev., 146(4): 1077−1107. doi: 10.1175/MWR-D-17-0280.1 [26] Jung J A, Le Marshall J F, Riishojgaard L P, et al. 2009. The development of hyperspectral infrared water vapor radiance assimilation techniques in the NCEP global forecast system [EB/OL].https://www.ecmwf.int/sites/default/files/elibrary/2009/10310-development-hyperspectral-infrared-water-vapor-radiance-assimilation-techniques-ncep-global.pdf [27] Karbou F, Aires F, Prigent C, et al. 2005. Potential of advanced microwave sounding Unit-A (AMSU-A) and AMSU-B measurements for atmospheric temperature and humidity profiling over land [J]. J. Geophys. Res., 110(D7): D07109. doi: 10.1029/2004JD005318 [28] Le Marshall J, Jung J, Derber J, et al. 2006. Improving global analysis and forecasting with AIRS [J]. Bull. Amer. Meteor. Soc., 87(7): 891−895. doi: 10.1175/BAMS-87-7-891 [29] Li J, Wang P, Han H, et al. 2016. On the assimilation of satellite sounder data in cloudy skies in numerical weather prediction models [J]. J. Meteor. Res., 30(2): 169−182. doi: 10.1007/s13351-016-5114-2 [30] Li X, Zou X L, Zeng M J. 2019. An alternative bias correction scheme for CrIS data assimilation in a regional model [J]. Mon. Wea. Rev., 147(3): 809−839. doi: 10.1175/MWR-D-18-0044.1 [31] 刘乐, 李耀东. 2016. RTTOV快速辐射传输模式应用研究进展 [J]. 安徽农业科学, 44(3): 230−232. doi: 10.13989/j.cnki.0517-6611.2016.03.082Liu Le, Li Yaodong. 2016. The application and research advances of RTTOV fast radiative transfer mode [J]. Journal of Anhui Agricultural Science (in Chinese), 44(3): 230−232. doi: 10.13989/j.cnki.0517-6611.2016.03.082 [32] Liu Z Q and Barker D. 2006. Radiance assimilation in WRF-Var: Implementation and initial results [EB/OL]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.575.5684&rep=rep1&type=pdf [2021-02-20]. [33] Liu Z Q, Schwartz C S, Snyder C, et al. 2012. Impact of assimilating AMSU-A radiances on forecasts of 2008 atlantic tropical cyclones initialized with a limited-area ensemble kalman filter [J]. Mon. Wea. Rev., 140(12): 4017−4034. doi: 10.1175/MWR-D-12-00083.1 [34] 陆风, 张晓虎, 陈博洋, 等. 2017. 风云四号气象卫星成像特性及其应用前景 [J]. 海洋气象学报, 37(2): 1−12. doi: 10.19513/j.cnki.issn2096-3599.2017.02.001Lu Feng, Zhang Xiaohu, Chen Boyang, et al. 2017. FY-4 geostationary meteorological satellite imaging characteristics and its application prospects [J]. Journal of Marine Meteorology (in Chinese), 37(2): 1−12. doi: 10.19513/j.cnki.issn2096-3599.2017.02.001 [35] McNally A P, Watts P D, Smith J A, et al. 2006. The assimilation of AIRS radiance data at ECMWF [J]. Quart. J. Roy. Meteor. Soc., 132(616): 935−957. doi: 10.1256/qj.04.171 [36] Menzel W P, Schmit T J, Zhang P, et al. 2018. Satellite-based atmospheric infrared sounder development and applications [J]. Bull. Amer. Meteor. Soc., 99(3): 583−603. doi: 10.1175/BAMS-D-16-0293.1 [37] Min M, Wu C Q, Li C, et al. 2017. Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series [J]. J. Meteor. Res., 31(4): 708−719. doi: 10.1007/s13351-017-6161-z [38] Newman K M, Schwartz C S, Liu Z Q, et al. 2015. Evaluating forecast impact of assimilating microwave humidity sounder (MHS) radiances with a regional ensemble kalman filter data assimilation system [J]. Wea. Forecasting, 30(4): 964−983. doi: 10.1175/WAF-D-14-00091.1 [39] Saunders R W, Blackmore T A, Candy B, et al. 2013. Monitoring satellite radiance biases using NWP models [J]. IEEE Trans. Geosci. Remote Sens., 51(3): 1124−1138. doi: 10.1109/TGRS.2012.2229283 [40] Schmit T J, Li J, Ackerman S A, et al. 2009. High-spectral- and high-temporal-resolution infrared measurements from geostationary orbit [J]. J. Atmos. Oceanic Technol., 26(11): 2273−2292. doi: 10.1175/2009JTECHA1248.1 [41] Shen F F, Shu A Q, Li H, et al. 2021. Assimilation of Himawari-8 imager radiance data with the WRF-3DVAR system for the prediction of Typhoon Soudelor [J]. Nat. Hazards Earth Syst. Sci., 21(5): 1569−1582. doi: 10.5194/nhess-21-1569-2021 [42] Sherlock V J. 1999. ISEM-6: Infrared surface emissivity model for RTTOV-6 [R]. Forecasting Research Technical Report No. 299. [43] Smith W L, Revercomb H, Bingham G, et al. 2009. Technical Note: Evolution, current capabilities, and future advance in satellite nadir viewing ultra-spectral IR sounding of the lower atmosphere [J]. Atmos. Chem. Phys., 9(15): 5563−5574. doi: 10.5194/acp-9-5563-2009 [44] Szyndel M D E, Kelly G, Thépaut J N. 2005. Evaluation of potential benefit of assimilation of SEVIRI water vapour radiance data from Meteosat-8 into global numerical weather prediction analyses [J]. Atmos. Sci. Lett., 6(2): 105−111. doi: 10.1002/asl.98 [45] Wang Y B, Liu Z Q, Yang S, et al. 2018. Added value of assimilating Himawari-8 AHI water vapor radiances on analyses and forecasts for “7.19” severe storm over North China [J]. J. Geophys. Res., 123(7): 3374−3394. doi: 10.1002/2017JD027697 [46] Xu D M, Min J Z, Shen F F, et al. 2016. Assimilation of MWHS radiance data from the FY-3B satellite with the WRF Hybrid-3DVAR system for the forecasting of binary typhoons [J]. Journal of Advances in Modeling Earth Systems, 8(2): 1014−1028. doi: 10.1002/2016MS000674 [47] 薛纪善. 2009. 气象卫星资料同化的科学问题与前景 [J]. 气象学报, 67(6): 903−911. doi: 10.3321/j.issn:0577-6619.2009.06.001Xue Jishan. 2009. Scientific issues and perspective of assimilation of meteorological satellite data [J]. Acta Meteorologica Sinica (in Chinese), 67(6): 903−911. doi: 10.3321/j.issn:0577-6619.2009.06.001 [48] Yang J, Zhang Z Q, Wei C Y, et al. 2017. Introducing the new generation of Chinese geostationary weather satellites, FengYun-4 [J]. Bull. Amer. Meteor. Soc., 98(8): 1637−1658. doi: 10.1175/BAMS-D-16-0065.1 [49] Yin R Y, Han W, Gao Z Q, et al. 2020. The evaluation of FY4A's Geostationary Interferometric Infrared Sounder (GIIRS) long-wave temperature sounding channels using the GRAPES global 4D-Var [J]. Quart. J. Roy. Meteor. Soc., 146(728): 1459−1476. doi: 10.1002/qj.3746 [50] 郑祚芳, 沈桐立, 张秀丽. 2001. 气象卫星探测资料在数值天气预报中的应用 [J]. 气象, 27(9): 3−8. doi: 10.3969/j.issn.1000-0526.2001.09.001Zheng Zuofang, Shen Tongli, Zhang Xiuli. 2001. Application of satellite data to numerical model [J]. Meteorological Monthly (in Chinese), 27(9): 3−8. doi: 10.3969/j.issn.1000-0526.2001.09.001 [51] Zou X, Zhuge X, Weng F. 2016. Characterization of bias of advanced himawari imager infrared observations from NWP background simulations using CRTM and RTTOV [J]. J. Atmos. Oceanic Technol., 33(12): 2553−2567. doi: 10.1175/JTECH-D-16-0105.1 -