高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南极海冰涛动对北半球夏季大气环流的影响

王爽 吴其冈 刘师佐 梁涵洲 户元涛 康彩燕 包晓军 高艳

王爽, 吴其冈, 刘师佐, 等. 2022. 南极海冰涛动对北半球夏季大气环流的影响[J]. 大气科学, 46(6): 1349−1365 doi: 10.3878/j.issn.1006-9895.2111.21051
引用本文: 王爽, 吴其冈, 刘师佐, 等. 2022. 南极海冰涛动对北半球夏季大气环流的影响[J]. 大气科学, 46(6): 1349−1365 doi: 10.3878/j.issn.1006-9895.2111.21051
WANG Shuang, WU Qigang, LIU Shizuo, et al. 2022. Impacts of Antarctic Sea Ice Oscillation on Summer Atmospheric Circulation in the Northern Hemisphere [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(6): 1349−1365 doi: 10.3878/j.issn.1006-9895.2111.21051
Citation: WANG Shuang, WU Qigang, LIU Shizuo, et al. 2022. Impacts of Antarctic Sea Ice Oscillation on Summer Atmospheric Circulation in the Northern Hemisphere [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(6): 1349−1365 doi: 10.3878/j.issn.1006-9895.2111.21051

南极海冰涛动对北半球夏季大气环流的影响

doi: 10.3878/j.issn.1006-9895.2111.21051
基金项目: 国家自然科学基金项目91837206,广东省引进创新创业团队项目2016ZT06G579
详细信息
    作者简介:

    王爽,男,1996年出生,硕士研究生,主要从事气候变化及数值模拟研究。E-mail: your_wangshuang@qq.com

    通讯作者:

    吴其冈,E-mail: qigangwu@fudan.edu.cn

  • 中图分类号: P461

Impacts of Antarctic Sea Ice Oscillation on Summer Atmospheric Circulation in the Northern Hemisphere

Funds: National Natural Science Foundation of China (Grant 91837206), Introduction of Innovation and Entrepreneurship Team Project in Guangdong Province (Grant 2016ZT06G579)
  • 摘要: 南极海冰首要模态呈现偶极子型异常,正负异常中心分别位于别林斯高晋海/阿蒙森海和威德尔海。过去研究表明冬春季节南极海冰涛动异常对后期南极涛动(Antarctic Oscillation,AAO)型大气环流有显著影响,而AAO可以通过经向遥相关等机制影响北半球大气环流和东亚气候。本文中我们利用观测分析发现南极海冰涛动从5~7月(May–July,MJJ)到8~10月(August–October, ASO)有很好的持续性,并进一步分析其对北半球夏季大气环流的可能影响及其物理过程。结果表明,MJJ南极海冰涛动首先通过冰气相互作用在南半球激发持续性的AAO型大气环流异常,使得南半球中纬度和极地及热带之间的气压梯度加大,在MJJ至JAS,纬向平均纬向风呈现显著的正负相间的从南极到北极的经向遥相关型分布。对流层中层位势高度场上,在澳大利亚北部到海洋性大陆区域,出现显著的负异常,在东亚沿岸从低纬到高纬呈现南北走向的“− + −”太平洋—日本(Pacific–Japan,PJ)遥相关波列,其对应赤道中部太平洋及赤道印度洋存在显著的降水和海温负异常,西北太平洋至我国东部沿海地区存在显著降水正异常和温度负异常;低纬度北美洲到大西洋一带存在的负位势高度异常和北大西洋附近存在的正位势高度异常中心,构成一个类似于西大西洋型遥相关(Western Atlantic,WA)的结构,对应赤道南大西洋降水增加和南撒哈拉地区降水减少。从物理过程来看,南极海冰涛动首先通过局地效应影响Ferrel环流,进而通过经圈环流调整使得海洋性大陆区域和热带大西洋上方的Hadley环流上升支得到增强,海洋性大陆区域特别是菲律宾附近的热带对流活动偏强,激发类似于负位相的PJ波列,影响东亚北太平洋地区的大气环流,而热带大西洋对流增强和北传特征,则通过激发WA遥相关影响大西洋和欧洲地区的大气环流。以上两种通道将持续性MJJ至ASO南极海冰涛动强迫的大气环流信号从南半球中高纬度经热带地区传递到北半球中高纬地区,从而对热带和北半球夏季大气环流产生显著影响。
  • 图  1  1979~2018年不同季节的南极海冰异常EOF第一模态空间分布:(a)5~7月(MJJ);(b)6~8月(JJA);(c)7~9月(JAS);(d)8~10月(ASO)

    Figure  1.  Spatial distribution of the EOF1 (the first mode of empirical orthogonal function) of seasonal Antarctic sea ice anomaly during 1979–2018: (a) May–July (MJJ); (b) June–August (JJA); (c) July–September (JAS); (d) August–October (ASO)

    图  2  1979~2018年不同季节的南极海冰EOF1对应的时间序列(PC1):(a)5~7月(MJJ);(b)6~8月(JJA);(c)7~9月(JAS);(d)8~10月(ASO)

    Figure  2.  Principal component time series (PC1) associated with the EOF1 of seasonal Antarctic sea ice anomaly during 1979–2018: (a) MJJ; (b) JJA; (c) JAS; (d) ASO

    图  3  1979~2018年(a、b、c)地表热量通量(单位:W m−2)、(d、e、f)700 hPa瞬变涡旋经向热通量(单位:K m s−1;间隔:0.2 K m s−1)、(g、h、i)300 hPa瞬变涡旋动量通量(单位:m2 s−2;间隔:1 m2 s−2)和(j、k、l)300 hPa瞬变涡旋动能(单位:m2 s−2;间隔:1.25 m2 s−2)对MJJ南极海冰涛动指数的同期(左)、大气滞后海冰一个月(中)、大气滞后海冰两个月(右)的回归系数。图d–l中阴影表示通过90%置信水平的显著性检验

    Figure  3.  Regression coefficients of (a, b, c) surface energy heat flux (units: W m−2), (d, e, f) 700-hPa transient eddy meridional heat flux (units: K m s−1; interval = 0.2 K m s−1), (g, h, i) 300-hPa transient eddy momentum flux (units: m2 s−2; interval = 1 m2 s−2), and (j, k, l) 300-hPa transient eddy kinetic energy (units: m2 s−2; interval = 1.25 m2 s−2) on the Antarctic sea ice oscillation index in MJJ in the same period (left), the atmosphere lags behind sea ice by one month (middle), the atmosphere lags behind sea ice by two months (right) during 1979–2018. In Figs. d–l, the shadings indicate the regression coefficients are statistically significant above the 90% confidence level

    图  4  1979~2018年(a–c)纬向平均的位势高度场(单位:gpm,间隔:2 gpm)、(d–f)纬向风速(单位:m s−1,间隔:0.2 m s−1)和(g–i)温度(单位:K,间隔:0.05 K)对MJJ南极海冰涛动指数的同期(左)、大气滞后海冰一个月(中)、大气滞后海冰两个月(右)回归系数的纬度—高度剖面

    Figure  4.  Latitude–height cross sections of the regression coefficients of (a–c) zonally averaged geopotential height (units: gpm; interval = 2 gpm), (d–f) zonal wind speed (units: m s−1; interval = 0.2 m s−1) and (g–i) temperature (units: K; interval = 0.05 K) on the Antarctic sea ice oscillation index in MJJ in the same period (left), the atmosphere lags behind sea ice by one month (middle), the atmosphere lags behind sea ice by two months (right) during 1979–2018

    图  5  1979~2018年700 hPa(a、c、e)位势高度场(单位:gpm;间隔:3 gpm)、(b、d、f)水平风场(单位:m s−1)对MJJ南极海冰涛动指数的同期(上)、大气滞后海冰一个月(中)、大气滞后海冰两个月(下)的回归系数

    Figure  5.  Regression coefficients of (a, c, e) geopotential height (units: gpm; interval = 3 gpm) and (b, d, f) horizontal winds (units: m s−1) at 700 hPa on the Antarctic sea ice oscillation index in MJJ in the same period (upper), the atmosphere lags behind sea ice by one month (middle), the atmosphere lags behind sea ice by two months (lower) during 1979–2018

    图  6  图5,但为150 hPa位势高度场和水平风场对MJJ南极海冰涛动指数的回归系数

    Figure  6.  As in Fig. 5, but for geopotential height and horizontal winds at 150 hPa on the Antarctic sea ice oscillation index in MJJ

    图  7  1979~2018年(a、c、e)降水量(单位:mm month−1)和(b、d、f)地表气温(单位:K)对MJJ南极海冰涛动指数的同期(上)、大气滞后海冰一个月(中)、大气滞后海冰两个月(下)的回归系数。打点区域通过90%置信水平的显著性检验

    Figure  7.  Regression coefficients of (a, c, e) precipitation (units: mm month−1) and (b, d, f) surface air temperature (units: K) on the Antarctic sea ice oscillation index in MJJ in the same period (upper), the atmosphere lags behind sea ice by one month (middle), the atmosphere lags behind sea ice by two months (lower) during 1979–2018. Dotted areas pass the significance test above the 90% confidence level

    图  8  1979~2018年(a–c)西太平洋(110°~150°E)、(d–f)西大西洋(30°~80°W)纬向平均的经向风、垂直风速与MJJ南极海冰涛动指数的同期(左)、大气滞后海冰一个月(中)、大气滞后海冰两个月(右)的相关系数(箭头)。垂直方向的相关系数是原值的2倍;彩色阴影表示纬向平均垂直速度的气候平均场(单位:Pa s−1),负值为上升运动

    Figure  8.  Latitude–height cross sections of the correlation coefficients (vectors) between the zonally averaged meridional wind speed, vertical velocity and the Antarctic sea ice oscillation index in MJJ of (a–c) western Pacific (110°–150°E) and (d–f) western Atlantic (30°–80°W) in the same period (left), the atmosphere lags behind sea ice by one month (middle), the atmosphere lags behind sea ice by two months (right) during 1979–2018. The correlation coefficient in the vertical direction is twice the original value. The shaded areas indicate the climatological zonally averaged vertical wind speed (units: Pa s−1), the negative values denote upward motion

    图  9  1979~2018年(a、c、e)向外长波辐射(单位:W m−2)、(b、d、f)500 hPa垂直速度(阴影,单位:10−3 Pa s−1)、200 hPa势函数(等值线,单位:m2 s−1,间隔:106 m2 s−1)对MJJ南极海冰涛动指数的同期(上)、大气滞后海冰一个月(中)、大气滞后海冰两个月(下)的回归系数。打点表示通过90%置信水平的显著性检验

    Figure  9.  Regression coefficients of (a, c, e) outgoing longwave radiation (units: W m−2), (b, d, f) 500-hPa vertical velocity (shadings, units: 10−3 Pa s−1), and 200-hPa potential function (contours, units: m2 s−1, interval = 106 m2 s−1) on the Antarctic sea ice oscillation index in MJJ in the same period (upper), the atmosphere lags behind sea ice by one month (middle), the atmosphere lags behind sea ice by two months (lower) during 1979–2018. Dotted areas pass the significance test above the 90% confidence level

    表  1  1979~2018年各个季节的南极海冰涛动指数之间的相关系数$R $(均通过1%显著性水平)

    Table  1.   Correlation coefficients ($R $, all $R $ pass the 1% significance level) of Antarctic sea ice oscillation indices of seasons during 1979–2018

    相关系数
    MJJJJAJASASO
    MJJ1.00.930.750.51
    JJA0.931.00.920.72
    JAS0.750.931.00.91
    ASO0.510.720.911.0
    下载: 导出CSV

    表  2  1979~2018年不同季节的南极海冰涛动指数(ASIOI)与南极涛动指数(AOI)的相关系数及显著性水平(括号内数字)

    Table  2.   Correlation coefficients and significance levels (numbers in brackets) of Antarctic sea ice oscillation indices (ASIOI) and Antarctic oscillation indices (AOI) of seasons during 1979–2018

    相关系数及显著性水平
    MJJ (ASIOI)JJA (ASIOI)JAS (ASIOI)ASO (ASIOI)
    MJJ (AOI)0.42(0.01)///
    JJA (AOI)0.32(0.05)0.46(0.01)//
    JAS (AOI)/0.34(0.05)0.55(0.01)/
    ASO (AOI)//0.33(0.05)0.48(0.01)
    下载: 导出CSV
  • [1] Bader J, Flügge M, Kvamstø N G, et al. 2013. Atmospheric winter response to a projected future Antarctic sea–ice reduction: A dynamical analysis [J]. Climate Dyn., 40(11–12): 2707–2718. doi:10.1007/s00382-012-1507-9
    [2] 卞林根, 林学椿. 2008. 南极海冰涛动及其对东亚季风和我国夏季降水的可能影响 [J]. 冰川冻土, 30(2): 196−203.

    Bian Lingen, Lin Xuechun. 2008. Antarctica sea–ice oscillation and its possible impact on monsoon of South Sea and China summer rainfall [J]. Journal of Glaciology and Geocryology (in Chinese), 30(2): 196−203.
    [3] Cassou C, Deser C, Terray L, et al. 2004. Summer sea surface temperature conditions in the North Atlantic and their impact upon the atmospheric circulation in early winter [J]. J. Climate, 17(17): 3349−3363. doi: 10.1175/1520-0442(2004)017<3349:SSSTCI>2.0.CO;2
    [4] Cavalieri D J, Parkinson C L, Vinnikov K Y. 2003. 30-year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability [J]. Geophys. Res. Lett., 30(18): 1970. doi: 10.1029/2003GL018031
    [5] 程彦杰, 卞林根, 陆龙骅. 2002. 南极海冰涛动与ENSO的关系 [J]. 应用气象学报, 13(6): 711−717. doi: 10.3969/j.issn.1001-7313.2002.06.009

    Chen Yanjie, Bian Lingen, Lu Longhua. 2002. Antarctic sea–ice oscillation and its relationship with ENSO [J]. Journal of Applied Meteorological Science (in Chinese), 13(6): 711−717. doi: 10.3969/j.issn.1001-7313.2002.06.009
    [6] Deser C, Magnusdottir G, Saravanan R, et al. 2004. The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: Direct and indirect components of the response [J]. J. Climate, 17(5): 877−889. doi: 10.1175/1520-0442(2004)017<0877:TEONAS>2.0.CO;2
    [7] 窦挺峰. 2009. 南极海冰对南半球大气环流和气候影响的数值模拟与诊断 [D]. 中国气象科学研究院硕士学位论文. Dou Tingfeng. 2009. Numerical simulation and diagnosis of the impacts of the Antarctic sea–ice on Southern Hemisphere atmospheric circulation and climate [D]. M. S. thesis (in Chinese), Chinese Academy of Meteorological Sciences.
    [8] 窦挺峰, 效存德. 2013. 南半球降水对南极海冰涛动异常的响应 [J]. 极地研究, 25(1): 45−52.

    Dou Tingfeng, Xiao Cunde. 2013. Response of Southern Hemisphere precipitation to Antarctic sea ice oscillation anomalies [J]. Chinese Journal of Polar Research (in Chinese), 25(1): 45−52.
    [9] Dou J, Wu Z W. 2018. Southern Hemisphere origins for interannual variations of snow cover over the western Tibetan Plateau in boreal summer [J]. J. Climate, 31(19): 7701−7718. doi: 10.1175/JCLI-D-17-0327.1
    [10] 范可. 2006. 南半球环流异常与长江中下游夏季旱涝的关系 [J]. 地球物理学报, 49(3): 672−679. doi: 10.3321/j.issn:0001-5733.2006.03.009

    Fan Ke. 2006. Atmospheric circulation anomalies in the Southern Hemisphere and summer rainfall over Yangtze River valley [J]. Chinese J. Geophys. (in Chinese), 49(3): 672−679. doi: 10.3321/j.issn:0001-5733.2006.03.009
    [11] Fan K, Wang H J. 2004. Antarctic oscillation and the dust weather frequency in North China [J]. Geophys. Res. Lett., 31(10): L10201. doi: 10.1029/2004GL019465
    [12] 范可, 王会军. 2006a. 有关南半球大气环流与东亚气候的关系研究的若干新进展 [J]. 大气科学, 30(3): 402−412. doi: 10.3878/j.issn.1006-9895.2006.03.04

    Fan Ke, Wang Huijun. 2006a. Studies of the relationship between southern hemispheric atmospheric circulation and climate over East Asia [J]. Chinese J. Atmos. Sci. (in Chinese), 30(3): 402−412. doi: 10.3878/j.issn.1006-9895.2006.03.04
    [13] 范可, 王会军. 2006b. 南极涛动的年际变化及其对东亚冬春季气候的影响 [J]. 中国科学 D辑: 地球科学, 36(4): 385–391. Fan Ke, Wang Huijun. 2006. Interannual variability of Antarctic Oscillation and its influence on East Asian climate during boreal winter and spring [J]. Sci. China Ser. D: Earth Science, 49(5): 554–560. doi:10.1007/s11430-006-0554-7
    [14] 范可, 王会军. 2007. 南极涛动异常及其对冬春季北半球大气环流影响的数值模拟试验 [J]. 地球物理学报, 50(2): 397−403. doi: 10.3321/j.issn:0001-5733.2007.02.009

    Fan Ke, Wang Huijun. 2007. Simulation of the AAO anomaly and its influence on the northern hemispheric circulation in boreal winter and spring [J]. Chinese J. Geophys. (in Chinese), 50(2): 397−403. doi: 10.3321/j.issn:0001-5733.2007.02.009
    [15] Hobbs W R, Massom R, Stammerjohn S, et al. 2016. A review of recent changes in Southern Ocean sea ice, their drivers and forcings [J]. Global and Planetary Change, 143: 228−250. doi: 10.1016/j.gloplacha.2016.06.008
    [16] Holland P R. 2014. The seasonality of Antarctic sea ice trends [J]. Geophys. Res. Lett., 41(12): 4230−4237. doi: 10.1002/2014GL060172
    [17] Karoly D J. 1989. Southern Hemisphere circulation features associated with El Niño–Southern Oscillation events [J]. J. Climate, 2(11): 1239−1252. doi: 10.1175/1520-0442(1989)002<1239:SHCFAW>2.0.CO;2
    [18] Kosaka Y, Nakamura H. 2010. Mechanisms of meridional teleconnection observed between a summer monsoon system and a subtropical anticyclone. Part I: The Pacific–Japan pattern [J]. J. Climate, 23(19): 5085−5108. doi: 10.1175/2010JCLI3413.1
    [19] Kwok R, Pang S S, Kacimi S. 2017. Sea ice drift in the Southern Ocean: Regional patterns, variability, and trends [J]. Elementa:Science of the Anthropocene, 5: 32. doi: 10.1525/elementa.226
    [20] 李璠. 2009. 南极海冰时空演变特征及其对南半球大气环流的影响 [D]. 云南大学硕士学位论文. Li Fan. 2009. Spatiotemporal evolution of Antarctic sea ice and its influence on atmospheric circulation in the Southern Hemisphere [D]. M. S. thesis (in Chinese), Yunnan University.
    [21] Li S L, Perlwitz J, Hoerling M P, et al. 2010. Opposite annular responses of the Northern and Southern Hemispheres to Indian Ocean warming [J]. J. Climate, 23(13): 3720−3738. doi: 10.1175/2010JCLI3410.1
    [22] Lorenz D J, Hartmann D L. 2003. Eddy-zonal flow feedback in the Northern Hemisphere winter [J]. J. Climate, 16(8): 1212−1227. doi: 10.1175/1520-0442(2003)16<1212:EFFITN>2.0.CO;2
    [23] 马浩, 李正泉, 张力. 2016. 南半球环状模对中国气候的影响研究进展 [J]. 高原气象, 35(6): 1595−1608. doi: 10.7522/j.issn.1000-0534.2015.00098

    Ma Hao, Li Zhengquan, Zhang Li. 2016. Review on the impacts of the southern annular mode on climate over China [J]. Plateau Meteorology (in Chinese), 35(6): 1595−1608. doi: 10.7522/j.issn.1000-0534.2015.00098
    [24] 马丽娟, 陆龙骅, 卞林根. 2006. 南极海冰与我国夏季天气的关系 [J]. 极地研究, 18(1): 30−38.

    Ma Lijuan, Lu Longhua, Bian Lingen. 2006. The relationship between Antarctic sea ice and the synoptic climate in summer of China [J]. Chinese Journal of Polar Research (in Chinese), 18(1): 30−38.
    [25] 马丽娟, 陆龙骅, 卞林根. 2007. 南极海冰北界涛动指数及其与我国夏季天气气候的关系 [J]. 应用气象学报, 18(4): 568−572. doi: 10.3969/j.issn.1001-7313.2007.04.019

    Ma Lijuan, Lu Longhua, Bian Lingen. 2007. Antarctic sea–ice extent oscillation index with the relationship between ASEOI and synoptic climate in summer of China [J]. Journal of Applied Meteorological Science (in Chinese), 18(4): 568−572. doi: 10.3969/j.issn.1001-7313.2007.04.019
    [26] 梅笑冬. 2015. 北大西洋海温对NAO型大气环流异常的影响研究 [D]. 中国海洋大学博士学位论文. Mei Xiaodong. 2015. An impact study of North Atlantic SST on NAO-like circulation [D]. Ph. D. dissertation (in Chinese), Ocean University of China.
    [27] Miao Q, Chen L X. 1997. Numerical experiments for the impact of Antarctic ice cover and sea surface temperature on climate variability [J]. Acta Meteorologica Sinica, 11(1): 23−34.
    [28] Nitta T. 1987. Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation [J]. J. Meteor. Soc. Japan, 65(3): 373−390. doi: 10.2151/jmsj1965.65.3_373
    [29] 钱卓蕾. 2014. 秋季南极涛动异常对冬季中国南方降水的影响 [J]. 大气科学, 38(1): 190–200. Qian Zhuolei. 2014. The impact of autumn Antarctic oscillation (AAO) on winter precipitation in southern China [J]. Chinese J. Atmos. Sci. (in Chinese), 38(1): 190–200. doi:10.3878/j.issn.1006-9895.2013.13122
    [30] Sun J Q, Wang H J, Yuan W. 2009. A possible mechanism for the co-variability of the boreal spring Antarctic Oscillation and the Yangtze River valley summer rainfall [J]. International Journal of Climatology, 29(9): 1276−1284. doi: 10.1002/joc.1773
    [31] 孙淑清, 刘舸, 张庆云. 2007. 南半球环流异常对夏季西太平洋热带气旋生成的影响及其机理 [J]. 大气科学, 31(6): 1189−1200. doi: 10.3878/j.issn.1006-9895.2007.06.14

    Sun Shuqing, Liu Ge, Zhang Qingyun. 2007. The influence of the circulation anomalies in the Southern Hemisphere on the tropical cyclone frequency in summer over the western Pacific and its mechanism [J]. Chinese J. Atmos. Sci. (in Chinese), 31(6): 1189−1200. doi: 10.3878/j.issn.1006-9895.2007.06.14
    [32] Swingedouw D, Fichefet T, Huybrechts P, et al. 2008. Antarctic ice-sheet melting provides negative feedbacks on future climate warming [J]. Geophys. Res. Lett., 35(17): L17705. doi: 10.1029/2008GL034410
    [33] Thompson D W J, Wallace J M. 2000. Annular modes in the extratropical circulation. Part I: Month-to-month variability [J]. J. Climate, 13(5): 1000−1016. doi: 10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2
    [34] Wallace J M, Gutzler D S. 1981. Teleconnections in the geopotential height field during the Northern Hemisphere winter [J]. Mon. Wea. Rev., 109(4): 784−812. doi: 10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2
    [35] Wang G M, Hendon H H, Arblaster J M, et al. 2019. Compounding tropical and stratospheric forcing of the record low Antarctic sea–ice in 2016 [J]. Nature Communications, 10(1): 13. doi: 10.1038/s41467-018-07689-7
    [36] 王鑫, 王东晓, Zhang Chidong, 等. 2016. “海洋性大陆”观测研究计划介绍及中国参与进展 [J]. 气象学报, 74(4): 653−654. doi: 10.11676/qxxb2016.070

    Wang Xin, Wang Dongxiao, Zhang Chidong, et al. 2016. Introduction of observation and research program of “oceanic continent” and progress of China’s participation [J]. Acta Meteorologica Sinica (in Chinese), 74(4): 653−654. doi: 10.11676/qxxb2016.070
    [37] 魏立新, 解思梅, 张占海. 2003. 南极海冰增加对全球7月气候的影响 [J]. 冰川冻土, 25(Z2): 285−291. doi: 10.3969/j.issn.1000-0240.2003.z2.017

    Wei Lixin, Xie Simei, Zhang Zhanhai. 2003. The effect of Antarctic sea ice on the climate [J]. Journal of Glaciology and Geocryology (in Chinese), 25(Z2): 285−291. doi: 10.3969/j.issn.1000-0240.2003.z2.017
    [38] Wu Q G. 2008. Observed impact of subtropical-midlatitude South Atlantic SST anomalies on the atmospheric circulation [J]. Geophys. Res. Lett., 35(22): L22803. doi: 10.1029/2008GL035488
    [39] Wu Q G, Zhang X D. 2011. Observed evidence of an impact of the Antarctic sea ice dipole on the Antarctic oscillation [J]. J. Climate, 24(16): 4508−4518. doi: 10.1175/2011JCLI3965.1
    [40] 吴仁广, 陈烈庭. 1994. 南极海冰与南半球大气环流关系的初步探讨 [J]. 大气科学, 18(Z1): 792−800. doi: 10.3878/j.issn.1006-9895.1994.z1.03

    Wu Renguang, Chen Lieting. 1994. A preliminary investigation of the relationship between the Antarctic sea ice and the atmospheric circulation of the Southern Hemisphere [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 18(Z1): 792−800. doi: 10.3878/j.issn.1006-9895.1994.z1.03
    [41] Wu Z W, Dou J, Lin H. 2015. Potential influence of the November–December Southern Hemisphere annular mode on the East Asian winter precipitation: A new mechanism [J]. Climate Dyn., 44(5–6): 1215–1226. doi:10.1007/s00382-014-2241-2
    [42] Wu Z W, Li J P, Wang B, et al. 2009. Can the Southern Hemisphere annular mode affect China winter monsoon? [J]. J. Geophys. Res.: Atmos., 114(D11): D11107. doi: 10.1029/2008JD011501
    [43] Xie S P, Kosaka Y, Du Y, et al. 2016. Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: A review [J]. Adv. Atmos. Sci., 33(4): 411−432. doi: 10.1007/s00376-015-5192-6
    [44] 薛峰. 2005. 南半球环流变化对东亚夏季风的影响 [J]. 气候与环境研究, 10(3): 401−408. doi: 10.3969/j.issn.1006-9585.2005.03.013

    Xue Feng. 2005. Influence of the southern circulation on East Asian summer monsoon [J]. Climatic Environ. Res. (in Chinese), 10(3): 401−408. doi: 10.3969/j.issn.1006-9585.2005.03.013
    [45] 杨修群, 黄士松. 1992. 北半球夏季南极冰气候效应的数值试验 [J]. 大气科学, 16(1): 69−76. doi: 10.3878/j.issn.1006-9895.1992.01.11

    Yang Xiuqun, Huang Shisong. 1992. Climatic effect of Antarctic sea ice in the Northern Hemisphere summer—A numerical experiment [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 16(1): 69−76. doi: 10.3878/j.issn.1006-9895.1992.01.11
    [46] Yuan X J, Martinson D G. 2001. The Antarctic dipole and its predictability [J]. Geophys. Res. Lett., 28(18): 3609−3612. doi: 10.1029/2001GL012969
    [47] 张乐英, 徐海明, 施宁. 2017. 冬季南极涛动对欧亚大陆地表气温的影响 [J]. 大气科学, 41(4): 869−881. doi: 10.3878/j.issn.1006-9895.1612.16228

    Zhang Leying, Xu Haiming, Shi Ning. 2017. Influence of the Antarctic oscillation on surface air temperature over the Eurasian continent during boreal winter [J]. Chinese J. Atmos. Sci. (in Chinese), 41(4): 869−881. doi: 10.3878/j.issn.1006-9895.1612.16228
    [48] 赵宗慈, 王绍武. 1979. 南北半球大气环流与气候的相互作用 [J]. 气象学报, 37(2): 58−68. doi: 10.11676/qxxb1979.019

    Zhao Zongci, Wang Shaowu. 1979. Interactions between the circulation and climate in Northern and Southern Hemispheres [J]. Acta Meteorologica Sinica (in Chinese), 37(2): 58−68. doi: 10.11676/qxxb1979.019
    [49] 郑菲, 李建平. 2012. 前冬南半球环状模对春季华南降水的影响及其机理 [J]. 地球物理学报, 55(11): 3542−3557. doi: 10.6038/j.issn.0001-5733.2012.11.004

    Zheng Fei, Li Jianping. 2012. Impact of preceding boreal winter Southern Hemisphere annular mode on spring precipitation over South China and related mechanism [J]. Chinese J. Geophys. (in Chinese), 55(11): 3542−3557. doi: 10.6038/j.issn.0001-5733.2012.11.004
    [50] Zheng F, Li J P, Clark R T, et al. 2015. Influence of the boreal spring Southern Annular Mode on summer surface air temperature over Northeast China [J]. Atmospheric Science Letters, 16(2): 155−161. doi: 10.1002/asl2.541
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  281
  • HTML全文浏览量:  48
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-31
  • 录用日期:  2021-12-24
  • 网络出版日期:  2021-10-18
  • 刊出日期:  2022-11-24

目录

    /

    返回文章
    返回