Characteristics of the Spring Soil Moisture Evolution over the Tibetan Plateau from 1981 to 2020 and Its Relationship with the Plateau Monsoon
-
摘要: 本研究利用欧洲中心ERA5再分析资料的逐日土壤湿度(土壤体积含水量)、降水量、位势高度场以及风场数据,重点分析了1981~2020年高原春季浅层(0~7 cm)土壤湿度的时空变化特征,并探讨了青藏高原土壤湿度与高原季风的关系。青藏高原春季土壤湿度西北偏干,东南部相对偏湿的分布特征。对高原春季土壤湿度进行经验正交函数(EOF)分析后发现,其第一模态呈中部与东、西部反向变化特征,该模态存在准3年(2~4年)的振荡周期,这一周期特征在2000~2010年表现的更为显著;第二模态呈南北反向分布,较好地表征高原地区气候带与下垫面覆盖状况。研究发现,高原夏季风与高原春季土壤湿度变化之间存在密切的隔季相关,高原夏季风异常变化是翌年春季土壤湿度变化的主要原因。Abstract: This study uses the daily soil moisture (soil volumetric water content), precipitation, geopotential height field, and wind field data from the European Center ERA5 reanalysis data focusing on the analysis of the shallow (0–7 cm) soil moisture of the plateau spring from 1981 to 2020. The study also determines the characteristics of the spring soil moisture evolution over the Tibetan Plateau and discusses its relationship with the plateau monsoon. The results show that the distribution characteristics of the spring soil moisture on the Tibetan Plateau are dry in the northwest and relatively wet in the southeast. The empirical orthogonal function (EOF) analysis of the spring soil moisture in the plateau shows that the first mode has the characteristics of reverse change in the middle, east, and west. This mode has a quasi 3-year (2–4 years) oscillation period, which was more pronounced from 2000 to 2010. The second mode has a north–south reverse distribution, which better characterizes the climatic zone and underlying surface coverage in the plateau area. This study identified a close inter-season correlation between the plateau summer monsoon and plateau spring soil moisture change. The abnormal change of the plateau summer monsoon is the main reason for the spring soil moisture change in the following spring.
-
Key words:
- Tibetan Plateau /
- Spring soil moisture /
- Plateau monsoon /
- Climate change /
- Inter-decadal variation
-
图 5 高原春季土壤湿度EOF(a)第一空间模态及其(b)时间变化特征(右上角百分数为谐波分解前3波累计方差贡献)。(b)中柱状图为标准化之后的时间系数,曲线为年代际分量,红色虚线表示谐波分解前3波合成,r表示线性趋势斜率
Figure 5. (a) The first spatial mode of EOF and (b) its temporal variation characteristics of the spring soil moisture on the plateau. In (b), standardized time coefficient (bar) and decadal component curve (three waves before harmonic decomposition: red dashed line); r in the figure represents the linear trend slope. The cumulative variance contribution of the first three waves of harmonic decomposition is placed in the upper-right corner
图 6 EOF第一模态时间系数PC-1的Morlet小波功率谱分析;左图中色标为小波功率,网格处为边界效应影响域,打点区域为通过0.05显著性水平检验,右图为小波功率谱
Figure 6. Morlet wavelet power spectrum analysis diagram of the time coefficient PC-1 of the first mode from the EOF; The color mark in the left figure is the wavelet power, the grid is the influence domain of the boundary effect and the black dotted area is the 0.05 significance level test, the right picture is the wavelet power spectrum
图 9 (a)高原夏季风指数与高原夏季降水相关场(黑点区域表示通过0.01显著性水平检验)分布;(b)高原季风指数与春季土壤湿度的超前滞后相关序列(红色横线为0.01显著性水平参考线,打点区为通过0.01显著性水平检验);(c)去趋势标准化的夏季风指数、春季土壤湿度以及夏季降水的年际变化
Figure 9. (a) Correlation field between the plateau summer monsoon index and plateau summer precipitation (black dots area indicate that it has passed the 0.01 significance test); (b) leading and lagging correlation diagram between the plateau monsoon index and spring soil moisture (the red horizontal line is the 0.01 significance level reference line, and the dotted area has passed the 0.01 significance test); (c) interannual variation of de-trend standardized in summer monsoon index, spring soil moisture, and summer precipitation
图 10 1981~2020年(a)夏季(MJJ)500 hPa气候态高度场,黑色等值线表示高度场,等值线间隔为10 gpm,箭头表示风场,单位:m s−1;(b)强高原夏季风年与弱高原夏季风年500 hPa位势高度差值场,打点区域为通过0.01显著性水平检验,红色实线等值线表示高度场正异常,蓝色虚线等值线表示高度场负异常,等值线间隔为10 gpm,箭头表示风场差值场,单位:m s−1。右下角给出的风速大小表示只显示大于等于该值的风场;绿色等值线为青藏高原(海拔>2500 m)边界线
Figure 10. (a) 500 hPa climatic height field in summer (MJJ), black contour lines represent the height field, and the contour interval is 10 gpm, arrows indicate wind field, units: m s−1; (b) 500 hPa difference geopotential height field between the strong and weak plateau summer monsoon years from 1981 to 2020, the dotted area passes the 0.01 significance level test, the red solid contour line represents the positive height field anomaly, and the blue dotted contour line represents the height field negative anomaly. The contour interval at 10 gpm, the arrows represent the wind field difference field, unit: m s−1. The arrows in the lower right corner indicate that only wind fields greater than or equal to this value are given; the green contour line is the boundary line of the Qinghai–Tibet Plateau (altitude > 2500 m)
图 12 高原春季土壤湿度、高原夏季风与高原夏季降水年代际分量变化特征(谐波分解前3波)。右上角图例括号中给出各要素前3波累计方差贡献率,要素之间的相关系数在右下角给出
Figure 12. Variation of interdecadal components of the plateau spring soil moisture, plateau summer monsoon, and plateau summer precipitation (the first three waves of harmonic decomposition). In the brackets of the legend in the upper-right corner, the contribution rate of the cumulative variance of the first three waves of each element is given. The correlation coefficients between the elements are given in the lower-right corner
-
[1] 艾雅雯, 孙建奇, 韩双泽, 等. 2020. 1961~2016年中国春季极端低温事件的时空特征分析 [J]. 大气科学, 44(6): 1305−1319. doi: 10.3878/j.issn.1006-9895.1912.19223Ai Yawen, Sun Jianqi, Han Shuangze, et al. 2020. Spatial and temporal features of spring extreme low temperature events in China during 1961–2016 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(6): 1305−1319. doi: 10.3878/j.issn.1006-9895.1912.19223 [2] Chow K C, Chan J C L, Shi X L, et al. 2008. Time-lagged effects of spring Tibetan Plateau soil moisture on the monsoon over China in early summer [J]. Int. J. Climatol., 28(1): 55−67. doi: 10.1002/joc.1511 [3] 邓元红, 王世杰, 白晓永等. 2018. 西南地区土壤湿度与气候之间的互馈效应 [J]. 生态学报, 38(24): 8688−8699. doi: 10.5846/stxb201807301613Deng Y H, Wang S J, Bai X Y, et al. 2018. Relationship between soil moisture and climate and its memory in Southwest China [J]. Acta Ecologica Sinica, 38(24): 8688−8699. doi: 10.5846/stxb201807301613 [4] 杜川利, 刘晓东, Wu Wanli. 2008. CLM3模拟的1979–2003年中国土壤湿度及其对全球变暖的可能响应 [J]. 高原气象, 27(3): 463−473.Du Chuanli, Liu Xiaodong, Wu Wanli. 2008. CLM3-simulated Chinese soil moisture during 1979–2003 and its possible response to global warming [J]. Plateau Meteor. (in Chinese), 27(3): 463−473. [5] 高荣, 韦志刚, 钟海玲. 2017. 青藏高原陆表特征与中国夏季降水的关系研究 [J]. 冰川冻土, 39(4): 741−747. doi: 10.7522/j.issn.1000-0240.2017.0084Gao Rong, Wei Zhigang, Zhong Hailing. 2017. Relationship between land surface characteristics in the Tibetan Plateau and summer precipitation in China [J]. J. Glaciol. Geocryol. (in Chinese), 39(4): 741−747. doi: 10.7522/j.issn.1000-0240.2017.0084 [6] Koster R D, Suarez M J. 2001. Soil moisture memory in climate models [J]. J. Hydrometeorol., 2(6): 558−570. doi:10.1175/1525-7541(2001)002<0558:SMMICM>2.0.CO;2 [7] Kuo H L, Qian Y F. 1981. Influence of the Tibetan Plateau on cumulative and diurnal changes of weather and climate in summer [J]. Mon. Wea. Rev., 109(11): 2337−2356. doi:10.1175/1520-0493(1981)109<2337:IOTTPO>2.0.CO;2 [8] 李登宣, 王澄海. 2016. 青藏高原春季土壤湿度与中国东部夏季降水之间的关系 [J]. 冰川冻土, 38(1): 89−99. doi: 10.7522/j.issn.1000-0240.2016.0010Li Dengxuan, Wang Chenghai. 2016. The relation between soil moisture over the Tibetan Plateau in spring and summer precipitation in the eastern China [J]. J. Glaciol. Geocryol. (in Chinese), 38(1): 89−99. doi: 10.7522/j.issn.1000-0240.2016.0010 [9] 李哲, 王磊, 王林, 等. 2017. 基于AMSR-E反演青藏高原夏季表层土壤湿度 [J]. 高原气象, 36(1): 67−78. doi: 10.7522/j.issn.1000-0534.2016.00085Li Zhe, Wang Lei, Wang Lin, et al. 2017. Top-layer soil moisture retrieval over the Qinghai–Xizang Plateau in summer based on AMSR-E data [J]. Plateau Meteor. (in Chinese), 36(1): 67−78. doi: 10.7522/j.issn.1000-0534.2016.00085 [10] 马柱国, 符淙斌, 谢力, 等. 2001. 土壤湿度和气候变化关系研究中的某些问题 [J]. 地球科学进展, 16(4): 563−566. doi: 10.11867/j.issn.1001-8166.2001.04.0563Ma Zhuguo, Fu Congbin, Xie Li, et al. 2001. Some problems in the study on the relationship between soil moisture and climatic change [J]. Adv. Earth. Sci. (in Chinese), 16(4): 563−566. doi: 10.11867/j.issn.1001-8166.2001.04.0563 [11] Namias J. 1958. Persistence of Mid Tropospheric Circulations between Adjacent Months and Seasons [M]. Oxford: Rockefeller Institute Press and Oxford University Press, 240–248. [12] Njoku E G, Jackson T J, Lakshmi V, et al. 2003. Soil moisture retrieval from AMSR-E [J]. IEEE Trans. Geosci. Remote Sens., 41(2): 215−229. doi: 10.1109/TGRS.2002.808243 [13] 齐冬梅, 李跃清, 白莹莹等. 2009. 高原夏季风指数的定义及其特征分析 [J]. 高原山地气象研究, 29(3): 1−9. doi: 10.3969/jissn1674-2184.2009.04.001Qi Dongmei, Li Yueqing, Bai Yingying, et al. 2009. The definition of Plateau summer monsoon index and analysis on its characteristics [J]. Plateau and Mountain Meteorology Research, 29(3): 1−9. doi: 10.3969/jissn1674-2184.2009.04.001 [14] 权晨, 周秉荣, 朱生翠, 等. 2018. 青藏高原高寒湿地冻融过程土壤温湿变化特征 [J]. 干旱气象, 36(2): 219−225. doi: 10.11755/j.issn.1006-7639(2018)-02-0219Quan Chen, Zhou Bingrong, Zhu Shengcui, et al. 2018. Variation characteristics of soil temperature and moisture during the freezing and thawing periods in alpine wetland in Tibetanan Plateau [J]. J. Arid Meteor. (in Chinese), 36(2): 219−225. doi: 10.11755/j.issn.1006-7639(2018)-02-0219 [15] Shi N, Wang Y C, Wang X Q, et al. 2019. Interdecadal variations in the frequency of persistent hot events in boreal summer over midlatitude Eurasia [J]. J. Climate, 32(16): 5161−5177. doi: 10.1175/JCLI-D-18-0706.1 [16] 孙夏, 范广洲, 张永莉, 等. 2019. 夏季青藏高原不同层次土壤湿度时空变化特征 [J]. 干旱气象, 37(2): 252−261. doi: 10.11755/j.issn.1006-7639(2019)-02-0252Sun Xia, Fan Guangzhou, Zhang Yongli, et al. 2019. Temporal and spatial variation characteristics of soil moisture at different layers of the Tibetan Plateau in summer [J]. J. Arid Meteor. (in Chinese), 37(2): 252−261. doi: 10.11755/j.issn.1006-7639(2019)-02-0252 [17] 索朗塔杰, 施宁, 王艺橙, 等. 2020. 我国冬季极端低温指数的年代际变化特征 [J]. 大气科学, 44(5): 1125−1140. doi: 10.3878/j.issn.1006-9895.2003.19242Suolang Tajie, Shi Ning, Wang Yicheng, et al. 2020. Interdecadal variation characteristics of extreme low temperature index in winter in China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(5): 1125−1140. doi: 10.3878/j.issn.1006-9895.2003.19242 [18] 汤懋苍. 1998. 青藏高原季风的形成、演化及振荡特性 [J]. 甘肃气象, 16(1): 1−14.Tang Maocang. 1998. The formation, evolution and oscillation characteristics of the Tibetan Plateau monsoon [J]. Gansu Meteor. (in Chinese), 16(1): 1−14. [19] Tang M C, Reiter E R. 1984. Plateau monsoons of the Northern Hemisphere: A comparison between North America and Tibet [J]. Mon. Wea. Rev., 112(4): 617−637. doi:10.1175/1520-0493(1984)112<0617:PMOTNH>2.0.CO;2 [20] 汤懋苍, 沈志宝, 陈有虞. 1979. 高原季风的平均气候特征 [J]. 地理学报, 34(1): 33−42. doi: 10.3321/j.issn:0375-5444.1979.01.004Tang Maocang, Shen Zhibao, Chen Youyu. 1979. On climatic characteristics of the Xizang Plateau monsoon [J]. Acta Geographica Sinica (in Chinese), 34(1): 33−42. doi: 10.3321/j.issn:0375-5444.1979.01.004 [21] 王瑞, 李伟平, 刘新, 等. 2009. 青藏高原春季土壤湿度异常对我国夏季降水影响的模拟研究 [J]. 高原气象, 28(6): 1233−1241.Wang Rui, Li Weiping, Liu Xin, et al. 2009. Simulation of the impacts of spring soil moisture over the Tibetan Plateau on summer precipitation in China [J]. Plateau Meteor. (in Chinese), 28(6): 1233−1241. [22] 王静, 祁莉, 吴志伟, 等. 2018a. 多套土壤湿度替代资料在青藏高原的适用性分析 [J]. 高原气象, 37(2): 371−381. doi: 10.7522/j.issn.1000-0534.2017.00074Wang Jing, Qi Li, Wu Zhiwei, et al. 2018a. Applicability analysis of soil moisture from multiple substitute data in Qinghai-Tibetan Plateau [J]. Plateau Meteor. (in Chinese), 37(2): 371−381. doi: 10.7522/j.issn.1000-0534.2017.00074 [23] 王静, 何金海, 祁莉, 等. 2018b. 青藏高原土壤湿度的变化特征及其对中国东部降水影响的研究进展 [J]. 大气科学学报, 41(1): 1−11. doi: 10.13878/j.cnki.dqkxxb.20170806001Wang Jing, He Jinhai, Qi Li, et al. 2018b. The variation characteristics of soil moisture in Tibet Plateau and its influences on the precipitation in eastern China: Recent progress [J]. Trans. Atmos. Sci. (in Chinese), 41(1): 1−11. doi: 10.13878/j.cnki.dqkxxb.20170806001 [24] 肖志祥, 段安民. 2015. 孟加拉湾热带风暴对青藏高原降水和土壤湿度的影响 [J]. 中国科学: 地球科学, 45(5): 625–638.Xiao Zhixiang, Duan Anmin. 2015. Can the tropical storms originated from the Bay of Bengal impact the precipitation and soil moisture over the Tibetan Plateau? [J]. Sci. China Earth Sci., 58(6): 915–928. doi: 10.1007/11430-014-5028-8 [25] 徐洪亮, 常娟, 郭林茂, 等. 2021. 青藏高原腹地多年冻土区活动层水热过程对气候变化的响应 [J]. 高原气象, 40(2): 229−243. doi: 10.7522/j.issn.1000-0534.2020.00071Xu Hongliang, Chang Juan, Guo Linmao, et al. 2021. Response of thermal-moisture condition within active layer in the hinterland of the Qinghai-Xizang Plateau to climate change [J]. Plateau Meteor. (in Chinese), 40(2): 229−243. doi: 10.7522/j.issn.1000-0534.2020.00071 [26] 荀学义, 胡泽勇, 崔桂凤, 等. 2018. 青藏高原季风对我国西北干旱区气候的影响 [J]. 气候与环境研究, 23(3): 311−320. doi: 10.3878/j.issn.1006-9585.2017.17024Xun Xueyi, Hu Zeyong, Cui Guifeng, et al. 2018. The effect of Tibetan Plateau monsoon on the climate in the arid area of Northwest China [J]. Climatic Environ. Res. (in Chinese), 23(3): 311−320. doi: 10.3878/j.issn.1006-9585.2017.17024 [27] 晏红波, 周国清. 2017. 地表土壤湿度光学遥感反演方法研究进展 [J]. 亚热带资源与环境学报, 12(2): 82−89,95. doi: 10.3969/j.issn.1673-7105.2017.02.012Yan Hongbo, Zhou Guoqing. 2017. Surface soil moisture retrieval from optical remote sensing: Current status and perspectives [J]. Journal of Subtropical Resources and Environment (in Chinese), 12(2): 82−89,95. doi: 10.3969/j.issn.1673-7105.2017.02.012 [28] 叶笃正, 高由禧. 1979. 青藏高原气象学[M]. 北京: 科学出版社, 62–73Ye Duzheng, Gao Youxi. 1979. Qinghai–Xizang Plateau Meteorology (in Chinese) [M]. Beijing: Science Press, 62–73. [29] Zeng J Y, Li Z, Chen Q, et al. 2015. Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan Plateau using in-situ observations [J]. Remote Sens. Environ., 163: 91−110. doi: 10.1016/j.rse.2015.03.008 [30] Zhang R H, Zuo Z Y. 2011. Impact of spring soil moisture on surface energy balance and summer monsoon circulation over East Asia and precipitation in East China [J]. J. Climate, 24(13): 3309−3322. doi: 10.1175/2011JCLI4084.1 [31] 张文君, 周天军, 宇如聪. 2008. 中国土壤湿度的分布与变化I. 多种资料间的比较 [J]. 大气科学, 32(3): 581−597. doi: 10.3878/j.issn.1006-9895.2008.03.15Zhang Wenjun, Zhou Tianjun, Yu Rucong. 2008. Spatial distribution and temporal variation of soil moisture over China. Part I: Multi-data intercomparison [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(3): 581−597. doi: 10.3878/j.issn.1006-9895.2008.03.15 [32] 赵家臻, 王爱慧, 王会军. 2021. 中国地区土壤湿度记忆性及其与降水特征变化的关系 [J]. 大气科学, 45(4): 799−818. doi: 10.3878/j.issn.1006-9895.2007.20149Zhao Jiazhen, Wang Aihui, Wang Huijun. 2021. Soil moisture memory and its relationship with precipitation characteristics in China region [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(4): 799−818. doi: 10.3878/j.issn.1006-9895.2007.20149 [33] 周娟, 文军, 王欣, 等. 2017. 青藏高原季风演变及其与土壤湿度的相关分析 [J]. 高原气象, 36(1): 45−56. doi: 10.7522/j.issn.1000-0534.2016.00003Zhou Juan, Wen Jun, Wang Xin, et al. 2017. Analysis of the Qinghai–Xizang Plateau monsoon evolution and its correlation with soil moisture [J]. Plateau Meteor. (in Chinese), 36(1): 45−56. doi: 10.7522/j.issn.1000-0534.2016.00003 [34] 卓嘎, 德吉卓玛, 尼玛吉. 2017. 青藏高原土壤湿度分布特征及其对长江中下游6、7月降水的影响[J]. 高原气象, 36(3): 657–666Zhuo Ga, Deji Zhuoma, Nima Ji, 2017. Distribution of soil moisture over the Qinghai–Tibetan Plateau and its effect on the precipitation in June and July over the mid-lower reaches of Yangtze River basin [J]. Plateau Meteor. (in Chinese), 36(3): 657–666. doi: 10.7522/j.issn.1000-0534.2016.00073 -