高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两类厄尔尼诺背景下MJO对太平洋阻塞频率的调节作用

高铭祥 杨双艳 王强 李天明

高铭祥, 杨双艳, 王强, 等. 2022. 两类厄尔尼诺背景下MJO对太平洋阻塞频率的调节作用[J]. 大气科学, 46(X): 1−15 doi: 10.3878/j.issn.1006-9895.2112.21105
引用本文: 高铭祥, 杨双艳, 王强, 等. 2022. 两类厄尔尼诺背景下MJO对太平洋阻塞频率的调节作用[J]. 大气科学, 46(X): 1−15 doi: 10.3878/j.issn.1006-9895.2112.21105
GAO Mingxiang, YANG Shuangyan, WANG Qiang, et al. 2022. Impact of Madden–Julian Oscillation on Pacific Blocking Frequency during Two Types of El Niño [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(X): 1−15 doi: 10.3878/j.issn.1006-9895.2112.21105
Citation: GAO Mingxiang, YANG Shuangyan, WANG Qiang, et al. 2022. Impact of Madden–Julian Oscillation on Pacific Blocking Frequency during Two Types of El Niño [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(X): 1−15 doi: 10.3878/j.issn.1006-9895.2112.21105

两类厄尔尼诺背景下MJO对太平洋阻塞频率的调节作用

doi: 10.3878/j.issn.1006-9895.2112.21105
基金项目: 国家自然科学基金项目42088101,江苏省自然科学基金项目BK20210660,热带海洋环境国家重点实验室(中国科学院南海海洋研究所)开放课题LTO2116
详细信息
    作者简介:

    高铭祥,男,1995年出生,硕士研究生,主要从事海—气相互作用和季节内振荡研究。E-mail: Mingxiang.Gao@nuist.edu.cn

    通讯作者:

    杨双艳,E-mail: yangsy@nuist.edu.cn

  • 中图分类号: P461

Impact of Madden–Julian Oscillation on Pacific Blocking Frequency during Two Types of El Niño

Funds: National Natural Science Foundation of China (Grant 42088101), Natural Science Foundation of Jiangsu Province (Grants BK20210660), State Key Laboratory of Tropical Oceanography (South China Sea Institute of Oceanology Chinese Academy of Sciences) (Grant LTO2116)
  • 摘要: 本文基于1979~2019年ERA-interim逐日再分析数据和二维阻塞指数,探究了冬季两类(中部型和东部型)厄尔尼诺背景下热带季节内振荡(MJO)对太平洋地区阻塞频率的调节作用。本研究选取出现频次较高且平均振幅较强的位相3和7进行研究。结果表明,在两类厄尔尼诺背景下MJO第3位相期间,MJO激发的遥相关位置相似,均对应极地地区(白令海地区)正(负)的位势高度异常,从而使高纬度太平洋地区均出现正的阻塞频率异常。在东部型厄尔尼诺背景下MJO第7位相(EP7)期间中高纬太平洋地区存在正的阻塞频率异常。但是在中部型厄尔尼诺背景下MJO第7位相(CP7)期间没有大范围显著的异常阻塞频率。这是因为EP7期间MJO激发的异常Rossby波源位于急流核区的西北部,使得MJO的遥相关可以传至50°N以北,引起中高纬度地区有利于阻塞频率增加的位势高度异常。然而CP7期间MJO激发的异常Rossby波源位于急流核区内部,使得对应的遥相关仅在副热带急流中传播,对高纬度地区的位势高度影响较小,导致该时期内没有大范围显著的阻塞频率异常。最后本文使用ECHAM4.6气候模式验证了上述结论。
  • 图  1  东部型(EP)厄尔尼诺年(左列)与中部型(CP)厄尔尼诺年(右列)冬季(a、b)海表面温度异常(SSTA,单位:K)合成、(c、d)超前MJO第3位相和(e、f)第7位相6~13天的向外长波辐射(OLR)异常(单位:W m−2)合成Fig.1 Composites of wintertime (a, b) SSTA (Sea Surface Temperature Anomalies, units: K) and OLR (Outgoing Longwave Radiation) anomalies (units: W m−2) with a 6–13-day lead for MJO (Madden–Julian Oscillation) (c, d) phase 3 and (e, f) phase 7 during EP (Eastern Pacific) El Niño (left column) and CP (Central Pacific) El Niño (right column)

    图  2  由MJO指数(RMM1与RMM2)定义的MJO空间位相以及各位相强事件的出现频次(单位:d)和平均振幅(频次数值下方数字)

    Figure  2.  Phase space diagram defined by the MJO index (RMM1 and RMM2), as well as the frequency (units: d) and the average amplitude (numbers below frequency) of the strong events associated with each MJO phase

    图  3  EP厄尔尼诺年(左列)、CP厄尔尼诺年(右列)(a、b)总的冬季太平洋地区阻塞频率、MJO第3位相期间冬季(c、d)太平洋地区阻塞频率以及(e、f)太平洋地区异常阻塞频率的二维分布。打点区域通过0.05的显著性水平检验,(a–d)上方的max代表对应时期内最大的阻塞频率,(e–f)上方的max代表对应时期内频率异常的最大值

    Figure  3.  Horizontal distribution of (a, b) total Pacific blocking frequency, (c, d) Pacific blocking frequency and (e, f) Pacific blocking frequency anomalies in MJO phase 3 during EP El Niño (left column), CP El Niño (right column) during winter time. The dotted region denotes abnormalities greater than the 0.05 threshold of the significance level. The “max” at the top of (a–d) denotes the highest blocking frequency anomalies with the greatest magnitude. The “max” at the top of (e, f) indicates the maximum blocking frequency anomalies

    图  4  图3cf,但为MJO第7位相

    Figure  4.  Same as Fig. 3cf, respectively, but for MJO phase 7

    图  5  (a)EP3、(b)CP3、(c)EP7和(d)CP7期间500 hPa位势高度异常合成(阴影;单位:gpm)分布。黑色实线区域代表太平洋地区(40°N~75°N,120°E~140°W),矢量箭头代表对应时期500 hPa纬向风异常合成(单位:m s−1),红色线是对应时期异常阻塞频率等于16%的等值线,打点区域表示通过0.05的显著性水平检验

    Figure  5.  Composites of geopotential height anomalies at 500 hPa (shading, units: gpm) during (a) EP3, (b) CP3, (c) EP7, and (d) CP7. The black box indicates the Pacific sector (40°N–75°N, 120°E–140°W). Vectors are composites of zonal wind anomalies at 500 hPa for the indicated time (units: m s−1). The red contours indicates a 16% increase in Pacific blocking frequency throughout the comparable time. The dotted region denotes abnormalities greater than the 0.05 threshold of significance

    图  6  (a)EP3、(b)CP3、(c)EP7和(d)CP7期间300 hPa的流函数(等值线,间隔:8×105 m s−2)和波活动通量(矢量,单位:m2 s−2),以及超前对应时期6~13天的OLR异常的合成(阴影;单位:W m−2)。红色实线为正流函数异常,蓝色虚线为负流函数异常,0等值线省略;波活动通量仅给出大于1 m2 s−2的矢量;图中字母“A”和“C”分别代表反气旋性环流异常中心和气旋性环流异常中心;绿色实线代表各时期遥相关波列

    Figure  6.  Composites of the 300 hPa stream function (contours, intervals: 8×105 m s−2) and wave activity flux anomalies (vectors, unit: m2 s−2) during (a) EP3, (b) CP3, (c) EP7, and (d) CP7 and outgoing longwave radiation anomalies (shading; units: W m−2) with 6–13-day leading for the corresponding period. Positive values are represented by solid contours, negative values by dashed contours, and the zero line is excluded. Vectors having a magnitude of wave activity flux greater than 1 m2 s−2 are depicted. The letters “A” and “C,” respectively, indicate the centers of anticyclonic and cyclonic anomalies. The green contour indicates a teleconnection pattern

    图  7  (a)EP3、(b)CP3、(c)EP7和(d)CP7期间200 hPa的异常Rossby波源水平分布(阴影,单位:10−10 s−2)。红色(灰色)虚线是纬向风速等于45 m s−1(65 m s−1)的等值线

    Figure  7.  Horizontal distribution of an anomalous Rossby wave source at 200 hPa (shading, units: 10−10 s−2) during (a) EP3, (b) CP3, (c) EP7, and (d) CP7. The dashed red (gray) contour indicates the 200 hPa-zonal wind equal to 45 m s−1 (65 m s−1)

    图  8  EP7(左列)、CP7(右列)期间(a、b)观测的300 hPa位势高度异常合成(等值线,单位:gpm)和(c、d)模式模拟的300 hPa位势高度异常场(等值线)叠加敏感试验的大气加热率(阴影,单位:K)分布。图中方框区域表示关注的重点区域,字母“A”和“C”分别代表反气旋性环流异常中心和气旋性环流异常中心;(a、b)中阴影区分别表示图1e–f方框内负的OLR异常(单位:W m−2

    Figure  8.  Composites of (a, b) the observed 300-hPa geopotential height anomalies (contours, units: gpm) and (c, d) the simulated 300 hPa-geopotential height anomalies (contours) superposing the rate of air heating from the ECHAM4.6 model (in sensitivity experiments) during EP7 (left column) and CP7 (right column). The boxes denote the critical region at the appropriate moment. The letters “A” and “C” denote the anticyclonic and cyclonic anomaly centers, respectively. The coloring in (a, b) indicates negative outgoing longwave radiation anomalies (units: W m−2) in the box of Fig.1e–f

    表  1  两组控制试验与四组敏感试验的方案

    Table  1.   Description of two control experiments and four sensitivity experiments

    试验名称具体方案
    EP厄尔尼诺的控制试验(EP_C)在模式的冬季(DJF)海温气候态中,加入与EP厄尔尼诺相关的暖海温异常(16°S~10°N,170°E~80°W;图1a虚线区
    域) ,其他月份仍是气候态海温场的SST,且在模式中不加入相关的大气加热率
    CP厄尔尼诺的控制试验(CP_C)在模式的冬季(DJF)海温气候态中,加入与CP厄尔尼诺相关的暖海温异常(16°S~10°N,160°E~80°W;图1b虚线区
    域) ,其他月份仍是气候态海温场的SST,且在模式中不加入相关的大气加热率
    EP3期间的敏感试验(EP3_S)海温的操作与EP_C相同,并加入超前EP3时期6~13天与MJO对流相对应的大气加热率(20°S~10°N;60°~90°E;
    图1c红色虚线区域)
    CP3期间的敏感试验(CP3_S)海温的操作与CP_C相同,并加入超前CP3时期6~13天与MJO对流相对应的大气加热率(15°S~15°N,0°~80°E;
    图1d红色虚线区域)
    EP7期间的敏感试验(EP7_S)海温的操作与EP_C相同,并加入超前EP7时期6~13天与MJO对流相对应的大气加热率(15°S~10°N,110°E~170°W;图1e红色虚线区域)
    CP7期间的敏感试验(CP7_S)海温的操作与CP_C相同,并加入超前CP7时期6~13天与MJO对流相对应的大气加热率(20°S~20°N,120°~170°E;
    图1f红色虚线区域)
    下载: 导出CSV
  • [1] Buehler T, Raible C C, Stocker T F. 2011. The relationship of winter season North Atlantic blocking frequencies to extreme cold or dry spells in the ERA-40 [J]. Tellus A, 63(2): 174−187. doi: 10.1111/j.1600-0870.2010.00492.x
    [2] Chen X, Ling J, Li C Y. 2016. Evolution of the Madden-Julian Oscillation in two types of El Niño [J]. J. Climate, 29(5): 1919−1934. doi: 10.1175/jcli-d-15-0486.1
    [3] Dee D P, Uppala S M, Simmons A J, et al. 2011. The ERA–interim reanalysis: Configuration and performance of the data assimilation system [J]. Quart. J. Roy. Meteor. Soc., 137(656): 553−597. doi: 10.1002/qj.828
    [4] Dole R, Hoerling M, Perlwitz J, et al. 2011. Was there a basis for anticipating the 2010 Russian heat wave? [J] Geophys. Res. Lett. , 38(6): L06702. doi:10.1029/2010gl046582
    [5] Duchon C E. 1979. Lanczos filtering in one and two dimensions [J]. J. Appl. Meteor., 18(8): 1016−1022. doi: 10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2
    [6] Feng J, Chen W, Tam C Y, et al. 2011. Different impacts of El Niño and El Niño Modoki on China rainfall in the decaying phases [J]. Int. J. Climatol., 31(14): 2091−2101. doi: 10.1002/joc.2217
    [7] Ferranti L, Palmer T N, Molteni F, et al. 1990. Tropical-extratropical interaction associated with the 30–60 day oscillation and its impact on medium and extended range prediction [J]. J. Atmos. Sci., 47(18): 2177−2199. doi: 10.1175/1520-0469(1990)047<2177:TEIAWT>2.0.CO;2
    [8] Gill A E. 1980. Some simple solutions for heat-induced tropical circulation [J]. Quart. J. Roy. Meteor. Soc., 106(449): 447−462. doi: 10.1002/qj.49710644905
    [9] Gollan G, Greatbatch R J. 2017. The relationship between Northern Hemisphere winter blocking and tropical modes of variability [J]. J. Climate, 30(22): 9321−9337. doi: 10.1175/JCLI-D-16-0742.1
    [10] Henderson S A, Maloney E D, Barnes E A. 2016. The influence of the Madden-Julian Oscillation on Northern Hemisphere winter blocking [J]. J. Climate, 29(12): 4597−4616. doi: 10.1175/JCLI-D-15-0502.1
    [11] Henderson S A, Maloney E D, Son S W. 2017. Madden-Julian Oscillation Pacific teleconnections: The impact of the basic state and MJO representation in general circulation models [J]. J. Climate, 30(12): 4567−4587. doi: 10.1175/JCLI-D-16-0789.1
    [12] Henderson S A, Maloney E D. 2018. The impact of the Madden-Julian Oscillation on high-latitude winter blocking during El Niño-Southern Oscillation events [J]. J. Climate, 31(13): 5293−5318. doi: 10.1175/JCLI-D-17-0721.1
    [13] Hoell A, Barlow M, Wheeler M C, et al. 2014. Disruptions of El Niño-Southern Oscillation teleconnections by the Madden-Julian Oscillation [J]. Geophys. Res. Lett., 41(3): 998−1004. doi: 10.1002/2013GL058648
    [14] Horel J D, Wallace J M. 1981. Planetary-Scale atmospheric phenomena associated with the southern oscillation [J]. Mon. Wea. Rev., 109(4): 813−829. doi: 10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2
    [15] Hoskins B J, Karoly D J. 1981. The steady linear response of a spherical atmosphere to thermal and orographic forcing [J]. J. Atmos. Sci., 38(6): 1179−1196. doi: 10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2
    [16] Hoskins B J, Ambrizzi T. 1993. Rossby wave propagation on a realistic longitudinally varying flow [J]. J. Atmos. Sci., 50(12): 1661−1671. doi: 10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2
    [17] Kao H Y, Yu J Y. 2009. Contrasting eastern-Pacific and central-Pacific types of ENSO [J]. J. Climate, 22(3): 615−632. doi: 10.1175/2008JCLI2309.1
    [18] Karoly D J. 1983. Rossby wave propagation in a barotropic atmosphere [J]. Dyn. Atmos. Oceans, 7(2): 111−125. doi: 10.1016/0377-0265(83)90013-1
    [19] Kug J S, Jin F F, An S I. 2009. Two types of El Niño events: Cold tongue El Niño and warm pool El Niño [J]. J. Climate, 22(6): 1499−1515. doi: 10.1175/2008jcli2624.1
    [20] 李春, 孙照渤. 2003. 中纬度阻塞高压指数与华北夏季降水的联系 [J]. 南京气象学院学报, 26(4): 458−464. doi: 10.3969/j.issn.1674-7097.2003.04.003

    Li C, Sun Z B. 2003. Association of mid-latitude blocking high index with summer precipitation in North China [J]. Journal of Nanjing Institute of Meteorology (in Chinese), 26(4): 458−464. doi: 10.3969/j.issn.1674-7097.2003.04.003
    [21] 李崇银, 顾薇. 2010. 2008年1月乌拉尔阻塞高压异常活动的分析研究 [J]. 大气科学, 34(5): 865−874. doi: 10.3878/j.issn.1006-9895.2010.05

    Li C Y, Gu W. 2010. An analyzing study of the anomalous activity of blocking high over the Ural mountains in January 2008 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34(5): 865−874. doi: 10.3878/j.issn.1006-9895.2010.05
    [22] 李峰, 丁一汇. 2004. 近30年夏季亚欧大陆中高纬度阻塞高压的统计特征 [J]. 气象学报, 62(3): 347–354. Li F, Ding Y H. 2004. Statistical characteristic of atmospheric blocking in the Eurasia high-mid latitudes based on recent 30-year summers [J]. Acta Meteor. Sinica (in Chinese), 62(3): 347−354. doi:10.11676/qxxb2004.035
    [23] Li S L, Hoerling M P, Peng S L, et al. 2006. The annular response to tropical Pacific SST forcing [J]. J. Climate, 19(9): 1802−1819. doi: 10.1175/JCLI3668.1
    [24] 李亚飞, 任荣彩. 2019. 北半球冬季各阻塞系统对大范围极端温度异常的单独和协同影响 [J]. 大气科学, 43(6): 1313−1328. doi: 10.3878/j.issn.1006-9895.1811.18214

    Li Y F, Ren R C. 2019. The independent and coordinative influences of the four blocking systems in the Northern Hemisphere winter on the occurrence of widespread extreme cold surface temperature [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(6): 1313−1328. doi: 10.3878/j.issn.1006-9895.1811.18214
    [25] Liebmann B, Smith C A. 1996. Description of a complete (interpolated) outgoing longwave radiation dataset [J]. Bull. Amer. Meteor. Soc., 77(6): 1275−1277.
    [26] 刘刚, 徐士琦, 廉毅. 2019. 夏季亚洲阻塞高压识别及其对中国东北气候异常的可能影响: 不同再分析资料对比 [J]. 气象学报, 77(2): 303−314. doi: 10.11676/qxxb2019.007

    Liu G, Xu S Q, Lian Y. 2019. Recognition results of blocking high in Asia during summer and its possible impacts on climate anomalies in Northeast China: Comparison of various reanalysis data [J]. Acta Meteor. Sinica (in Chinese), 77(2): 303−314. doi: 10.11676/qxxb2019.007
    [27] Madden R A, Julian P R. 1971. Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific [J]. J. Atmos. Sci., 28(5): 702−708. doi: 10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2
    [28] Masato G, Hoskins B J, Woollings T J. 2012. Wave–breaking characteristics of midlatitude blocking [J]. Quart. J. Roy. Meteor. Soc., 138(666): 1285−1296. doi: 10.1002/qj.990
    [29] Masato G, Hoskins B J, Woollings T. 2013. Wave-breaking characteristics of Northern Hemisphere winter blocking: A two-dimensional approach [J]. J. Climate, 26(13): 4535−4549. doi: 10.1175/JCLI-D-12-00240.1
    [30] Matthews A J, Hoskins B J, Masutani M. 2004. The global response to tropical heating in the Madden-Julian Oscillation during the northern winter [J]. Quart. J. Roy. Meteor. Soc., 130(601): 1991−2011. doi: 10.1256/qj.02.123
    [31] Moon J Y, Wang B, Ha K J. 2011. ENSO regulation of MJO teleconnection [J]. Climate Dyn., 37(5–6): 1133–1149. doi:10.1007/s00382-010-0902-3
    [32] Pang B, Chen Z S, Wen Z P, et al. 2016. Impacts of two types of El Niño on the MJO during boreal winter [J]. Adv. Atmos. Sci., 33(8): 979−986. doi: 10.1007/s00376-016-5272-2
    [33] Pan X, Li T M, Sun Y, et al. 2021. Cause of extreme heavy and persistent rainfall over Yangtze River in summer 2020 [J]. Adv. Atmos. Sci., 38(12): 1994−2009. doi: 10.1007/s00376-021-0433-3
    [34] Pohl B, Matthews A J. 2007. Observed changes in the lifetime and amplitude of the Madden-Julian Oscillation associated with interannual ENSO sea surface temperature anomalies [J]. J. Climate, 20(11): 2659−2674. doi: 10.1175/JCLI4230.1
    [35] Pook M J, Risbey J S, McIntosh P C, et al. 2013. The seasonal cycle of blocking and associated physical mechanisms in the Australian region and relationship with rainfall [J]. Mon. Wea. Rev., 141(12): 4534−4553. doi: 10.1175/MWR-D-13-00040.1
    [36] Rex D F. 1950. Blocking action in the middle troposphere and its effect upon regional climate. I: An aerological study of blocking action [J]. Tellus, 2(3): 196−211. doi: 10.3402/tellusa.v2i3.8546
    [37] Roeckner E, Arpe K, Bengtsson L, et al. 1996. The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate [R]. Report No. 218.
    [38] Sardeshmukh P D, Hoskins B J. 1988. The generation of global rotational flow by steady idealized tropical divergence [J]. J. Atmos. Sci., 45(7): 1228−1251. doi: 10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2
    [39] Scherrer S C, Croci-Maspoli M, Schwierz C, et al. 2006. Two-dimensional indices of atmospheric blocking and their statistical relationship with winter climate patterns in the Euro-Atlantic region [J]. Int. J. Climatol., 26(2): 233−249. doi: 10.1002/joc.1250
    [40] Seo K H, Lee H J. 2017. Mechanisms for a PNA-like teleconnection pattern in response to the MJO [J]. J. Atmos. Sci., 74(6): 1767−1781. doi: 10.1175/JAS-D-16-0343.1
    [41] Simmons A J, Wallace J M, Branstator G W. 1983. Barotropic wave propagation and instability, and atmospheric teleconnection patterns [J]. J. Atmos. Sci., 40(6): 1363−1392. doi: 10.1175/1520-0469(1983)040<1363:BWPAIA>2.0.CO;2
    [42] Takaya K, Nakamura H. 2001. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow [J]. J. Atmos. Sci., 58(6): 608−627. doi: 10.1175/1520-0469(2001)058<0608:Afoapi>2.0.Co;2
    [43] Wang J B, Kim H M, Chang E K M, et al. 2018. Modulation of the MJO and North Pacific storm track relationship by the QBO [J]. J. Geophys. Res.: Atmos., 123(8): 3976−3992. doi: 10.1029/2017jd027977
    [44] Weng H Y, Behera S K, Yamagata T. 2009. Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events [J]. Climate Dyn., 32(5): 663−674. doi: 10.1007/s00382-008-0394-6
    [45] Wheeler M C, Hendon H H. 2004. An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction [J]. Mon. Wea. Rev., 132(8): 1917−1932. doi: 10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2
    [46] Yoo C, Park S, Kim D, et al. 2015. Boreal winter MJO teleconnection in the community atmosphere model version 5 with the unified convection parameterization [J]. J. Climate, 28(20): 8135−8150. doi: 10.1175/JCLI-D-15-0022.1
    [47] 袁媛, 杨辉, 李崇银. 2012. 不同分布型厄尔尼诺事件及对中国次年夏季降水的可能影响 [J]. 气象学报, 70(3): 467−478. doi: 10.11676/qxxb2012.039

    Yuan Y, Yang H, Li C Y. 2012. Study of El Niño events of different types and their potential impact on the following summer precipitation in China [J]. Acta Meteor. Sinica (in Chinese), 70(3): 467−478. doi: 10.11676/qxxb2012.039
    [48] 袁媛, 李崇银, 杨崧. 2014. 与厄尔尼诺和拉尼娜相联系的中国南方冬季降水的年代际异常特征 [J]. 气象学报, 72(2): 237−255. doi: 10.11676/qxxb2014.014

    Yuan Y, Li C Y, Yang S. 2014. Decadal anomalies of winter precipitation over southern China in association with El Niño and La Niña [J]. Acta Meteor. Sinica (in Chinese), 72(2): 237−255. doi: 10.11676/qxxb2014.014
    [49] Zhang W J, Jin F F, Ren H L, et al. 2012. Differences in teleconnection over the North Pacific and rainfall shift over the USA associated with two types of El Niño during boreal autumn [J]. J. Meteor. Soc. Japan, 90(4): 535−552. doi: 10.2151/jmsj.2012-407
    [50] Zhu Z W, Li T M, He J H. 2014. Out-of-Phase relationship between boreal spring and summer decadal rainfall changes in southern China [J]. J. Climate, 27(3): 1083−1099. doi: 10.1175/jcli-d-13-00180.1
    [51] Zhu Z W, Li T M. 2016. A new paradigm for continental U. S. summer rainfall variability: Asia–North America teleconnection [J]. J. Climate, 29(20): 7313−7327. doi: 10.1175/jcli-d-16-0137.1
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  178
  • HTML全文浏览量:  29
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-28
  • 录用日期:  2022-02-28
  • 网络出版日期:  2022-02-28

目录

    /

    返回文章
    返回