高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长江流域梅雨期大范围持续性强降水事件的自维持机制:2020年一次暴雨过程的个例分析

马骄 魏科 陈文

马骄, 魏科, 陈文. 2022. 长江流域梅雨期大范围持续性强降水事件的自维持机制:2020年一次暴雨过程的个例分析[J]. 大气科学, 46(6): 1394−1406 doi: 10.3878/j.issn.1006-9895.2201.21082
引用本文: 马骄, 魏科, 陈文. 2022. 长江流域梅雨期大范围持续性强降水事件的自维持机制:2020年一次暴雨过程的个例分析[J]. 大气科学, 46(6): 1394−1406 doi: 10.3878/j.issn.1006-9895.2201.21082
MA Jiao, WEI Ke, CHEN Wen. 2022. Self-maintaining Mechanism of a Large-Scale Persistent Heavy Rainfall Event in Mei-yu Period: Case Study of Yangtze River Heavy Rainfall in 2020 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(6): 1394−1406 doi: 10.3878/j.issn.1006-9895.2201.21082
Citation: MA Jiao, WEI Ke, CHEN Wen. 2022. Self-maintaining Mechanism of a Large-Scale Persistent Heavy Rainfall Event in Mei-yu Period: Case Study of Yangtze River Heavy Rainfall in 2020 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(6): 1394−1406 doi: 10.3878/j.issn.1006-9895.2201.21082

长江流域梅雨期大范围持续性强降水事件的自维持机制:2020年一次暴雨过程的个例分析

doi: 10.3878/j.issn.1006-9895.2201.21082
基金项目: 国家自然科学基金项目(NSFC-ISF国际合作与交流项目)41961144025
详细信息
    作者简介:

    马骄,女,1993年出生,博士研究生,主要从事极端降水,暴雨事件研究。E-mail: 15611531586@163.com

    通讯作者:

    魏科,E-mail:weike@mail.iap.ac.cn

  • 中图分类号: P448

Self-maintaining Mechanism of a Large-Scale Persistent Heavy Rainfall Event in Mei-yu Period: Case Study of Yangtze River Heavy Rainfall in 2020

Funds: National Natural Science Foundation of China—International Cooperation and Exchange Projects (Grant 41961144025)
  • 摘要: 长江流域梅雨期降水强度大、范围广、持续时间长,经常导致大范围严重洪涝灾害。该类强降水事件的内动力学过程值得深入讨论。本文以2020年7月5~9日长江流域一次大范围持续性降水为例,通过WRF数值试验分析了降水过程中的凝结潜热与环流系统的相互作用过程。结果表明:在此次大范围持续性强降水事件中,由于凝结潜热的释放,在高层形成高压异常,有利于南亚高压(SAH)加强东伸,SAH东伸的同时与西太平洋副热带高压(WPSH)相互作用,加强WPSH西伸。在潜热释放中心的中低层形成低压异常,有助于阻挡WPSH北上,从而形成稳定的WPSH,有利于降雨系统在长江流域的维持。东亚夏季风演变表现为明显的停滞与北跳特征,其中WPSH的活动是季风雨带演变的核心。本文研究表明,大尺度凝结潜热释放可以通过调节天气系统形成稳定的环流系统,从而有利于雨带加强和维持。这种大尺度雨带凝结潜热释放与环流的相互作用机制可能是夏季风雨带停滞的重要过程。
  • 图  1  数值模拟嵌套(D01、D02和D03)区域和地形高度(填色,单位:m)示意图。D01格距为45 km,格点数为100×85;D02格距为15 km,格点数为208×169;D03格距为5 km,格点数为442×388。黑色虚线区域为本研究关注区域

    Figure  1.  Topography of the nested mode grid domains (D01, D02, and D03) and terrain height (shaded, units: m). The D01 grid has a 45-km resolution with a grid number of 100×85; the grid resolution of the D02 grid is 15 km, and the grid number is 208×169; the D03 grid resolution is 5 km, and the grid number is 442×388. The black dotted box denotes the study area of the Yangtze River’ s middle and lower reaches

    图  2  2020年7月5~9日中国东部区域的过程总降水量( 单位:mm)分布:(a)DGPC数据;(b)LH试验;(c)noLH试验。虚线区域为本研究关注区域

    Figure  2.  Distributions of accumulated precipitation (units: mm) from July 5 to July 9, 2020: (a) DGPC data; (b) LH simulation; (c) noLH simulation. The dotted boxes denote the study area of the Yangtze River’ s middle and lower reaches

    图  3  2020年7月5~9日的日降水量(单位:mm):(a1–e1)DGPC观测数据;(a2–e2)LH试验;(a3–e3)noLH试验。虚线区域为本研究关注区域

    Figure  3.  Daily precipitation (units: mm) from July 5 to July 9, 2020, for (a1–e1) DGPC data, (a2–e3) LH simulation, and (a3–e3) noLH simulations. The dotted boxes denote the study area of the Yangtze River’ s middle and lower reaches

    图  4  2020年7月5~9日环流场和水汽场配置。(a1–e1)500 hPa等压面上的位势高度场(填色,单位:dagpm)、西太平洋副热带高压(500 hPa,588 dagpm蓝色实线)、高空西风急流(矢量,200 hPa,|V|≥32 m s−1)和南亚高压(200 hPa,1252 dagpm红色实线)分布;(a2–e2)850 hPa的比湿场(填色,单位:kg kg−1)和流场分布;(a3–e3)850 hPa水汽通量散度(填色,单位:10−7 s−1 kg kg−1)和水汽通量(矢量≥0.05 QUV;1 QUV=1 m s−1 kg kg−1)分布。长方形区域为本研究关注区域,下同

    Figure  4.  Configuration of the atmospheric circulation and water vapor transport from July 5 to July 9, 2020. (a1–e1) Geopotential height at 500 hPa (shaded, units: dagpm), WPSH (blue lines, 500 hPa, 588 dagpm), the high-level jet at 200 hPa (vector, |V|≥32 m s−1) and SAH (red lines, 200 hPa, 1252 dagpm); (a2–e2) specific humidity (contours, units: kg kg−1) and streamlines at 850 hPa; (a3–e3) divergence of water vapor flux (contours, units: 10−7 s−1 kg kg−1) and water vapor flux (vectors≥0.05 QUV; 1 QUV=1 m s−1 kg kg−1) at 850 hPa. The boxes denote the study area of the Yangtze River’ s middle and lower reaches, the same below

    图  5  2020年7月5~9日200 hPa散度场(填色,单位:10−5 s−1)和风场(矢量,|V|≥32 m s−1)分布:(a1–e1)LH试验和(a2–e2)noLH试验。图中黑色粗实线为南亚高压SAH(200 hPa,1258 dagpm)

    Figure  5.  Distributions of daily divergence (contours, units: 10−5 s−1) and high-level jet (vectors, |V|≥32 m s−1) at 200 hPa from July 5 to 9, 2020, for (a1–e1) LH and (a2–e2) no LH simulations. The black solid lines present the SAH (200 hPa, 1258 dagpm)

    图  6  2020年7月5~9日500 hPa位势高度场(填色,单位:dagpm)和850 hPa流场(流线)分布:(a1–e1)LH试验;(a2–e2)noLH试验

    Figure  6.  Geopotential height (shaded, units: dagpm) at 500 hPa and the streamlines at 850 hPa from July 5 to 9, 2020, for LH (a1–e1) and noLH (a2–e2) simulations

    图  7  2020年7月5~9日850 hPa水汽通量散度(填色,单位: 10−7 s−1 kg kg−1)和水汽通量(矢量≥0.1 QUV)分布:(a1–e1)LH试验;(a2–e2)noLH试验

    Figure  7.  Distributions of water vapor flux (vectors≥0.1 QUV) and its divergence (shaded, units: 10−7 s−1 kg kg−1) at 850 hPa from July 5 to July 9, 2020, for (a1–e1) LH and (a2–e2) no LH simulations

    图  8  (a)LH试验中2020年7月5~9日期间过程累积降水量(等值线,单位:mm)与500 hPa凝结潜热加热(填色,单位:K)分布;(b)沿着115°E累积凝结潜热加热量垂直—经向剖面,(b)中黑色实心点为过程最大降水量的纬度(30°N)

    Figure  8.  (a) Accumulated precipitation (shaded, units: mm) and condensation latent heat (shading, units: K) from July 5 to 9, 2020, for the LH simulation. (b) The meridional section of the accumulated condensation latent heat (shading, units: K) along 115°E from July 5 to 9, 2020, the dot in (b) is the latitude (30°N) of the maximum process precipitation

    图  9  2020年7月5~9日过程平均(a)LH试验和(b)noLH试验沿着115°E的经向—垂直环流(v、w×5000,单位:m s−1)以及(c)两者的差值

    Figure  9.  Process average meridional cross section of the meridional–vertical circulation (vw×5000, units: m s−1) along 115°E for (a) LH and (b) no LH simulations and (c) their differences from July 5 to 9, 2020

    图  10  2020年7月5~9日(a1–e1)LH试验与noLH试验在200 hPa和(a2–e2)500 hPa的位势高度场差值(填色,单位:dagpm)和风场差值(矢量箭头,单位:m s−1

    Figure  10.  Daily geopotential height shaded, units: dagpm) and wind differences (vectors, units: m s−1) at 200 hPa (a1–e1) and 500 hPa (a2–e2) between LH and noLH simulations from July 5 to 9, 2020

    图  11  大尺度梅雨雨带的自我维持机理图。红色区域为反气旋异常,蓝色区域为气旋异常;SAH为南亚高压,WPSH为西太平洋副热带高压

    Figure  11.  Self-maintaining mechanism of a heavy rainfall system in the Mei-yu rain belt. The red and blue circles represent the anticyclonic anomaly at higher levels and the cyclonic anomaly at lower levels, respectively. SAH stands for South Asia high, and WPSH is the Western Pacific Subtropical high

    表  1  LH试验方案设置

    Table  1.   Details of the LH experiment setup

    嵌套网格
    D01D02D03
    水平格点数100×85208×169442×388
    格距45 km15 km5 km
    积分步长270 s90 s30 s
    积云参数化方案Kain-Fritsch
    (Kain, 2004)
    Kain-Fritsch
    (Kain, 2004)
    /
    微物理参数化方案Goddard
    (Tao et al., 2016)
    Goddard
    (Tao et al., 2016)
    Goddard
    (Tao et al., 2016)
    长波辐射参数化方案RRTM
    (Mlawer et al., 1997)
    RRTM
    (Mlawer et al., 1997)
    RRTM
    (Mlawer et al., 1997)
    短波辐射参数化方案Dudhia
    (Dudhia, 1989)
    Dudhia
    (Dudhia, 1989)
    Dudhia
    (Dudhia, 1989)
    边界层参数化方案YSU
    (Hong and Dudhia, 2004)
    YSU
    (Hong and Dudhia, 2004)
    YSU
    (Hong and Dudhia, 2004)
    陆面过程参数化方案Noah
    (Valmassoi et al., 2020)
    Noah
    (Valmassoi et al., 2020)
    Noah
    (Valmassoi et al., 2020)
    下载: 导出CSV
  • [1] Bhide U V, Mujamdar V R, Ghanekar S P, et al. 1997. A diagnostic study on heat sources and moisture sinks in the monsoon trough area during active-break phases of the Indian summer monsoon, 1979 [J]. Tellus A:Dynamic Meteorology and Oceanography, 49(4): 455−473. doi: 10.1034/j.1600-0870.1997.t01-2-00004.x
    [2] 蔡芗宁, 宗志平, 马杰, 等. 2020. 2020年梅雨特征分析及模式中期预报性能检验 [J]. 暴雨灾害, 39(6): 629−636. doi: 10.3969/j.issn.1004-9045.2020.06.011

    Cai X N, Zhong Z P, Ma J, et al. 2020. Analysis of Meiyu characteristics and performance verification of the medium-range forecasting models in 2020 [J]. Torrential Rain and Disasters (in Chinese), 39(6): 629−636. doi: 10.3969/j.issn.1004-9045.2020.06.011
    [3] Chang E K M, Guo Y J. 2007. Dynamics of the stationary anomalies associated with the interannual variability of the midwinter Pacific storm track—The roles of tropical heating and remote eddy forcing [J]. J. Atmos. Sci., 64(7): 2442−2461. doi: 10.1175/Jas3986.1
    [4] 车彦军, 管小春, 王世金, 等. 2020. 中国东部季风区800 mm等降水量线的空间变化分析 [J]. 高原气象, 39(5): 997−1006. doi: 10.7522/j.issn.1000-0534.2019.00094

    Che Y J, Guan X C, Wang S J, et al. 2020. Spatial analysis of annual precipitation lines of 800 mm in the eastern monsoon of China [J]. Plateau Meteorology (in Chinese), 39(5): 997−1006. doi: 10.7522/j.issn.1000-0534.2019.00094
    [5] 陈涛, 张芳华, 于超, 等. 2020. 2020年6–7月长江中下游极端梅雨天气特征分析 [J]. 气象, 46(11): 1415−1426. doi: 10.7519/j.issn.1000-0526.2020.11.003

    Chen T, Zhang F H, Yu C, et al. 2020. Synoptic analysis of extreme Meiyu precipitation over Yangtze River basin during June–July 2020 [J]. Meteorological Monthly (in Chinese), 46(11): 1415−1426. doi: 10.7519/j.issn.1000-0526.2020.11.003
    [6] Chen Y, Zhai P M. 2016. Mechanisms for concurrent low–latitude circulation anomalies responsible for persistent extreme precipitation in the Yangtze River valley [J]. Climate Dyn., 47(3–4): 989−1006. doi: 10.1007/s00382-015-2885-6
    [7] Chen Y, Zhai P M, Liao Z, et al. 2019. Persistent precipitation extremes in the Yangtze River valley prolonged by opportune configuration among atmospheric teleconnections [J]. Quart. J. Roy. Meteor. Soc., 145(723): 2603−2626. doi: 10.1002/qj.3581
    [8] Cho H R, Chen G T J. 1995. Mei-yu frontogenesis [J]. J. Atmos. Sci., 52(11): 2109−2120. doi: 10.1175/1520-0469(1995)052<2109:MYF>2.0.CO;2
    [9] Cui C G, Dong X Q, Wang B, et al. 2021. Phase two of the integrative monsoon frontal rainfall experiment (IMFRE-II) over the middle and lower reaches of the Yangtze River in 2020 [J]. Adv. Atmos. Sci., 38(3): 346−356. doi: 10.1007/s00376-020-0262-9
    [10] Dudhia J. 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model [J]. J. Atmos. Sci., 46(20): 3077−3107. doi: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
    [11] Gevorgyan A. 2018. Convection-permitting simulation of a heavy rainfall event in Armenia using the WRF model [J]. J. Geophys. Res.: Atmos., 123(19): 11008−11029. doi: 10.1029/2017jd028247
    [12] Hong S Y, Dudhia J. 2004. Testing of a new nonlocal boundary layer vertical diffusion scheme in numerical weather prediction applications[C]//20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction. Seattle, Washington: American Meteorology Society (AMS).
    [13] Ishizaki N, Ueda H. 2006. Seasonal heating processes over the Indochina Peninsula and the Bay of Bengal prior to the monsoon onset in 1998 [J]. J. Meteor. Soc. Japan, 84(2): 375−387. doi: 10.2151/jmsj.84.375
    [14] Jin Q, Yang X Q, Sun X G, et al. 2013. East Asian summer monsoon circulation structure controlled by feedback of condensational heating [J]. Climate Dyn., 41(7–8): 1885−1897. doi: 10.1007/s00382-012-1620-9
    [15] Kain J. S., Fritsch J. M 1990. A one-dimensional entraining detraining plume model and its application in convective parameterization [J]. Journal of the Atmospheric Sciences, 47(23): 2784−2802. doi: 10.1175/1520-0469(1990)047<2784:Aodepm>2.0.Co;2
    [16] Kain J. S 2004. The Kain-Fritsch convective parameterization: An update [J]. Journal of Applied Meteorology, 43(1): 170−181. doi: 10.1175/1520-0450(2004)043<0170:Tkcpau>2.0.Co;2
    [17] Li C, Deng Y, Cui C G, et al. 2020. Hydrometeor budget of the Meiyu frontal rainstorms associated with two different atmospheric circulation patterns [J]. J. Geophys. Res.: Atmos., 125(16): e2019JD031955. doi: 10.1029/2019JD031955
    [18] Li C F, Yanai M. 1996. The onset and interannual variability of the Asian summer monsoon in relation to land–sea thermal contrast [J]. J. Climate, 9(2): 358−375. doi: 10.1175/1520-0442(1996)009<0358:Toaivo>2.0.Co;2
    [19] 李崇银, 钮学新. 1988. 台风自身动力学过程(CISK)对其移动的影响 [J]. 气象学报, 46(4): 497−501. doi: 10.11676/qxxb1988.064

    Li C Y, Niu X X. 1988. The effect of the typhoon dynamics process (CISK) to its moving [J]. Acta Meteorologica Sinica (in Chinese), 46(4): 497−501. doi: 10.11676/qxxb1988.064
    [20] Li J N, Wang G, Lin W S, et al. 2013a. Cloud–scale simulation study of typhoon Hagupit (2008) Part I: Microphysical processes of the inner core and three-dimensional structure of the latent heat budget [J]. Atmospheric Research, 120–121: 170–180. doi:10.1016/j.atmosres.2012.08.015
    [21] Li J N, Wang G, Lin W S, et al. 2013b. Cloud–scale simulation study of typhoon Hagupit (2008) Part II: Impact of cloud microphysical latent heat processes on typhoon intensity [J]. Atmospheric Research, 120(2013b): 202−215. doi: 10.1016/j.atmosres.2012.08.018
    [22] Li J N, Wu K L, Li F Z, et al. 2016. Cloud-scale simulation study on the evolution of latent heat processes of mesoscale convective system accompanying heavy rainfall: The Hainan case [J]. Atmospheric Research, 169: 331−339. doi: 10.1016/j.atmosres.2015.10.014
    [23] Li R C Y, Zhou W. 2015. Multiscale control of summertime persistent heavy precipitation events over South China in association with synoptic, intraseasonal, and low-frequency background [J]. Climate Dyn. , 45(3–4): 1043–1057. doi:10.1007/s00382-014-2347-6
    [24] Liu B Q, Yan Y H, Zhu C W, et al. 2020. Record–Breaking Meiyu rainfall around the Yangtze River in 2020 regulated by the subseasonal phase transition of the North Atlantic oscillation [J]. Geophys. Res. Lett., 47(22): e2020GL090342. doi: 10.1029/2020GL090342
    [25] Liu Y M. 1998. Impacts of spatially non-uniform diabatic heating on the formation of subtropical anticyclone in boreal summer [D]. Ph. D. dissertation (in Chinese), Institute of Atmospheric Physics, Chinese Academy of Sciences.
    [26] 刘屹岷, 刘辉, 刘平, 等. 1999. 空间非均匀加热对副热带高压形成和变异的影响II: 陆面感热与东太平洋副高 [J]. 气象学报, 57(4): 385−396. doi: 10.11676/qxxb1999.037

    Liu Y M, Liu H, Liu P, et al. 1999. The effect of spatially nonuniform heatingon the formation and variation of subtropical high Part II: Land surface sensible heating and East Pacific subtropical high [J]. Acta Meteorologica Sinica (in Chinese), 57(4): 385−396. doi: 10.11676/qxxb1999.037
    [27] 刘屹岷, 吴国雄, 刘辉, 等. 1999. 空间非均匀加热对副热带高压形成和变异的影响──Ⅲ: 凝结潜热加热与南亚高压及西太平洋副高 [J]. 气象学报, 57(5): 525−538. doi: 10.11676/qxxb1999.051

    Liu Y M, Wu G X, Liu H, et al. 1999. The effect of spatially nonuniform heating on the formation and variation of subtropical high Part Ⅲ: Condensation heating and South Asia high and western Pacific subtropical high [J]. Acta Meteorologica Sinica (in Chinese), 57(5): 525−538. doi: 10.11676/qxxb1999.051
    [28] 刘芸芸, 丁一汇. 2020. 2020年超强梅雨特征及其成因分析 [J]. 气象, 46(11): 1393−1404. doi: 10.7519/j.issn.1000-0526.2020.11.001

    Liu Y Y, Ding Y H. 2020. Characteristics and possible causes for the extreme Meiyu in 2020 [J]. Meteorological Monthly (in Chinese), 46(11): 1393−1404. doi: 10.7519/j.issn.1000-0526.2020.11.001
    [29] Luo X, Fei J F, Huang X G, et al. 2018. Relative roles of dry intrusion, latent heat and instabilities in the Mei-yu rainband life cycle: A case study [J]. Atmospheric Research, 214: 10−20. doi: 10.1016/j.atmosres.2018.07.007
    [30] Luo Z X, Zhou X J, Gao S T. 2006. Two possible mechanisms for vortex self–organization [J]. Science in China Series D, 49(2): 202−211. doi: 10.1007/s11430-005-0092-8
    [31] Mlawer E J, Taubman S J, Brown P D, et al. 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave [J]. J. Geophys. Res., 102(D14): 16663−16682. doi: 10.1029/97JD00237
    [32] Molinari J, Dudek M. 1992. Parameterization of convective precipitation in mesoscale numerical models: A critical review [J]. Mon. Wea. Rev., 120(2): 326−344. doi: 10.1175/1520-0493(1992)120<0326:Pocpim>2.0.Co;2
    [33] Nakamura H, Izumi T, Sampe T. 2002. Interannual and decadal modulations recently observed in the Pacific storm track activity and East Asian winter monsoon [J]. J. Climate, 15(14): 1855−1874. doi: 10.1175/1520-0442(2002)015<1855:Iadmro>2.0.Co;2
    [34] Nasuno T, Yamasaki M. 2001. A representation of cumulus–scale effects in a mesoscale–convection–resolving model for tropical cyclones [J]. J. Meteor. Soc. Japan, 79(5): 1035−1057. doi: 10.2151/jmsj.79.1035
    [35] Ragi A R, Sharan M, Haddad Z S. 2020. Investigation of WRF's ability to simulate the monsoon-related seasonal variability in the thermodynamics and precipitation over southern Peninsular India [J]. Theor. Appl. Climatol., 141(3–4): 1025–1043. doi:10.1007/s00704-020-03240-1
    [36] Rao V B. 1969. On the large scale motion in the tropics with latent heat due to condensation [J]. Pure Appl. Geophys., 77(1): 168−174. doi: 10.1007/Bf00876011
    [37] 任荣彩, 刘屹岷, 吴国雄. 2007. 1998年7月南亚高压影响西太平洋副热带高压短期变异的过程和机制 [J]. 气象学报, 65(2): 183−197. doi: 10.3321/j.issn:0577-6619.2007.02.005

    Ren R C, Liu Y M, Wu G X. 2007. Impact of South Asia high on the short-term variation of the subtropical anticyclone over western Pacific in July 1998 [J]. Acta Meteorologica Sinica (in Chinese), 65(2): 183−197. doi: 10.3321/j.issn:0577-6619.2007.02.005
    [38] Steinfeld D, Pfahl S. 2019. The role of latent heating in atmospheric blocking dynamics: A global climatology [J]. Climate Dyn., 53(2019): 6159−6180. doi: 10.1007/s00382-019-04919-6
    [39] Subrahmanyam K V, Kumar K K. 2016. TRMM observations of Latent heat distribution over the Indian summer monsoon region and associated dynamics [C]//Remote Sensing of the Atmosphere, Clouds, and Precipitation VI. New Delhi, India: SPIE, 98762W. doi:10.1117/12.2223905
    [40] Sugimoto S, Ueno K. 2010. Formation of mesoscale convective systems over the eastern Tibetan Plateau affected by plateau–scale heating contrasts [J]. J. Geophys. Res. :Atmos., 115(D16): D16105. doi: 10.1029/2009jd013609
    [41] Tao W. K., Wu D., Lang S 2016. High-resolution nu-WRF simulations of a deep convective-precipitation system during Mc3e: Further improvements and comparisons between goddard microphysics schemes and observations [J]. Journal of Geophysical Research-Atmospheres, 121(3): 1278−1305. doi: 10.1002/2015jd023986
    [42] Valmassoi A, Dudhia J, Di Sabatino S, et al. 2020. Evaluation of three new surface irrigation parameterizations in the WRF-ARW v3.8. 1 model: The Po valley (Italy) case study [J]. Geoscientific Model Development, 13(7): 3179−3201. doi: 10.5194/gmd-13-3179-2020
    [43] Varga Á J, Breuer H. 2020. Sensitivity of simulated temperature, precipitation, and global radiation to different WRF configurations over the Carpathian Basin for regional climate applications [J]. Climate Dyn., 55(9–10): 2849–2866. doi:10.1007/s00382-020-05416-x
    [44] 汪汇洁, 孙建华, 卫捷, 等. 2014. 近30年我国南方区域持续性暴雨过程的分类研究 [J]. 气候与环境研究, 19(6): 713−725. doi: 10.3878/j.issn.1006-9585.2013.13143

    Wang H J, Sun J H, Wei J, et al. 2014. Classification of persistent heavy rainfall events over southern China during recent 30 years [J]. Climatic and Environmental Research (in Chinese), 19(6): 713−725. doi: 10.3878/j.issn.1006-9585.2013.13143
    [45] 王永光, 娄德君, 刘芸芸. 2020. 2020年长江中下游梅汛期降水异常特征及其成因分析 [J]. 暴雨灾害, 39(6): 549−554. doi: 10.3969/j.issn.1004-9045.2020.06.001

    Wang Y G, Lou D J, Liu Y Y. 2020. Characteristics and causes analysis of abnormal Meiyu rainfall in the middle and lower reaches of Yangtze River valley in 2020 [J]. Torrential Rain and Disasters (in Chinese), 39(6): 549−554. doi: 10.3969/j.issn.1004-9045.2020.06.001
    [46] 温敏, 施晓晖. 2006. 1998年夏季西太副高活动与凝结潜热加热的关系 [J]. 高原气象, 25(4): 616−623. doi: 10.3321/j.issn:1000-0534.2006.04.008

    Wen M, Shi X H. 2006. Relationship between activity of West Pacific subtropical high and condensation latent heating in summer of 1998 [J]. Plateau Meteorology (in Chinese), 25(4): 616−623. doi: 10.3321/j.issn:1000-0534.2006.04.008
    [47] 肖志祥, 谭江红. 2018. 长江流域夏季降水异常主模态变化特征及其成因分析 [J]. 高原气象, 37(5): 1304−1312. doi: 10.7522/j.issn.1000-0534.2018.00019

    Xiao Z X, Tan J H. 2018. The leading modes of summertime precipitation anomalies over the Yangtze River Basin and possible causes [J]. Plateau Meteorology (in Chinese), 37(5): 1304−1312. doi: 10.7522/j.issn.1000-0534.2018.00019
    [48] 杨梦兮, 刘梅, 柯丹, 等. 2020. 2020年江淮地区梅雨异常的成因分析 [J]. 暴雨灾害, 39(6): 555−563. doi: 10.3969/j.issn.1004-9045.2020.06.002

    Yang M X, Liu M, Ke D, et al. 2020. Cause analysis of Meiyu anomaly in Jianghuai region in 2020 [J]. Torrential Rain and Disasters (in Chinese), 39(6): 555−563. doi: 10.3969/j.issn.1004-9045.2020.06.002
    [49] 姚秀萍, 闫丽朱, 张硕. 2019. 大气非绝热加热作用的研究进展与展望 [J]. 气象, 45(1): 1−16. doi: 10.7519/j.issn.1000-0526.2019.01.001

    Yao X P, Yan L Z, Zhang S. 2019. Research progresses and prospects of atmospheric diabatic heating [J]. Meteorological Monthly (in Chinese), 45(1): 1−16. doi: 10.7519/j.issn.1000-0526.2019.01.001
    [50] Yue C J, Shou S W, Li X F. 2009. Water vapor, cloud, and surface rainfall budgets associated with the landfall of typhoon Krosa (2007): A two dimensional cloud-resolving modeling study [J]. Adv. Atmos. Sci., 26(6): 1198−1208. doi: 10.1007/s00376-009-8135-2
    [51] Yun Y X, Liu C H, Luo Y L, et al. 2020. Correction to: Convection-permitting regional climate simulation of warm-season precipitation over eastern China [J]. Climate Dyn., 54(5): 3227−3227. doi: 10.1007/s00382-020-05172-y
    [52] 赵煜飞, 朱江. 2015. 近50年中国降水格点日值数据集精度及评估 [J]. 高原气象, 34(1): 50−58. doi: 10.7522/j.issn.1000-0534.2013.00141

    Zhao Y F, Zhu J. 2015. Assessing quality of grid daily precipitation datasets in China in recent 50 years [J]. Plateau Meteorology (in Chinese), 34(1): 50−58. doi: 10.7522/j.issn.1000-0534.2013.00141
    [53] 赵煜飞, 朱江, 许艳. 2014. 近50a中国降水格点数据集的建立及质量评估 [J]. 气象科学, 34(4): 414−420. doi: 10.3969/2013jms.0008

    Zhao Y F, Zhu J, Xu Y. 2014. Establishment and assessment of the grid precipitation datasets in China for recent 50 years [J]. Journal of the Meteorological Sciences (in Chinese), 34(4): 414−420. doi: 10.3969/2013jms.0008
    [54] Zhou Z M, Deng Y, Hu Y, et al. 2020. Simulating heavy Meiyu rainfall: A note on the choice of the model microphysics scheme [J]. Advances in Meteorology, 2020: 8827071. doi: 10.1155/2020/8827071
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  236
  • HTML全文浏览量:  23
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-14
  • 录用日期:  2022-01-04
  • 网络出版日期:  2022-01-06
  • 刊出日期:  2022-11-24

目录

    /

    返回文章
    返回