高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东天山哈密地区典型暴雨事件对流触发机制对比分析

刘晶 刘兆旭 张晋茹 刘凡 李建刚 曾勇 仝泽鹏 江雨霏 杨莲梅 周玉淑

刘晶, 刘兆旭, 张晋茹, 等. 2022. 东天山哈密地区典型暴雨事件对流触发机制对比分析[J]. 大气科学, 46(4): 965−988 doi: 10.3878/j.issn.1006-9895.2201.21095
引用本文: 刘晶, 刘兆旭, 张晋茹, 等. 2022. 东天山哈密地区典型暴雨事件对流触发机制对比分析[J]. 大气科学, 46(4): 965−988 doi: 10.3878/j.issn.1006-9895.2201.21095
LIU Jing, LIU Zhaoxu, ZHANG Jinru, et al. 2022. Comparison of Convective Triggering Mechanisms of Typical Rainstorm Events in the Hami Area of East Tianshan Mountains [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(4): 965−988 doi: 10.3878/j.issn.1006-9895.2201.21095
Citation: LIU Jing, LIU Zhaoxu, ZHANG Jinru, et al. 2022. Comparison of Convective Triggering Mechanisms of Typical Rainstorm Events in the Hami Area of East Tianshan Mountains [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(4): 965−988 doi: 10.3878/j.issn.1006-9895.2201.21095

东天山哈密地区典型暴雨事件对流触发机制对比分析

doi: 10.3878/j.issn.1006-9895.2201.21095
基金项目: 国家重点研发计划项目2018YFC1507102,国家自然科学基金项目U2003106,中央级公益性科研院所基本科研业务费专项资金项目IDM2020004,新疆维吾尔自治区引进高层次人才天池计划项目(2019)
详细信息
    作者简介:

    刘晶,女,1991年出生,主要从事灾害性天气研究。E-mail: 994365768@qq.com

    通讯作者:

    周玉淑,E-mail: zys@mail.iap.ac.cn

  • 中图分类号: P458

Comparison of Convective Triggering Mechanisms of Typical Rainstorm Events in the Hami Area of East Tianshan Mountains

Funds: National Key Research and Development Program of China (Grant 2018YFC1507102), National Natural Science Foundation of China (Grant U2003106), Basic Research Operating Expenses of the Central Level Non-Profit Research Institutes (Grant IDM2020004), Flexible Talents Introducing Project of Xinjiang (2019)
  • 摘要: 本文选取2018年7月31日(简称“7.31”暴雨)和2016年8月8日(简称“8.8”暴雨)两次东天山哈密地区强降水天气过程,利用NCEP/NCAR的FNL资料(0.25°×0.25°)、中国地面卫星雷达三源融合逐小时降水产品、新疆地区常规观测资料、FY-2G卫星产品,通过对暴雨期间锋生函数计算诊断,证实了两次强降水过程中尺度对流系统触发因子差异,取得如下主要结果:(1)“7.31”暴雨期间,500 hPa西太平洋副热带高压位置异常偏北,700 hPa暖舌沿副高南侧偏东急流向西北伸展,低层增暖增湿,暴雨区上空形成不稳定大气层结,多个中尺度对流系统在700 hPa低空急流前生成,向东北方向移动和发展。“8.8”暴雨期间,500 hPa西太平洋副热带高压位置异常偏西,对流云团在对流层低层西南急流前生成向东北方向移动。(2)对流层低层暴雨区暖锋锋生是“7.31”暴雨中尺度对流云团的触发因子,云团初生阶段对流触发主要是锋生水平散度项和由垂直运动发展引起的倾斜项决定,成熟阶段暖锋锋生主要由锋生形变项和倾斜项所致。低空东南急流的维持加强利于锋面次级环流发展,是造成中尺度对流系统长时间维持的主要原因。(3)“8.8”暴雨对流云团由对流层低层弱冷锋触发。对流云团发展初始阶段,对流层低层冷锋锋生主要由水平辐散项决定;对流云团成熟阶段,对流层低层冷锋锋生主要由倾斜项决定。低层切变线长时间维持和加强利于低层冷锋进一步锋生,是造成中尺度对流系统长时间维持的主要原因。
  • 图  1  (a–d)2018年7月31日08时(北京时,下同)和(e–h)2016年8月8日08时(a、e)哈密站探空、(b、f)FNL资料、(c、g)ERA-interim资料和(d、h)ERA-5资料计算得到的温度(红色实线)、露点温度(绿色实线)和风(风向杆)廓线

    Figure  1.  Profiles of the temperature (red solid line), dew point temperature (green solid line), and wind (barbs) calculated by (a, e) Hami sounding station data, (b, f) FNL data, (c, g) ERA-interim data, and (d, h) ERA-5 reanalysis data at (a–d) 0800 BJT (Beijing time) 31 July 2018, (e–h) 0800 BJT 8 August 2016

    图  2  (a)2018年7月31日02~14时、(b)2016年8月8日01时至8月9日08时累积降水量分布(单位:mm),红色虚线矩形框区为哈密地区,图a中黑色点和红色点分别代表沁城乡小堡站和淖柳公路站,图b中黑色点代表巴里坤镇大直沟站。(c)“7.31”暴雨中心站和(d)“8.8”暴雨中心站逐小时降水量演变

    Figure  2.  Accumulated precipitation (units: mm) (a) from 0200 BJT to 1400 BJT 31 July 2018, and (b) from 0100 BJT 8 August to 0800 BJT 9 August 2016. The red dashed rectangle denotes Hami area. In Fig. 2a, the black and red dot represents the Qinchengxiangxiaopu station and Naoliugonglu station, respectively. In Fig. 2b, the black dot denotes the Dazhigou station in Balikun town. Hourly precipitation (units: mm) at the precipitation center in (c) the “7.31” heavy rainstorm (rainstorm occurred on 31 July 2018) and (d) “8.8” heavy rainstorm (rainstorm occurred on 8 August 2016)

    图  3  2018年7月31日02时(a)200 hPa位势高度场(等值线,单位:dagpm)、风场(阴影≥30 m s−1),(b)500 hPa位势高度场(等值线,单位:dagpm)、风场(阴影≥12 m s−1),(c)200 hPa急流(等值线和矢量)、700 hPa急流(阴影和风向杆,阴影≥10 m s−1),(d)海平面气压场(单位:hPa)。红色虚线矩形框区代表哈密地区,图c中蓝色实线和红色实线代表海拔1500 m和3000 m地形

    Figure  3.  (a) Geopotential height (contours, units: dagpm) and wind (shadings for wind speed≥30 m s−1) at 200 hPa, (b) geopotential height (contours, units: dagpm) and wind (shadings for wind speed≥12 m s−1) at 500 hPa, (c) 200-hPa jet stream (contours and vectors, units: m s−1), 700-hPa jet stream (shadings and barbs, shadings for wind speed≥10 m s−1), (d) sea level pressure (units: hPa) at 0200 BJT 31 July 2018. The red dashed rectangle denotes Hami area. In Fig. c, the blue and red solid lines represent terrain height of 1500 m and 3000 m, respectively

    图  4  2016年8月8日02时(a)200 hPa位势高度场(等值线,单位:dagpm)、风场(阴影≥30 m s−1),(b)500 hPa位势高度场(等值线,单位:dagpm)、风场(阴影≥12 m s−1),(c)700 hPa风场(阴影和风向杆,阴影≥10 m s−1),(d)海平面气压场(单位:hPa)。红色虚线矩形框区代表哈密地区。图c中蓝、红色实线代表海拔1500 m、3000 m地形线

    Figure  4.  (a) Geopotential height (contours, units: dagpm) and wind (shadings for wind speed≥30 m s−1) at 200 hPa, (b) geopotential height (contours, units: dagpm) and wind (shadings for wind speed≥12 m s−1) at 500 hPa, (c) 700-hPa wind (shadings and barbs, shadings for wind speed≥10 m s−1), (d) sea level pressure (contours, units: hPa) at 0200 BJT 8 August 2016. The red dashed rectangle denotes Hami area. In Fig. c, the blue and red solid lines represent terrain height of 1500 m and 3000 m, respectively

    图  5  2018年“7.31”暴雨期间7月31日(a)02时、(b)03时、(c)04时、(d)06时、(e)08时、(f)10时中尺度对流云团云顶亮温TBB(阴影,单位:°C)及(a)02时、(e)08时风场(风向杆,单位:m s−1)。红色圆点和黑色圆点分别代表沁城乡小堡站和淖柳公路站,字母A到G表示中尺度对流云团

    Figure  5.  Black body temperature (TBB, shadings, units: °C) at (a) 0200 BJT, (b) 0300 BJT, (c) 0400 BJT, (d) 0600 BJT, (e) 0800 BJT, (f) 1000 BJT and wind (barbs, units: m s−1) at (a) 0200 BJT, (e) 0800 BJT July 31 2018. The red and black dots denote the Qinchengxiangxiaopu and Naoliugonglu stations, respectively. Letters A–G represent meso-scale convective clouds

    图  6  2016年“8.8”暴雨期间8月8日(a)02时、(b)06时、(c)08时、(d)10时中尺度云团云顶亮温TBB(阴影,单位:°C)及(a)02时、(c)08时风场(风向杆,单位:m s−1)。红色圆点代表巴里坤镇大直沟站

    Figure  6.  Black body temperature (TBB, shadings, units: °C) at (a) 0200 BJT, (b) 0600 BJT, (c) 0800 BJT, (d) 1000 BJT and wind field (barbs, units: m s−1) at (a) 0200 BJT, (c) 0800 BJT 8 August 2016. The red dot denotes the Dazhigou station in Balikun town

    图  7  2018年7月31日(a)02时、(b)08时沿94.75°E的假相当位温(等值线,单位:K)和垂直速度(彩色阴影,单位:Pa s−1)的纬度—高度剖面,哈密位于42°~44°N。2016年8月8日(c)02时沿41.25°E、(d)08时沿43.5°E的假相当位温(等值线,单位:K)和垂直速度(彩色阴影,单位:Pa s−1)经度—高度剖面,暴雨区位于93°E附近。图形下方灰色阴影为地形,图c中红色三角形表示对流云团初生地

    Figure  7.  Latitude–height cross-sections of potential pseudo-equivalent temperature θse (contours, units: K) and vertical velocity (color shadings, units: Pa s−1) along 94.75°E at (a) 0200 BJT 31 July, (b) 0800 BJT 31 July 2018. Hami area is located at 42°–44°N. Longitude–height cross-sections of potential pseudo-equivalent temperature (contours, units: K) and vertical velocity (color shadings, units: Pa s−1) (c) along 41.25°E at 0200 BJT 8 August, (d) along 43.5°N at 0800 BJT 8 August 2016. The heavy rainfall area is located near 93°E. The gray shadings represent the terrain. In Fig. c, the red triangle represents the origination area of the convective cloud

    图  8  2018年“7.31”暴雨期间过哈密沁城乡小堡站(a)湿位涡正压分量Mpv1、(b)湿位涡斜压分量Mpv2随时间变化,2016年“8.8”暴雨期间过巴里坤镇大直沟站(c)Mpv1、(d)Mpv2随时间变化(单位:10−1 PVU)

    Figure  8.  Evolutions (units: 10−1 PVU) of (a) Mpv1 (barotropic component of the moist potential vorticity), (b) Mpv2 (baroclinic component of the moist potential vorticity) over Qinchengxiangxiaopu station in Hami during “7.31” heavy rainstorm in 2018 and evolutions (units: 10−1 PVU) of (c) Mpv1, (d) Mpv2 over Dazhigou station in Balikun town during “8.8” heavy rainstorm in 2016

    图  9  (a)沁城乡小堡站、(b)淖柳公路站、(c)阿克苏普乡大西沟站、(d)巴里坤镇大直沟站假相当位温(单位:K)随高度和时间的变化

    Figure  9.  Evolutions of θse (units: K) with height and time at the (a) Qinchengxiangxiaopu station, (b) Naoliugonglu station, (c) Daxigou station in Akesupu village, and (d) Dazhigou station in Balikun town

    图  10  2018年7月30~31日总锋生函数(阴影,单位:10−8 K s−1 m−1)和假相当位温(等值线,单位:K),红色、蓝色圆点分别代表沁城乡小堡站和淖柳公路站

    Figure  10.  Total frontogenesis function (shadings, units: 10−8 K s−1 m−1) and θse (contours, units: K) during 30–31 July 2018. The red and blue dots denote the Qinchengxiangxiaopu station and Naoliugonglu station, respectively

    图  11  2016年“8.8”暴雨(a)7日20时600 hPa、(b)8日02时600 hPa、(c)8日02时700 hPa、(d)8日08时700 hPa的总锋生函数(阴影,单位:10−8 K s−1 m−1)和假相当位温(等值线,单位:K),红色三角形代表云团初生地,红色实心矩形代表巴里坤镇大直沟站

    Figure  11.  Total frontogenesis function (shadings, units: 10−8 K s−1 m−1) and θse (contours, units: K) at 600 hPa at (a) 2000 BJT 7 August, (b) 0200 BJT 8 August, at 700 hPa at (c) 0200 BJT 8 August, (d) 0800 BJT 8 August during “8.8” heavy rainstorm in 2016. The red triangle and red filled rectangle denote the origination area of convective cloud and Dazhigou station in Balikun town, respectively

    图  12  2018年“7.31”暴雨沿图5d红色线段的(a−d)总锋生函数(彩色阴影,单位:10−8 K s−1 m−1)、经向风(等值线,单位:m s−1)剖面,(e−h)温度平流(彩色阴影,单位:K s−1)和流场(流线,单位:m s−1)的垂直剖面,图下方灰色阴影表示地形

    Figure  12.  Vertical cross-sections of (a−d) total frontogenesis function (color shadings, units: 10−8 K s−1 m−1) and meridional wind (contours, units: m s−1), (e−h) temperature advection (color shadings, units: K s−1) and stream field (stream, units: m s−1) along the red line in Fig. 5d during the “7.31” heavy rainstorm in 2018. The grey shadings below the figure depict the terrain

    图  13  同图12,但为2016年“8.8”暴雨沿图6c中红色线段的垂直剖面。红、蓝色三角形分别表示云团初生地、巴里坤镇大直沟站

    Figure  13.  As in Fig. 12, but for vertical cross-sections along the red line in Fig. 6c in the “8.8” heavy rainstorm in 2016. The red and blue triangles represent the generation area of convective cloud and Dazhigou station in Balikun town, respectively

    图  14  2018年7月31日02时(左)和08时(右)沿图5d中红色线段的锋生函数(a、b)散度项、(c、d)形变项和(e、f)倾斜项(阴影,单位:10−8 K s−1 m−1)及(a−f)假相当位温(等值线,单位:K)的垂直剖面

    Figure  14.  Vertical cross-sections of (a, b) the divergence term, (c, d) deformation term, (e, f) tilt term (shadings, units: 10−8 K s−1 m−1) for frontogenesis function, and (a−f) θse (contours, units: K) along the red line in Fig. 5d at 0200 BJT (left) and 0800 BJT (right) 31 July 2018

    图  15  2016年8月8日02时(左)和08时(右)沿图6c中红色线段的锋生函数(a、b)散度项、(c、d)形变项和(e、f)倾斜项(阴影,单位:10−8 K s−1 m−1)及(a−f)假相当位温(等值线,单位:K)的垂直剖面,红、蓝色三角形分别表示云团初生地、巴里坤镇大直沟站

    Figure  15.  Vertical cross-sections of (a, b) the divergence term, (c, d) deformation term, (e, f) tilt term (shadings, units: 10−8 K s−1 m−1) for frontogenesis function, and (a−f) θse (contours, units: K) along the red line in Fig. 6c at 0200 BJT (left) and 0800 BJT (right) 8 August 2016. The red and blue triangles represent the generation area of convective cloud and Dazhigou station in Balikun town, respectively

    图  16  2018年7月31日(a)02时、(b)08时,2016年8月8日(c)02时、(d)08时700 hPa风场(箭头,单位:m s−1)和假相当位温(等值线,单位:K)分布。图a和b中红色、蓝色圆点分别代表沁城乡小堡站、淖柳公路站,红色虚线矩形框区为哈密地区。图c和d中红色、蓝色圆点分别代表巴里坤镇大直沟站和云团初生地

    Figure  16.  Wind (arrows, units: m s−1) and θse (contours, units: K) at 700 hPa at (a) 0200 BJT, (b) 0800 BJT 31 July 2018, (a) 0200 BJT, (b) 0800 BJT 8 August 2016. In Figs. a, b, the red and blue dots denote the Qinchengxiangxiaopu station and Naoliugonglu station, respectively, the red dashed rectangle denotes Hami area. In Figs. c, d, the red and blue dots denote the Dazhigou station in Balikun town and generation area of convective cloud, respectively

    图  17  2018年7月31日(a)02时和(b)08时300 hPa(等值线,单位:10−5 s−1)和700 hPa(彩色阴影<−3×10−5 s−1)散度场,红色虚线矩形框区为哈密地区,红色、蓝色圆点分别代表沁城乡小堡站、淖柳公路站。2018年7月31日(c)02时和(d)08时沿图5d中红色线段的涡度(彩色阴影,单位:10−5 s−1)和垂直速度(等值线,单位:Pa s−1)垂直剖面,灰色阴影代表地形

    Figure  17.  300-hPa (contours, units: 10−5 s−1) and 700-hPa (color shadings<−3×10−5 s−1) divergence at (a) 0200 BJT and (b) 0800 BJT 31 July 2018. The red dashed rectangle denotes Hami area. The red and blue dots denote the Qinchengxiangxiaopu station and Naoliugonglu station, respectively. Vertical cross-sections of vorticity (color shadings, units: 10−5 s−1) and vertical velocity (contours, units: Pa s−1) along the red line in Fig. 5d at (c) 0200 BJT and (d) 0800 BJT 31 July 2018. The grey shadings represent the topography

    图  18  2016年8月8日(a)02时、(b)08时300 hPa(等值线,单位:10−5 s−1)和700 hPa(彩色阴影<−3×10−5 s−1)散度场。2016年8月8日(c)02时、(d)08时沿图6c中红色线段的涡度(彩色阴影,单位:10−5 s−1)和垂直速度(等值线,单位:Pa s−1)垂直剖面,红色、蓝色三角形分别代表云团出生地、巴里坤站

    Figure  18.  300-hPa (contours, units: 10−5 s−1) and 700-hPa (color shadings<−3×10−5 s−1) divergence at (a) 0200 BJT and (b) 0800 BJT 8 August 2016. Vertical cross-sections of vorticity (color shadings, units: 10−5 s−1) and vertical velocity (contours, units: Pa s−1) along the red line in Fig. 6c at (a) 0200 BJT and (b) 0800 BJT 8 August 2016. The red and blue triangles denote the generation area of convective cloud and Dazhigou station in Balikun town, respectively

    图  19  2018年“7.31”暴雨(左)和2016年“8.8”暴雨(右)概念模型。字母L、D表示地面高压和低压系统

    Figure  19.  Conceptual models of the “7.31” heavy rainstorm in 2018 (left) and the “8.8” heavy rainstorm in 2016 (right). Letters L, D represent surface high pressure and low pressure systems

  • [1] 白慧, 欧阳大亮, 周艳, 等. 2020. 低空急流在一次初春混合强对流天气过程中的作用 [J]. 中低纬山地气象, 44(4): 11−18. doi: 10.3969/j.issn.1003-6598.2020.04.002

    Bai Hui, Ouyang Daliang, Zhou Yan, et al. 2020. The role of low-level jet in a mixed strong convective weather process in early spring [J]. Mid-Low Latitude Mountain Meteorology (in Chinese), 44(4): 11−18. doi: 10.3969/j.issn.1003-6598.2020.04.002
    [2] Besson L, Lemaître Y. 2014. Mesoscale convective systems in relation to African and tropical easterly jets [J]. Mon. Wea. Rev., 142(9): 3224−3242. doi: 10.1175/MWR-D-13-00247.1
    [3] Capet X, McWilliams J C, Molemaker M J, et al. 2008. Mesoscale to submesoscale transition in the California current system. Part II: Frontal processes [J]. J. Phys. Oceanogr., 38(1): 44−64. doi: 10.1175/2007JPO3672.1
    [4] 陈良栋. 1987. 槽前形势下华东地区强对流活动特点和短时预报线索 [J]. 气象, 13(2): 9−14. doi: 10.7519/j.issn.1000-0526.1987.2.002

    Chen Liangdong. 1987. Characteristics of severe convective processes and leads of nowcasting in fore-trough pattern in East China [J]. Meteorological Monthly (in Chinese), 13(2): 9−14. doi: 10.7519/j.issn.1000-0526.1987.2.002
    [5] 陈力强, 陈受钧, 周小珊, 等. 2005. 东北冷涡诱发的一次MCS结构特征数值模拟 [J]. 气象学报, 63(2): 173−183. doi: 10.3321/j.issn:0577-6619.2005.02.004

    Chen Liqiang, Chen Shoujun, Zhou Xiaoshan, et al. 2005. A numerical study of the MCS in a cold vortex over northeastern China [J]. Acta Meteorologica Sinica (in Chinese), 63(2): 173−183. doi: 10.3321/j.issn:0577-6619.2005.02.004
    [6] 陈忠明. 2005. 对流云团与低空急流耦合相互作用研究——云团再生和维持的一种机制 [J]. 大气科学, 29(3): 496−502. doi: 10.3878/j.issn.1006-9895.2005.03.18

    Chen Zhongming. 2005. The coupling reaction between convective cloud cluster and low jet—A mechanism of regeneration or maintenance of cloud cluster [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 29(3): 496−502. doi: 10.3878/j.issn.1006-9895.2005.03.18
    [7] 道然•加帕依, 车罡, 李如琦. 2007. 新疆东部地区夏季暴雨的分析 [J]. 气象, 33(2): 62−69. doi: 10.7519/j.issn.1000-0526.2007.02.010

    Japayi D, Che Gang, Li Ruqi. 2007. Analysis of summer heavy rainfall in eastern Xinjiang [J]. Meteorological Monthly (in Chinese), 33(2): 62−69. doi: 10.7519/j.issn.1000-0526.2007.02.010
    [8] 傅佩玲, 胡东明, 张羽, 等. 2018. 2017年5月7日广州特大暴雨微物理特征及其触发维持机制分析 [J]. 气象, 44(4): 500−510. doi: 10.7519/j.issn.1000-0526.2018.04.003

    Fu Peiling, Hu Dongming, Zhang Yu, et al. 2018. Microphysical characteristics, initiation and maintenance of record heavy rainfall over Guangzhou region on 7 May 2017 [J]. Meteorological Monthly (in Chinese), 44(4): 500−510. doi: 10.7519/j.issn.1000-0526.2018.04.003
    [9] 高守亭, 刘璐, 李娜. 2013. 近几年中尺度动力学研究进展 [J]. 大气科学, 37(2): 319−330. doi: 10.3878/j.issn.1006-9895.2012.12304

    Gao Shouting, Liu Lu, Li Na. 2013. Major advances in research on mesoscale atmospheric dynamics in recent years [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(2): 319−330. doi: 10.3878/j.issn.1006-9895.2012.12304
    [10] 顾清源, 肖递祥, 黄楚惠, 等. 2009. 低空急流在副高西北侧连续性暴雨中的触发作用 [J]. 气象, 35(4): 59−67. doi: 10.7519/j.issn.1000-0526.2009.4.008

    Gu Qingyuan, Xiao Dixiang, Huang Chuhui, et al. 2009. Trigger role of the low-level jet for the continuous rainstorm in the northwest side of subtropical high [J]. Meteorological Monthly (in Chinese), 35(4): 59−67. doi: 10.7519/j.issn.1000-0526.2009.4.008
    [11] 何齐强, 吕梅, 张铭. 1994. 冷锋边界层锋生和锋生环流的诊断研究 [J]. 大气科学, 18(4): 485−491. doi: 10.3878/j.issn.1006-9895.1994.04.13

    He Qiqiang, Lu Mei, Zhang Ming. 1994. Diagnosis research of frontogenesis of a cold front and secondary circulation in the boundary layer [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 18(4): 485−491. doi: 10.3878/j.issn.1006-9895.1994.04.13
    [12] 侯淑梅, 郭俊建, 张磊, 等. 2017. 西风槽与副高相互作用的暴雨过程动热力场结构特征分析 [J]. 气象, 43(2): 151−165. doi: 10.7519/j.issn.1000-0526.2017.02.003

    Hou Shumei, Guo Junjian, Zhang Lei, et al. 2017. Analysis of dynamic and thermal field structure characteristics on rainstorm area in interaction process between westerly trough and subtropical high [J]. Meteorological Monthly (in Chinese), 43(2): 151−165. doi: 10.7519/j.issn.1000-0526.2017.02.003
    [13] Houze R A Jr. 2004. Mesoscale convective systems [J]. Rev. Geophys., 42(4): RG4003. doi: 10.1029/2004RG000150
    [14] Houze R A Jr, Smull B F, Dodge P. 1990. Mesoscale organization of springtime rainstorms in Oklahoma [J]. Mon. Wea. Rev., 118(3): 613−654. doi: 10.1175/1520-0493(1990)118<0613:MOOSRI>2.0.CO;2
    [15] 黄小彦, 孙继松, 刘文婷. 2020. 地形作用下低空急流的演变与强降水对流风暴系统的相互作用 [J]. 气象学报, 78(4): 551−567. doi: 10.11676/qxxb2020.034

    Huang Xiaoyan, Sun Jisong, Liu Wenting. 2020. The interaction between low-level jet evolution and severe convective rainstorms under topographic effect [J]. Acta Meteorologica Sinica (in Chinese), 78(4): 551−567. doi: 10.11676/qxxb2020.034
    [16] Lavaysse C, Diedhiou A, Laurent H, et al. 2006. African easterly waves and convective activity in wet and dry sequences of the West African monsoon [J]. Climate Dyn., 27(2-3): 319−332. doi: 10.1007/s00382-006-0137-5
    [17] Li H Q, Cui X P, Zhang D L. 2017. On the initiation of an isolated heavy-rain-producing storm near the central urban area of Beijing metropolitan region [J]. Mon. Wea. Rev., 145(1): 181−197. doi: 10.1175/MWR-D-16-0115.1
    [18] 李建刚, 姜彩莲, 张云惠, 等. 2019. 天山山区夏季MαCS时空分布特征 [J]. 高原气象, 38(3): 604−616. doi: 10.7522/j.issn.1000-0534.2018.00151

    Li Jiangang, Jiang Cailian, Zhang Yunhui, et al. 2019. Spatiotemporal distribution characteristics of MαCS in summer of Tianshan mountains [J]. Plateau Meteorology (in Chinese), 38(3): 604−616. doi: 10.7522/j.issn.1000-0534.2018.00151
    [19] 李玉兰, 陶诗言, 杜长萱. 1993. 梅雨锋上中尺度对流云团的分析 [J]. 应用气象学报, 4(3): 278−285.

    Li Yulan, Tao Shiyan, Du Changxuan. 1993. An analysis of the meso-convective cloud clusters in Mei-Yu front [J]. Quarterly Journal of Applied Meteorology (in Chinese), 4(3): 278−285.
    [20] 刘国强, 佟欣怡, 杨莲梅, 等. 2018. 新疆巴州一次短时强降水过程的中尺度特征分析 [J]. 沙漠与绿洲气象, 12(1): 61−70. doi: 10.12057/j.issn.1002-0799.2018.01.009

    Liu Guoqiang, Tong Xinyi, Yang Lianmei, et al. 2018. Mesoscale characteristic analysis of a short-term heavy rainfall in Bayingolin Mongol Autonomous Prefecture of Xinjiang [J]. Desert and Oasis Meteorology (in Chinese), 12(1): 61−70. doi: 10.12057/j.issn.1002-0799.2018.01.009
    [21] 刘鸿波, 何明洋, 王斌, 等. 2014. 低空急流的研究进展与展望 [J]. 气象学报, 72(2): 191−206. doi: 10.11676/qxxb2014.022

    Liu Hongbo, He Mingyang, Wang Bin, et al. 2014. Advances in low-level jet research and future prospects [J]. Acta Meteorologica Sinica (in Chinese), 72(2): 191−206. doi: 10.11676/qxxb2014.022
    [22] 刘晶, 周雅蔓, 杨莲梅, 等. 2019. 伊犁河谷“7.31”极端暴雨过程不稳定性及其触发机制研究 [J]. 大气科学, 43(6): 1204−1218. doi: 10.3878/j.issn.1006-9895.1901.18155

    Liu Jing, Zhou Yaman, Yang Lianmei, et al. 2019. The instability and its trigger mechanism of extreme precipitation event in the Yili River valley on 31 July 2016 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(6): 1204−1218. doi: 10.3878/j.issn.1006-9895.1901.18155
    [23] 刘雯, 李建刚, 杨莲梅. 2017. 2016年夏末南疆地区中尺度对流系统 (MCS) 活动特征 [J]. 沙漠与绿洲气象, 11(4): 9−16. doi: 10.12057/j.issn.1002-0799.2017.04.002

    Liu Wen, Li Jiangang, Yang Lianmei. 2017. Characteristics of the MCS over southern Xinjiang during the late summer of 2016 [J]. Desert and Oasis Meteorology (in Chinese), 11(4): 9−16. doi: 10.12057/j.issn.1002-0799.2017.04.002
    [24] Miller J E. 1948. On the concept of frontogenesis [J]. J. Atmos. Sci., 5(4): 169−171. doi: 10.1175/1520-0469(1948)005<0169:OTCOF>2.0.CO;2
    [25] 慕建利, 李泽椿, 谌芸, 等. 2014. 一次陕西关中强暴雨中尺度系统特征分析 [J]. 高原气象, 33(1): 148−161. doi: 10.7522/j.issn.1000-0534.2013.00049

    Mu Jianli, Li Zechun, Chen Yun, et al. 2014. Feature analyses of mesoscale convective system of a heavy rainfall in the central Shaanxi plain [J]. Plateau Meteorology (in Chinese), 33(1): 148−161. doi: 10.7522/j.issn.1000-0534.2013.00049
    [26] 努尔比亚•吐尼牙孜, 张超, 李泽巍, 等. 2019. 南疆西部2016年8月4次暴雨过程特征分析 [J]. 干旱气象, 37(2): 301−311. doi: 10.11755/j.issn.1006-7639(2019)-02-0301

    Tunyaz N, Zhang Chao, Li Zewei, et al. 2019. Characteristics of four rainstorm processes in the west of southern Xinjiang in August 2016 [J]. Journal of Arid Meteorology (in Chinese), 37(2): 301−311. doi: 10.11755/j.issn.1006-7639(2019)-02-0301
    [27] 邱贵强, 赵桂香, 董春卿, 等. 2018. 一次副热带高压边缘突发性暴雨的锋生及水汽特征分析 [J]. 高原气象, 37(4): 946−957. doi: 10.7522/j.issn.1000-0534.2017.00059

    Qiu Guiqiang, Zhao Guixiang, Dong Chunqin, et al. 2018. Frontogenesis and moisture characteristic analysis on a sudden rainstorm at the edge of subtropical high [J]. Plateau Meteorology (in Chinese), 37(4): 946−957. doi: 10.7522/j.issn.1000-0534.2017.00059
    [28] 全美兰, 刘海文, 朱玉祥, 等. 2013. 高空急流在北京“7.21”暴雨中的动力作用 [J]. 气象学报, 71(6): 1012−1019. doi: 10.11676/qxxb2013.092

    Quan Meilan, Liu Haiwen, Zhu Yuxiang, et al. 2013. Study of the dynamic effects of the upper-level jet stream on the Beijing rainstorm of 21 July 2012 [J]. Acta Meteorologica Sinica (in Chinese), 71(6): 1012−1019. doi: 10.11676/qxxb2013.092
    [29] 任丽, 赵柠, 赵美玲, 等. 2021. 两次副热带高压北侧暖锋暴雨动力热力诊断 [J]. 高原气象, 40(1): 61−73. doi: 10.7522/j.issn.1000-0534.2019.00111

    Ren Li, Zhao Ning, Zhao Meiling, et al. 2021. Diagnosis of Dynamic and thermal mechanisms of two rainstorm processes by the warm front frontogenesis north of the subtropical high [J]. Plateau Meteorology (in Chinese), 40(1): 61−73. doi: 10.7522/j.issn.1000-0534.2019.00111
    [30] Smith A M, McFarquhar G M, Rauber R M, et al. 2009. Microphysical and thermodynamic structure and evolution of the trailing stratiform regions of mesoscale convective systems during BAMEX. Part I: Observations [J]. Mon. Wea. Rev., 137(4): 1165−1185. doi: 10.1175/2008MWR2504.1
    [31] Stevenson S N, Schumacher R S. 2014. A 10-year survey of extreme rainfall events in the central and eastern United States using gridded multisensor precipitation analyses [J]. Mon. Wea. Rev., 142(9): 3147−3162. doi: 10.1175/MWR-D-13-00345.1
    [32] 苏爱芳, 张宁, 黄勇. 2016. “8.13”黄淮北部暴雨云团的组织结构和触发机制 [J]. 气象, 42(8): 905−919. doi: 10.7519/j.issn.1000-0526.2016.08.001

    Su Aifang, Zhang Ning, Huang Yong. 2016. Organizational structure and trigger mechanism of rainstorm cloud clusters over North Huanghuai region on 13 August 2010 [J]. Meteorological Monthly (in Chinese), 42(8): 905−919. doi: 10.7519/j.issn.1000-0526.2016.08.001
    [33] Sugimoto S, Ueno K. 2010. Formation of mesoscale convective systems over the eastern Tibetan Plateau affected by plateau-scale heating contrasts [J]. J. Geophys. Res.: Atmos., 115(D16): D16105. doi: 10.1029/2009JD013609
    [34] 孙继松, 何娜, 郭锐, 等. 2013. 多单体雷暴的形变与列车效应传播机制 [J]. 大气科学, 37(1): 137−148. doi: 10.3878/j.issn.1006-9895.2012.12015

    Sun Jisong, He Na, Guo Rui, et al. 2013. The configuration change and train effect mechanism of Multi-cell storms [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(1): 137−148. doi: 10.3878/j.issn.1006-9895.2012.12015
    [35] 孙淑清, 翟国庆. 1980. 低空急流的不稳定性及其对暴雨的触发作用 [J]. 大气科学, 4(4): 327−337. doi: 10.3878/j.issn.1006-9895.1980.04.05

    Suen S Q, Zhai Guoqing. 1980. On the instability of the low level jet and its trigger function for the occurrence of heavy rain-storms [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 4(4): 327−337. doi: 10.3878/j.issn.1006-9895.1980.04.05
    [36] 孙永刚, 孟雪峰, 仲夏, 等. 2014. 河套气旋发展东移对一次北京特大暴雨的触发作用 [J]. 高原气象, 33(6): 1665−1673. doi: 10.7522/j.issn.1000-0534.2014.00029

    Sun Yonggang, Meng Xuefeng, Zhong Xia, et al. 2014. Analysis of Hetao cyclone shifting eastward and producing rainstorm process in Beijing [J]. Plateau Meteorology (in Chinese), 33(6): 1665−1673. doi: 10.7522/j.issn.1000-0534.2014.00029
    [37] 陶诗言. 1980. 中国之暴雨[M]. 北京: 科学出版社, 225pp

    Tao Shiyan. 1980. Heavy Rain in China (in Chinese) [M]. Beijing: Science Press, 225pp.
    [38] 陶祖钰, 王洪庆, 王旭, 等. 1998. 1995年中国的中-α尺度对流系统 [J]. 气象学报, 56(2): 166−177. doi: 10.11676/qxxb1998.016

    Tao Zuyu, Wang Hongqin, Wang Xu, et al. 1998. A survey of Meso-α-scale convective systems over China during 1995 [J]. Acta Meteorologica Sinica (in Chinese), 56(2): 166−177. doi: 10.11676/qxxb1998.016
    [39] 屠月青, 孔海江. 2014. 新疆哈密大降水的大气环流特征分型 [J]. 干旱气象, 32(4): 642−648. doi: 10.11755/j.issn.1006-7639(2014)-04-0642

    Tu Yueqing, Kong Haijiang. 2014. Atmospheric circulation classification of large precipitation in Hami of Xinjiang [J]. Journal of Arid meteorology (in Chinese), 32(4): 642−648. doi: 10.11755/j.issn.1006-7639(2014)-04-0642
    [40] Ueno K, Sugimoto S, Koike T, et al. 2011. Generation processes of mesoscale convective systems following midlatitude troughs around the Sichuan Basin [J]. J. Geophys. Res.: Atmos., 116(D2): D02104. doi: 10.1029/2009JD013780
    [41] 王建捷, 李泽椿. 2002. 1998年一次梅雨锋暴雨中尺度对流系统的模拟与诊断分析 [J]. 气象学报, 60(2): 146−155. doi: 10.11676/qxxb2002.018

    Wang Jianjie, Li Zechun. 2002. Numerical simulation and diagnostic analysis on mesoscale convective systems of a torrential rain case in Meiyu period of 1998 [J]. Acta Meteorologica Sinica (in Chinese), 60(2): 146−155. doi: 10.11676/qxxb2002.018
    [42] 王清平, 彭军, 茹仙古丽•克里木. 2016. 新疆巴州“6.4”罕见短时暴雨的MCS特征分析 [J]. 干旱气象, 34(4): 685−692. doi: 10.11755/j.issn.1006-7639(2016)-04-0685

    Wang Qingping, Peng Jun, Gu Li Ruxian. 2016. Characteristics of mesoscale convective system about a rare short-time rainstorm in Bayangol Mongol autonomous prefecture of Xinjiang on 4 June 2012 [J]. Journal of Arid Meteorology (in Chinese), 34(4): 685−692. doi: 10.11755/j.issn.1006-7639(2016)-04-0685
    [43] 王荣梅, 道然, 屠月青. 2010. 哈密地区7•17暴雨天气过程分析 [J]. 沙漠与绿洲气象, 4(1): 36−40. doi: 10.3969/j.issn.1002-0799.2010.01.008

    Wang Rongmei, Dao Ran, Tu Yueqing. 2010. Analysis of rainstorm on 7th July 2007 in Hami Area [J]. Desert and Oasis Meteorology (in Chinese), 4(1): 36−40. doi: 10.3969/j.issn.1002-0799.2010.01.008
    [44] 王旭, 马禹. 2012. 新疆中尺度对流系统的地理分布和生命史 [J]. 干旱区地理, 35(6): 857–864. Wang Xu, Ma Yu. 2012. Geographic distribution and life cycle of mesoscale convective system in Xinjiang, China [J]. Arid Land Geography (in Chinese), 35(6): 857–865. doi: 10.13826/j.cnki.cn65-1103/x.2012.06.009
    [45] Weisman M L, Trapp R J. 2003. Low-level mesovortices within squall lines and bow echoes. Part I: Overview and dependence on environmental shear [J]. Mon. Wea. Rev., 131(11): 2779−2803. doi: 10.1175/1520-0493(2003)131<2779:LMWSLA>2.0.CO;2
    [46] 吴国雄, 蔡雅萍, 唐晓菁. 1995. 湿位涡和倾斜涡度发展 [J]. 气象学报, 53(4): 387−405. doi: 10.11676/qxxb1995.045

    Wu Guoxiong, Cai Yaping, Tang Xiaojing. 1995. Moist potential vorticity and slantwise vorticity development [J]. Acta Meteorologica Sinica (in Chinese), 53(4): 387−405. doi: 10.11676/qxxb1995.045
    [47] 肖开提•多莱特. 2005. 新疆降水量级标准的划分 [J]. 新疆气象, 28(3): 7−8. doi: 10.3969/j.issn.1002-0799.2005.03.003

    Duolaite X. 2005. Formulation of precipitation intensity standard of Xinjiang [J]. Bimonthly of Xinjiang Meteorology (in Chinese), 28(3): 7−8. doi: 10.3969/j.issn.1002-0799.2005.03.003
    [48] 徐珺, 毕宝贵, 谌芸, 等. 2018. “5.7”广州局地突发特大暴雨中尺度特征及成因分析 [J]. 气象学报, 76(4): 511−524. doi: 10.11676/qxxb2018.016

    Xu Jun, Bi Baogui, Chen Yun, et al. 2018. Mesoscale characteristics and mechanism analysis of the unexpected local torrential rain in Guangzhou on 7 May 2017 [J]. Acta Meteorologica Sinica (in Chinese), 76(4): 511−524. doi: 10.11676/qxxb2018.016
    [49] 曾勇, 杨莲梅. 2017a. 南疆西部一次暴雨强对流过程的中尺度特征分析 [J]. 干旱气象, 35(3): 475−484. doi: 10.11755/j.issn.1006-7639(2017)-03-0475

    Zeng Yong, Yang Lianmei. 2017a. Mesoscale characteristic analysis of a severe convective weather with torrential rain in the west of southern Xinjiang [J]. Journal of Arid Meteorology (in Chinese), 35(3): 475−484. doi: 10.11755/j.issn.1006-7639(2017)-03-0475
    [50] 曾勇, 杨莲梅. 2017b. 南疆西部两次短时强降水天气中尺度特征对比分析 [J]. 暴雨灾害, 36(5): 410−421. doi: 10.3969/j.issn.1004-9045.2017.05.003

    Zeng Yong, Yang Lianmei. 2017b. Comparative analysis on mesoscale characteristics of two severe short-time precipitation events in the west of southern Xinjiang [J]. Torrential Rain and Disasters (in Chinese), 36(5): 410−421. doi: 10.3969/j.issn.1004-9045.2017.05.003
    [51] 曾勇, 杨莲梅. 2018. 新疆西部一次极端暴雨事件的成因分析 [J]. 高原气象, 37(5): 1220−1232. doi: 10.7522/j.issn.1000-0534.2018.00014

    Zeng Yong, Yang Lianmei. 2018. Analysis on the causes of an extreme rainfall event in the west of Xinjiang [J]. Plateau Meteorology (in Chinese), 37(5): 1220−1232. doi: 10.7522/j.issn.1000-0534.2018.00014
    [52] 曾勇, 杨莲梅. 2020. 新疆西部“6.16”强降水过程的中尺度分析 [J]. 暴雨灾害, 39(1): 41−51. doi: 10.3969/j.issn.1004-9045.2020.01.005

    Zeng Yong, Yang Lianmei. 2020. Mesoscale analysis on the “6.16” heavy precipitation event in the west of Xinjiang [J]. Torrential Rain and Disasters (in Chinese), 39(1): 41−51. doi: 10.3969/j.issn.1004-9045.2020.01.005
    [53] 曾勇, 杨莲梅, 张迎新. 2018. 中亚低涡背景下新疆阿克苏地区一次强对流天气形成的干侵入机制 [J]. 干旱气象, 36(1): 34−43. doi: 10.11755/j.issn.1006-7639(2018)-01-0034

    Zeng Yong, Yang Lianmei, Zhang Yingxin. 2018. Mechanism analysis of dry intrusion during a severe convective weather process under the background of central Asian vortex in Aksu area of Xinjiang [J]. Journal of Arid Meteorology (in Chinese), 36(1): 34−43. doi: 10.11755/j.issn.1006-7639(2018)-01-0034
    [54] 曾勇, 周玉淑, 杨莲梅. 2019. 新疆西部一次大暴雨形成机理的数值模拟初步分析 [J]. 大气科学, 43(2): 372−388. doi: 10.3878/j.issn.1006-9895.1804.18106

    Zeng Yong, Zhou Yushu, Yang Lianmei. 2019. A preliminary analysis of the formation mechanism for a heavy rainstorm in western Xinjiang by numerical simulation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(2): 372−388. doi: 10.3878/j.issn.1006-9895.1804.18106
    [55] 曾勇, 杨莲梅, 张迎新. 2020. 伊犁地区一次罕见特大暴雨中尺度系统的数值模拟 [J]. 干旱气象, 38(2): 290−300. doi: 10.11755/j.issn.1006-7639(2020)-02-0290

    Zeng Yong, Yang Lianmei, Zhang Yinxin. 2020. Numerical simulation of mesoscale system during a rare torrential rainstorm process in Yili of Xinjiang [J]. Journal of Arid Meteorology (in Chinese), 38(2): 290−300. doi: 10.11755/j.issn.1006-7639(2020)-02-0290
    [56] 张家国, 黄小彦, 周金莲, 等. 2013. 一次梅雨锋上中尺度气旋波引发的特大暴雨过程分析 [J]. 气象学报, 71(2): 228−238. doi: 10.11676/qxxb2013.027

    Zhang Jiaguo, Huang Xiaoyan, Zhou Jinlian, et al. 2013. Analysis of an excessive rainstorm event initiated by a mesoscale cyclonic wave along the Meiyu front [J]. Acta Meteorologica Sinica (in Chinese), 71(2): 228−238. doi: 10.11676/qxxb2013.027
    [57] 张家国, 周金莲, 谌伟, 等. 2015. 大别山西侧极端降水中尺度对流系统结构与传播特征 [J]. 气象学报, 73(2): 291−304. doi: 10.11676/qxxb2015.019

    Zhang Jiaguo, Zhou Jinlian, Chen Wei, et al. 2015. The structure and propagation characteristics of the extreme-rain-producing MCS on the west side of Dabie Mountain [J]. Acta Meteorologica Sinica (in Chinese), 73(2): 291−304. doi: 10.11676/qxxb2015.019
    [58] 张芹, 王洪明, 张秀珍, 等. 2018. 2017年山东雨季首场暖区暴雨的特征分析 [J]. 高原气象, 37(6): 1696−1704. doi: 10.7522/j.issn.1000-0534.2018.00052

    Zhang Qin, Wang Hongming, Zhang Xiuzhen, et al. 2018. Characteristics of the first rainstorm happened in warm area in Shandong Province in 2017 [J]. Plateau Meteorology (in Chinese), 37(6): 1696−1704. doi: 10.7522/j.issn.1000-0534.2018.00052
    [59] 赵宇, 裴昌春, 杨成芳. 2017. 梅雨锋暴雨中尺度对流系统触发和组织化的观测分析 [J]. 气象学报, 75(5): 700−716. doi: 10.11676/qxxb2017.051

    Zhao Yu, Pei Changchun, Yang Chengfang. 2017. Observational analysis of initiation and organization of meso-scale convective systems in a heavy rainfall event associated with Meiyu front [J]. Acta Meteorologica Sinica (in Chinese), 75(5): 700−716. doi: 10.11676/qxxb2017.051
    [60] Zheng Linlin, Sun Jianhua, Zhang Xiaoling, et al. 2013. Organizational modes of mesoscale convective systems over central East China [J]. Wea. Forecasting, 28(5): 1081−1098. doi: 10.1175/WAF-D-12-00088.1
    [61] 郑永光, 张小玲, 周庆亮, 等. 2010. 强对流天气短时临近预报业务技术进展与挑战 [J]. 气象, 36(7): 33−42. doi: 10.7519/j.issn.1000-0526.2010.7.008

    Zheng Yongguang, Zhang Xiaoling, Zhou Qingliang, et al. 2010. Review on severe convective weather short-term forecasting and nowcasting [J]. Meteorological Monthly (in Chinese), 36(7): 33−42. doi: 10.7519/j.issn.1000-0526.2010.7.008
    [62] 朱伟军, 廖芷仪, 何清, 等. 2012. 天山暴雨数值模拟的试验研究 [J]. 中国沙漠, 32(4): 1102−1109.

    Zhu Weijun, Liao Zhiyi, He Qing. 2012. Numerical simulation of rainstorm in Tianshan mountains area [J]. Journal of Desert Research (in Chinese), 32(4): 1102−1109.
    [63] 庄晓翠, 李博渊, 秦榕, 等. 2020. 新疆东部一次区域极端暴雨环境场特征 [J]. 高原气象, 39(5): 947−959. doi: 10.7522/j.issn.1000-0534.2019.00081

    Zhuang Xiaocui, Li Boyuan, Qin Rong, et al. 2020. Analysis on the causes of an extreme rainstorm in the eastern Xinjiang [J]. Plateau Meteorology (in Chinese), 39(5): 947−959. doi: 10.7522/j.issn.1000-0534.2019.00081
    [64] 卓世新, 李如琦, 苗运玲, 等. 2016. 哈密地区空中水汽及增水潜力分析 [J]. 沙漠与绿洲气象, 10(6): 68−72. doi: 10.3969/j.issn.1002-0799.2016.06.010

    Zhuo Shixin, Li Ruqi, Miao Yunling, et al. 2016. Analysis of air water vapor and precipitation enhancement potentiality of Hami area [J]. Desert and Oasis Meteorology (in Chinese), 10(6): 68−72. doi: 10.3969/j.issn.1002-0799.2016.06.010
  • 加载中
图(19)
计量
  • 文章访问数:  144
  • HTML全文浏览量:  53
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-08
  • 录用日期:  2022-01-19
  • 网络出版日期:  2022-01-25
  • 刊出日期:  2022-07-19

目录

    /

    返回文章
    返回