高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

青藏高原大气热源年际变率及其驱动因子

段安民 张萍

段安民, 张萍. 2022. 青藏高原大气热源年际变率及其驱动因子[J]. 大气科学, 46(2): 455−472 doi: 10.3878/j.issn.1006-9895.2201.21126
引用本文: 段安民, 张萍. 2022. 青藏高原大气热源年际变率及其驱动因子[J]. 大气科学, 46(2): 455−472 doi: 10.3878/j.issn.1006-9895.2201.21126
DUAN Anmin, ZHANG Ping. 2022. Interannual Variability of Atmospheric Heat Source over the Tibetan Plateau and Its Driving Factors [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(2): 455−472 doi: 10.3878/j.issn.1006-9895.2201.21126
Citation: DUAN Anmin, ZHANG Ping. 2022. Interannual Variability of Atmospheric Heat Source over the Tibetan Plateau and Its Driving Factors [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(2): 455−472 doi: 10.3878/j.issn.1006-9895.2201.21126

青藏高原大气热源年际变率及其驱动因子

doi: 10.3878/j.issn.1006-9895.2201.21126
基金项目: 国家自然科学基金杰出青年基金“海气自然变率影响青藏高原热源的过程和机理”41725018
详细信息
    作者简介:

    段安民,男,1973年出生,研究员,主要从事青藏高原气候动力学、海—陆—气相互作用以及气候变化的研究。E-mail: amduan@lasg.iap.ac.cn

  • 中图分类号: P461

Interannual Variability of Atmospheric Heat Source over the Tibetan Plateau and Its Driving Factors

Funds: Outstanding Youth Fund of the National Natural Science Foundation of China “Impact of the Air–Sea Natural Variability on the Tibetan Plateau Heat Source” (Grant 41725018)
  • 摘要: 青藏高原(以下简称高原)大气热源对亚洲夏季风爆发、演变、推进,乃至全球气候系统都有重要影响,因此近年来高原大气热源变异机理也日益受到关注。本文在回顾已有关于不同季节高原热源变异原因的研究基础上,利用1980~2018年日本气象厅再分析数据JRA55(Japanese 55-year Reanalysis),对逐月高原大气总热源的年际变率进行分类,并进一步探究了影响不同类别高原大气总热源的异常大尺度环流系统及海温驱动因子。除了传统上受关注的“冬季型”和“夏季型”以外,本文还提出了“早春型”和“过渡型”两种高原大气热源变率模态。总体而言,高原大气总热源年际变率以降水引起的凝结潜热异常为主,其中“冬季型”及“早春型”高原大气热源异常中心位于高原西部,主要受到中高纬遥相关波列的影响。此外,“冬季型”还受到厄尔尼诺—南方涛动(El Niño-Southern Oscillation, ENSO)及印度洋偶极子(Indian Ocean Dipole, IOD)的影响。“夏季型”高原大气热源呈东西偶极型反相变化,最大异常中心位于高原东南部,主要受北大西洋涛动(North Atlantic Oscillation, NAO)的影响;“过渡型”高原大气热源呈南北偶极型反相变化,受热带太平洋—印度洋海表温度异常的共同影响。因此,不同背景环流下高原热源年际变率的驱动因子存在明显差异。
  • 图  1  青藏高原80个气象站点分布。色标表示海拔高度(单位:m)。黑色曲线表示平均海拔在2000 m以上的青藏高原地形,下同

    Figure  1.  Spatial distribution of 80 meteorological stations on the Tibetan Plateau (TP). The altitude (units: m) is represented by the color bar. The black curve represents the TP domain with an altitude>2000 m, the same below

    图  2  不同资料高原大气热源及其分量的标准差(柱状,单位:W m–2)和气候平均值(实线,单位:W m–2):(a)站点和卫星资料;(b)JRA55资料;(c)MERRA-2资料;(d)ERA5资料;(e)NCEP2资料;(f)ERA-interim资料。红色:地表感热通量(SH);绿色:凝结潜热(LH);蓝色为大气净辐射(RC);黑色为大气总热源(汇)。图a资料的时间范围是1984~2015,图b–f资料的时间范围是1980~2018

    Figure  2.  Standard deviation (bars, units: W m–2) and climate mean (solid lines, units: W m–2) of each component of the TP heat source in different datasets: (a) Station and satellite data; (b) JRA55 (Japanese 55-year Reanalysis) data; (c) MERRA-2 (the second Modern-Era Retrospective analysis for Research and Applications) data; (d) ERA5 (Fifth major global reanalysis produced by European Centre for Medium-Range Weather Forecasts) data; (e) NCEP2 (National Centers for Environmental Prediction and the Department of Energy for reanalysis datasets) data; (f) ERA-interim (European Centre for Medium-Range Weather Forecasts interim reanalysis) data. Red: surface sensible heating (SH); green: latent heating (LH) of condensation; blue: net radiation of the air column (RC); black: their sum. In Fig. a, the time range of data is 1984–2015; in Figs. b–f, the time range of data is 1980–2018

    图  3  1984~2015年高原大气热源(汇)在观测资料与(a)JRA55资料、(b)MERRA-2资料、(c)ERA5资料、(d)ERA-interim资料、(e)NCEP2资料之间的相关系数。AHS表示大气总热源,SH表示地表感热,LH表示凝结潜热。RC表示大气净辐射通量。*、**、***分别代表相关系数通过90%、95%、99%置信水平的显著性检验

    Figure  3.  Correlation coefficients of the TP heat source (sink) between station dataset and (a) JRA55 data, (b) MERRA-2 data, (c) ERA5 data, (d) ERA-interim data, (e) NCEP2 data during 1984–2015. AHS represents the total atmospheric heat source, SH represents the surface sensible heating, LH represents latent heating of condensation, RC represents net radiation of the air column. *, **, and *** represent correlation coefficients exceeding the 90%, 95%, and 99% confidence level, respectively

    图  4  1980~2018年1~12月高原大气总热源(汇)第一模态(EOF1)的空间分布。右上角的数字表示其解释方差

    Figure  4.  Spatial distribution of the first EOF (empirical orthogonal function) mode (EOF1) of the TP heat source (sink) from January to December during 1980–2018. The number in the upper right corner of each subgraph represents its interpreted variance

    图  5  1980~2018年(a、e)“冬季型”(NDJ)、(b、f)“早春型”(FMA)、(c、g)“夏季型”(JJAS)、(d、h)“过渡型”(以5月代表)高原大气总热源第一模态(EOF1)的(a–d)空间分布及其(e–h)时间系数。右上角的数字表示EOF1的解释方差

    Figure  5.  (a–d) Spatial distribution and (e–h) time series (PC1) of the first EOF mode (EOF1) of (a, e) “winter type” (NDJ), (b, f) “early spring type” (FMA), (c, g) “summer type” (JJAS), (d, h) “transition type” (represented by May) of total atmospheric heat source over the TP during 1980–2018. The number in the upper right corner of each subgraph represents its interpreted variance

    图  6  1980~2018年“冬季型”青藏高原大气总热源第一模态时间系数(PC1)的回归场:(a)200 hPa位势高度(填色,单位:gpm)及水平风速(矢量,单位:m s–1);(b)700 hPa位势高度(填色,单位:gpm)及水平风速(矢量,单位:m s–1);(c)地表到100 hPa垂直积分的水汽通量(矢量,单位:kg m s−1)及水汽通量散度(填色,单位:10–5 kg m–2 s−1);(d)降水(填色,单位:mm d–1)。(e)1980~2018年 “冬季型”青藏高原大气热源PC1与全球海表温度异常(SSTA)的同期相关。紫色矢量及黑色打点区域表示通过90%置信水平的显著性t检验

    Figure  6.  Regression field of the first principal component (PC1) of the “winter type” total atmospheric heat source over the TP: (a) 200-hPa geopotential height (shadings, units: gpm) and horizontal wind (vectors; units: m s−1); (b) 700-hPa geopotential height (shadings, units: gpm) and horizontal wind (vectors; units: m s−1); (c) surface–100-hPa vertically integrated moisture transport anomalies (vectors; units: kg m s−1) and moisture divergence (shadings, units: 10−5 kg m−2 s−1); (d) precipitation (shadings, units: mm d–1) during 1980–2018. (e) Correlations between the PC1 of “winter type” total atmospheric heat source over the TP and the global sea surface temperature anomaly (SSTA) during 1980–2018. The purple vectors and black stippled regions indicate statistical significance above the 90% confidence level according to the Student’ s t test

    图  7  同图6,但为“早春型”的结果

    Figure  7.  As in Fig. 6, but for the results for “early spring type”

    图  8  1980~2018年“夏季型”青藏高原大气总热源PC1的回归场:(a)200 hPa位势高度(填色,单位:gpm)及水平风速(矢量,单位:m s−1);(b)500 hPa位势高度(填色,单位:gpm)及水平风速(矢量,单位:m s−1);(c)地表到100 hPa垂直积分的水汽通量(矢量,单位:kg m s−1)及水汽通量散度(填色,单位:10−5 kg m−2 s−1);(d)降水(填色,单位:mm d−1)。(e)1980~2018年“夏季型”青藏高原大气热源PC1与全球SSTA的同期相关。紫色矢量及黑色打点区域表示通过90%置信水平的显著性t检验

    Figure  8.  Regression field of the PC1 of the “summer type” total atmospheric heat source over TP: (a) 200-hPa geopotential height (shadings, units: gpm) and horizontal wind (vectors, units: m s−1); (b) 500-hPa geopotential height (shadings, units: gpm) and horizontal wind (vectors; units: m s−1); (c) surface–100-hPa vertically integrated moisture transport anomalies (vectors, units: kg m s−1) and moisture divergence (shadings, units: 10−5 kg m−2 s−1); (d) precipitation (shadings, units: mm d–1) during 1980–2018. (e) Correlations between the PC1 of the “summer type” total atmospheric heat source over the TP and the global SSTA during 1980–2018. The purple vectors and black stippled regions indicate statistical significance above the 90% confidence level according to the Student’ s t test

    图  9  1980~2018年5月青藏高原大气总热源PC1的回归场:(a)200 hPa位势高度(填色,单位:gpm)及水平风速(矢量,单位:m s−1);(b)500 hPa垂直速度(填色,单位:m s−1)及850 hPa水平风速(矢量,单位:m s−1);(c)地表到100 hPa垂直积分的水汽通量(矢量,单位:kg m s−1)及水汽通量散度(填色,单位:10−5 kg m−2 s−1);(d)降水(填色,单位:mm d−1)。(e)1980~2018年平均的5月青藏高原大气热源PC1与全球SSTA的同期相关。紫色矢量及黑色打点区域表示通过90%置信水平的显著性t检验

    Figure  9.  Regression field of the PC1 of the total atmospheric heat source over TP in May: (a) 200-hPa geopotential height (shadings, units: gpm) and horizontal wind (vectors, units: m s−1); (b) 500-hPa vertical velocity (shadings, units: m s−1) and 850-hPa horizontal wind (vectors, units: m s−1); (c) surface–100-hPa vertically integrated moisture transport anomalies (vectors, units: kg m s−1) and moisture divergence (shadings, units: 10−5 kg m−2 s−1); (d) precipitation (shadings, units: mm d–1) during 1980–2018. (e) Correlations between the PC1 of the total atmospheric heat source over the TP and the global SSTA in May averaged in the period 1980–2018. The purple vectors and black stippled regions indicate statistical significance above the 90% confidence level according to the Student’ s t-test

    图  10  影响不同类型青藏高原大气总热源的物理过程示意图:(a)“冬季型”;(b)“早春型”;(c)“夏季型”;(d)“过渡型”(以5月为代表)。“C”和“AC”分别代表气旋和反气旋异常,深蓝色箭头虚线表示Rossby波列传播路径,蓝色环状虚线代表异常经圈环流,高原上空彩色阴影代表降水异常,蓝色(红色)竖直虚线代表异常环流的正压结构,图a、d中红(蓝)色阴影表示正(负)SSTA异常。+IOD:印度洋偶极子正位相;+NAO:北大西洋涛动正位相;+IOBM:印度洋海盆一致模正位相

    Figure  10.  Schematic diagram of physical processes affecting different types of total atmospheric heat source over TP: (a) “Winter type”; (b) “early spring type”; (c) “summer type”; (d) “transition type” (represented by May). “C” and “AC” represent cyclonic and anticyclonic anomalies, respectively; the dark blue dotted arrow line represents the propagation path of Rossby wave train; the blue dotted ring represents the anomalous meridional circulation; the color shadings over the plateau represent the precipitation anomalies; the blue (red) dotted vertical line represents the barotropic structure of anomalous circulation; in Figs. a and d, the red (blue) shadings represent positive (negative) SSTA. +IOD: positive phase of the Indian Ocean Dipole; +NAO: positive phase of the North Atlantic Oscillation; +IOBM: positive phase of the Indian Ocean Basin Mode

    表  1  1980~2018年青藏高原总热源EOF1的空间分布(Mode1)以及时间序列(PC1)在“冬季型”、“早春型”、“夏季型”与其相应的每个月之间的相关系数

    Table  1.   Correlation coefficients of the spatial distribution (Mode1) and time series (PC1) of the EOF1 of the total atmospheric heat source over the TP between “winter type”, “early spring type”, “summer type” and their corresponding months, respectively, during 1980–2018

    相关系数
    冬季型11月12月1月
    PC10.63***0.45***0.45***
    EOF10.89 0.92 0.79
    早春型2月3月4月
    PC10.80***0.56***0.28*
    EOF10.940.95 0.71
    夏季型6月7月8月9月
    PC10.66***0.67***0.40***0.55***
    EOF10.93 0.73 0.91 0.88
    注:******分别代表通过90%、95%、99%置信水平的显著性检验。
    下载: 导出CSV
  • [1] Chen X Y, You Q L. 2017. Effect of Indian Ocean SST on Tibetan Plateau precipitation in the early rainy season [J]. J. Climate, 30(22): 8973−8985. doi: 10.1175/jcli-d-16-0814.1
    [2] Chen Y H, Duan A M, Li D L. 2021. Connection between winter Arctic sea ice and west Tibetan Plateau snow depth through the NAO [J]. Int. J. Climatol., 41(2): 846−861. doi: 10.1002/joc.6676
    [3] Cohen J, Rind D. 1991. The effect of snow cover on the climate [J]. J. Climate, 4(7): 689−706. doi:10.1175/1520-0442(1991)004<0689:TEOSCO>2.0.CO;2
    [4] Cui Y F, Duan A M, Liu Y M, et al. 2015. Interannual variability of the spring atmospheric heat source over the Tibetan Plateau forced by the North Atlantic SSTA [J]. Climate Dyn., 45(5-6): 1617−1634. doi: 10.1007/s00382-014-2417-9
    [5] Dee D P, Uppala S M, Simmons A J, et al. 2011. The ERA-interim reanalysis: Configuration and performance of the data assimilation system [J]. Quart. J. Roy. Meteor. Soc., 137(656): 553−597. doi: 10.1002/qj.828
    [6] Dong W H, Lin Y L, Wright J S, et al. 2016. Summer rainfall over the southwestern Tibetan Plateau controlled by deep convection over the Indian subcontinent [J]. Nat. Commun., 7: 10925. doi: 10.1038/ncomms10925
    [7] Dong W H, Lin Y L, Wright J S, et al. 2017. Indian monsoon low-pressure systems feed up-and-over moisture transport to the southwestern Tibetan Plateau [J]. J. Geophys. Res. , 122(22): 12 140–12 151. doi: 10.1002/2017jd027296
    [8] Duan A M, Wu G X. 2005. Wave-mean flow interaction and its relationship with the atmospheric energy cycle with diabatic heating [J]. Sci. China Ser. D Earth Sci., 48(8): 1293−1302. doi: 10.1360/04yd0042
    [9] Duan A M, Wu G X. 2008. Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part I: Observations [J]. J. Climate, 21(13): 3149−3164. doi: 10.1175/2007jcli1912.1
    [10] Duan A M, Li F, Wang M R, et al. 2011. Persistent weakening trend in the spring sensible heat source over the Tibetan Plateau and its impact on the Asian summer monsoon [J]. J. Climate, 24(21): 5671−5682. doi: 10.1175/jcli-d-11-00052.1
    [11] Duan A M, Wang M R, Lei Y H, et al. 2013. Trends in summer rainfall over China associated with the Tibetan Plateau sensible heat source during 1980–2008 [J]. J. Climate, 26(1): 261−275. doi: 10.1175/jcli-d-11-00669.1
    [12] Duan A M, Wang M R, Xiao Z X. 2014. Uncertainties in quantitatively estimating the atmospheric heat source over the Tibetan Plateau [J]. Atmos. Oceanic Sci. Lett., 7(1): 28−33. doi: 10.1080/16742834.2014.11447131
    [13] Duan A M, Liu S F, Zhao Y, et al. 2018. Atmospheric heat source/sink dataset over the Tibetan Plateau based on satellite and routine meteorological observations [J]. Big Earth Data, 2(2): 179−189. doi: 10.1080/20964471.2018.1514143
    [14] Duan A M, Hu D, Hu W T, et al. 2020. Precursor effect of the Tibetan Plateau heating anomaly on the seasonal march of the East Asian summer monsoon precipitation [J]. J. Geophys. Res., 125(23): e2020JD032948. doi: 10.1029/2020jd032948
    [15] 方韵, 范广洲, 赖欣, 等. 2016. 高原上空纬向环流的季节突变现象 [J]. 热带气象学报, 32(2): 273−280. doi: 10.16032/j.issn.1004-4965.2016.02.014

    Fang Yun, Fan Guangzhou, Lai Xin, et al. 2016. Abrupt seasonal transitions of zonal circulation over the Tibetan Plateau [J]. J. Trop. Meteor. (in Chinese), 32(2): 273−280. doi: 10.16032/j.issn.1004-4965.2016.02.014
    [16] Frankignoul C, Hasselmann K. 1977. Stochastic climate models. Part II: Application to sea surface temperature anomalies and thermocline variability [J]. Tellus, 29(4): 289−305. doi: 10.1111/j.2153-3490.1977.tb00740.x
    [17] Frankignoul C, Sennéchael N. 2007. Observed influence of North Pacific SST anomalies on the atmospheric circulation [J]. J. Climate, 20(3): 592−606. doi: 10.1175/Jcli4021.1
    [18] Gao Y, Wang H J, Li S L. 2013. Influences of the Atlantic Ocean on the summer precipitation of the southeastern Tibetan Plateau [J]. J. Geophys. Res., 118(9): 3534−3544. doi: 10.1002/jgrd.50290
    [19] Gill A E. 1980. Some simple solutions for heat-induced tropical circulation [J]. Quart. J. Roy. Meteor. Soc., 106(449): 447−462. doi: 10.1002/qj.49710644905
    [20] Hersbach H, Bell B, Berrisford P, et al. 2020. The ERA5 global reanalysis [J]. Quart. J. Roy. Meteor. Soc., 146(730): 1999−2049. doi: 10.1002/qj.3803
    [21] Hu J, Duan A M. 2015. Relative contributions of the Tibetan Plateau thermal forcing and the Indian Ocean sea surface temperature basin mode to the interannual variability of the East Asian summer monsoon [J]. Climate Dyn., 45(9-10): 2697−2711. doi: 10.1007/s00382-015-2503-7
    [22] Hu S, Zhou T J, Wu B. 2021. Impact of developing ENSO on Tibetan Plateau summer rainfall [J]. J. Climate, 34(9): 3385−3400. doi: 10.1175/jcli-d-20-0612.1
    [23] Huffman G J, Adler R F, Morrissey M M, et al. 2001. Global precipitation at one-degree daily resolution from multisatellite observations [J]. J. Hydrometeorol., 2(1): 36−50. doi:10.1175/1525-7541(2001)002<0036:Gpaodd>2.0.Co;2
    [24] Hurrell J W, Kushnir Y, Ottersen G, et al. 2003. An overview of the North Atlantic oscillation [M]//Hurrell J W, Kushnir Y, Ottersen G, et al. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, 134. Washington: American Geophysical Union. doi: 10.1029/134gm01
    [25] Jiang X W, Li Y Q, Yang S, et al. 2016. Interannual variation of summer atmospheric heat source over the Tibetan Plateau and the role of convection around the western maritime continent [J]. J. Climate, 29(1): 121−138. doi: 10.1175/jcli-d-15-0181.1
    [26] Jiang X W, Zhang T T, Tam C Y, et al. 2019. Impacts of ENSO and IOD on snow depth over the Tibetan Plateau: Roles of convections over the western North Pacific and Indian Ocean [J]. J. Geophys. Res., 124(22): 11961−11975. doi: 10.1029/2019jd031384
    [27] Kanamitsu M, Ebisuzaki W, Woollen J, et al. 2002. NCEP–DOE AMIP-II Reanalysis (R-2) [J]. Bull. Amer. Meteor. Soc., 83(11): 1631−1644. doi: 10.1175/bams-83-11-1631
    [28] Kobayashi S, Ota Y, Harada Y, et al. 2015. The JRA-55 reanalysis: General specifications and basic characteristics [J]. J. Meteor. Soc. Japan, 93(1): 5−48. doi: 10.2151/jmsj.2015-001
    [29] 况雪源, 张耀存, 刘健. 2008. 秋冬季节转换期东亚环流变化特征及机制分析 [J]. 高原气象, 27(1): 17−25.

    Kuang Xueyuan, Zhang Yaocun, Liu Jian. 2008. Evolution features of East Asian general circulation and mechanism during transition season between autumn and winter [J]. Plateau Meteor. (in Chinese), 27(1): 17−25.
    [30] Lai H W, Chen H W, Kukulies J, et al. 2021. Regionalization of seasonal precipitation over the Tibetan Plateau and associated large-scale atmospheric systems [J]. J. Climate, 34(7): 2635−2651. doi: 10.1175/jcli-d-20-0521.1
    [31] Liu X D, Yin Z Y. 2001. Spatial and temporal variation of summer precipitation over the eastern Tibetan Plateau and the North Atlantic oscillation [J]. J. Climate, 14(13): 2896−2909. doi:10.1175/1520-0442(2001)014<2896:satvos>2.0.CO;2
    [32] Liu S F, Duan A M. 2018. Impacts of the global sea surface temperature anomaly on the evolution of circulation and precipitation in East Asia on a quasi-quadrennial cycle [J]. Climate Dyn., 51(11): 4077−4094. doi: 10.1007/s00382-017-3663-4
    [33] Liu G, Wu R G, Zhang Y Z. 2014. Persistence of snow cover anomalies over the Tibetan Plateau and the implications for forecasting summer precipitation over the Meiyu-Baiu region [J]. Atmos. Oceanic Sci. Lett., 7(2): 115−119. doi: 10.3878/j.issn.1674-2834.13.0074
    [34] Liu G, Zhao P, Chen J M, et al. 2015a. Preceding factors of summer Asian–Pacific oscillation and the physical mechanism for their potential influences [J]. J. Climate, 28(7): 2531−2543. doi: 10.1175/jcli-d-14-00327.1
    [35] Liu H C, Duan K Q, Li M, et al. 2015b. Impact of the North Atlantic oscillation on the Dipole oscillation of summer precipitation over the central and eastern Tibetan Plateau [J]. Int. J. Climatol., 35(15): 4539−4546. doi: 10.1002/joc.4304
    [36] Liu W B, Wang L, Chen D L, et al. 2016. Large-scale circulation classification and its links to observed precipitation in the eastern and central Tibetan Plateau [J]. Climate Dyn., 46(11-12): 3481−3497. doi: 10.1007/s00382-015-2782-z
    [37] Liu S F, Duan A M, Wu G X. 2020a. Asymmetrical response of the East Asian summer monsoon to the quadrennial oscillation of global sea surface temperature associated with the Tibetan Plateau thermal feedback [J]. J. Geophys. Res., 125(20): e2019JD032129. doi: 10.1029/2019jd032129
    [38] Liu X L, Liu Y M, Wang X C, et al. 2020b. Large-scale dynamics and moisture sources of the precipitation over the western Tibetan Plateau in boreal winter [J]. J. Geophys. Res., 125(9): e2019JD032133. doi: 10.1029/2019JD032133
    [39] Luo X Q, Xu J J, Liu C L, et al. 2021. Characteristics of atmospheric heat sources in the Tibetan Plateau–Tropical Indian Ocean region [J]. Journal of Tropical Meteorology, 27(1): 70−80. doi: 10.46267/j.1006-8775.2021.007
    [40] Rayner N A, Parker D E, Horton E B, et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century [J]. J. Geophys. Res., 108(D14): 4407. doi: 10.1029/2002jd002670
    [41] Rienecker M M, Suarez M J, Gelaro R, et al. 2011. MERRA: NASA’s modern-era retrospective analysis for research and applications [J]. J. Climate, 24(14): 3624−3648. doi: 10.1175/jcli-d-11-00015.1
    [42] Shaman J, Tziperman E. 2005. The effect of ENSO on Tibetan Plateau snow depth: A stationary wave teleconnection mechanism and implications for the South Asian Monsoons [J]. J. Climate, 18(12): 2067−2079. doi: 10.1175/jcli3391.1
    [43] Sun B, Wang H J. 2019. Enhanced connections between summer precipitation over the Three-River-Source region of China and the global climate system [J]. Climate Dyn., 52(5-6): 3471−3488. doi: 10.1007/s00382-018-4326-9
    [44] Sun R Z, Duan A M, Chen L L, et al. 2019. Interannual variability of the North Pacific mixed layer associated with the spring Tibetan Plateau thermal forcing [J]. J. Climate, 32(11): 3109−3130. doi: 10.1175/jcli-d-18-0577.1
    [45] Syroka J, Toumi R. 2002. Recent lengthening of the south Asian summer monsoon season [J]. Geophys. Res. Lett., 29(10): 1458. doi: 10.1029/2002gl015053
    [46] Syroka J, Toumi R. 2004. On the withdrawal of the Indian summer monsoon [J]. Quart. J. Roy. Meteor. Soc., 130(598): 989−1008. doi: 10.1256/qj.03.36
    [47] Wang B, LinHo. 2002. Rainy season of the Asian–Pacific summer monsoon [J]. J. Climate, 15(4): 386−398. doi:10.1175/1520-0442(2002)015<0386:Rsotap>2.0.Co;2
    [48] Wang A H, Zeng X B. 2012. Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau [J]. J. Geophys. Res., 117(D5): D05102. doi: 10.1029/2011jd016553
    [49] Wang C X, Ma Z F. 2018. Quasi-3-yr cycle of rainy season precipitation in Tibet related to different types of ENSO during 1981–2015 [J]. J. Meteor. Res., 32(2): 181−190. doi: 10.1007/s13351-018-7100-3
    [50] Wang Y F, Xu X Y. 2018. Impact of ENSO on the thermal condition over the Tibetan Plateau [J]. J. Meteor. Soc. Japan, 96(3): 269−281. doi: 10.2151/jmsj.2018-032
    [51] Wang M R, Zhou S W, Duan A M. 2012. Trend in the atmospheric heat source over the central and eastern Tibetan Plateau during recent decades: Comparison of observations and reanalysis data [J]. Chinese Sci. Bull., 57(5): 548−557. doi: 10.1007/s11434-011-4838-8
    [52] Wang Z Q, Duan A M, Wu G X. 2014. Time-lagged impact of spring sensible heat over the Tibetan Plateau on the summer rainfall anomaly in East China: Case studies using the WRF model [J]. Climate Dyn., 42(11-12): 2885−2898. doi: 10.1007/s00382-013-1800-2
    [53] Wang C H, Yang K, Li Y L, et al. 2017a. Impacts of spatiotemporal anomalies of Tibetan Plateau snow cover on summer precipitation in eastern China [J]. J. Climate, 30(3): 885−903. doi: 10.1175/jcli-d-16-0041.1
    [54] Wang Z Q, Duan A M, Yang S, et al. 2017b. Atmospheric moisture budget and its regulation on the variability of summer precipitation over the Tibetan Plateau [J]. J. Geophys. Res., 122(2): 614−630. doi: 10.1002/2016jd025515
    [55] Wang Z Q, Yang S, Lau N C, et al. 2018. Teleconnection between summer NAO and East China rainfall variations: A bridge effect of the Tibetan Plateau [J]. J. Climate, 31(16): 6433−6444. doi: 10.1175/jcli-d-17-0413.1
    [56] Wang Z B, Wu R G, Zhao P, et al. 2019. Formation of snow cover anomalies over the Tibetan Plateau in cold seasons [J]. J. Geophys. Res., 124(9): 4873−4890. doi: 10.1029/2018jd029525
    [57] Wei W, Wu Y T, Yang S, et al. 2019. Role of the South Asian high in the onset process of the Asian summer monsoon during spring-to-summer transition [J]. Atmosphere, 10(5): 239. doi: 10.3390/atmos10050239
    [58] Wu T W, Qian Z A. 2003. The relation between the Tibetan winter snow and the Asian summer monsoon and rainfall: An observational investigation [J]. J. Climate, 16(12): 2038−2051. doi:10.1175/1520-0442(2003)016<2038:TRBTTW>2.0.CO;2
    [59] Wu G X, Liu Y M, He B, et al. 2012. Thermal controls on the Asian summer monsoon [J]. Sci. Rep., 2: 404. doi: 10.1038/srep00404
    [60] Wu G X, Duan A M, Liu Y M, et al. 2015. Tibetan Plateau climate dynamics: Recent research progress and outlook [J]. Natl. Sci. Rev., 2(1): 100−116. doi: 10.1093/nsr/nwu045
    [61] Xiao Z X, Duan A M. 2016. Impacts of Tibetan Plateau snow cover on the interannual variability of the East Asian summer monsoon [J]. J. Climate, 29(23): 8495−8514. doi: 10.1175/jcli-d-16-0029.1
    [62] Xie S P, Hu K M, Hafner J, et al. 2009. Indian ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño [J]. J. Climate, 22(3): 730−747. doi: 10.1175/2008JCLI2544.1
    [63] Yang K, Guo X F, He J, et al. 2011. On the climatology and trend of the atmospheric heat source over the Tibetan Plateau: An experiments-supported revisit [J]. J. Climate, 24(5): 1525−1541. doi: 10.1175/2010JCLI3848.1
    [64] Yang K, Wu H, Qin J, et al. 2014. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review [J]. Glob. Planet. Change, 112: 79−91. doi: 10.1016/j.gloplacha.2013.12.001
    [65] 姚檀栋, 朴世龙, 沈妙根, 等. 2017. 印度季风与西风相互作用在现代青藏高原产生连锁式环境效应 [J]. 中国科学院院刊, 32(9): 976−984. doi: 10.16418/j.issn.1000-3045.2017.09.007

    Yao Tandong, Pu Shilong, Shen Miaogen, et al. 2017. Chained impacts on modern environment of interaction between westerlies and Indian Monsoon on Tibetan Plateau [J]. Bull. Chinese Acad. Sci., 32(9): 976−984. doi: 10.16418/j.issn.1000-3045.2017.09.007
    [66] 叶笃正, 高由禧. 1979. 青藏高原气象学[M]. 北京: 科学出版社, 278pp

    Ye Duzheng, Gao Youxi. 1979. Tibetan Plateau Meteorology (in Chinese) [M]. Beijing: Science Press, 278pp.
    [67] 叶笃正, 陶诗言, 李麦村. 1958. 在六月和十月大气环流的突变现象 [J]. 气象学报, 29(4): 249−263.

    Yeh T C, Dao S Y, Li M T. 1958. The abrupt change of circulation over Northern Hemisphere during June and October [J]. Acta Meteor. Sinica (in Chinese), 29(4): 249−263.
    [68] 宇婧婧, 刘屹岷, 吴国雄. 2011. 冬季青藏高原大气热状况分析. Ⅱ: 年际变化 [J]. 气象学报, 69(1): 89−98. doi: 10.11676/qxxb2011.008

    Yu Jingjing, Liu Yimin, Wu Guoxiong. 2011. An analysis of the diabatic heating characteristic of atmosphere over the Tibetan Plateau in winter. Ⅱ: Interannual variation [J]. Acta Meteor. Sinica (in Chinese), 69(1): 89−98. doi: 10.11676/qxxb2011.008
    [69] Yu W, Liu Y M, Yang X Q, et al. 2021. Impact of North Atlantic SST and Tibetan Plateau forcing on seasonal transition of springtime South Asian monsoon circulation [J]. Climate Dyn., 56(1-2): 559−579. doi: 10.1007/s00382-020-05491-0
    [70] Yuan C X, Tozuka T, Miyasaka T, et al. 2009. Respective influences of IOD and ENSO on the Tibetan snow cover in early winter [J]. Climate Dyn., 33(4): 509−520. doi: 10.1007/s00382-008-0495-2
    [71] Yuan C X, Tozuka T, Yamagata T. 2012. IOD influence on the early winter Tibetan Plateau snow cover: Diagnostic analyses and an AGCM simulation [J]. Climate Dyn., 39(7-8): 1643−1660. doi: 10.1007/s00382-011-1204-0
    [72] Zhang P, Duan A M. 2021. Dipole mode of the precipitation anomaly over the Tibetan Plateau in mid-autumn associated with tropical Pacific–Indian Ocean sea surface temperature anomaly: Role of convection over the northern Maritime Continent [J]. J. Geophys. Res., 126(20): e2021JD034675. doi: 10.1029/2021JD034675
    [73] Zhang Y, Zhou W, Chow E C H, et al. 2019. Delayed impacts of the IOD: Cross-seasonal relationships between the IOD, Tibetan Plateau snow, and summer precipitation over the Yangtze–Huaihe River region [J]. Climate Dyn., 53(7-8): 4077−4093. doi: 10.1007/s00382-019-04774-5
    [74] 赵平, 陈隆勋. 2001. 35年来青藏高原大气热源气候特征及其与中国降水的关系 [J]. 中国科学D辑, 31(4): 327−332. doi: 10.1360/zd2001-31-4-327

    Zhao Ping, Chen Longxun. 2001. Climatic characteristics of atmospheric heat source over the Tibetan Plateau and its relationship with precipitation in China during the past 35 years [J]. Science in China Series D-Earth Sciences (in Chinese), 31(4): 327−332. doi: 10.1360/zd2001-31-4-327
    [75] Zhao Y, Zhou T J. 2021. Interannual variability of precipitation recycle ratio over the Tibetan Plateau [J]. J. Geophys. Res., 126(2): e2020JD033733. doi: 10.1029/2020jd033733
    [76] Zhao Y, Duan A M, Wu G X. 2018. Interannual variability of late-spring circulation and diabatic heating over the Tibetan Plateau associated with Indian Ocean forcing [J]. Adv. Atmos. Sci., 35(8): 927−941. doi: 10.1007/s00376-018-7217-4
    [77] Zhu L H, Huang G, Fan G Z, et al. 2018. Elevation-dependent sensible heat flux trend over the Tibetan Plateau and its possible causes [J]. Climate Dyn., 52: 3997−4009. doi: 10.1007/s00382-018-4360-7
    [78] 朱艳欣, 桑燕芳. 2018. 青藏高原降水季节分配的空间变化特征 [J]. 地理科学进展, 37(11): 1533−1544. doi: 10.18306/dlkxjz.2018.11.009

    Zhu Yanxin, Sang Yanfang. 2018. Spatial variability in the seasonal distribution of precipitation on the Tibetan Plateau [J]. Progress in Geography (in Chinese), 37(11): 1533−1544. doi: 10.18306/dlkxjz.2018.11.009
    [79] 竺夏英, 刘屹岷, 吴国雄. 2012. 夏季青藏高原多种地表感热通量资料的评估 [J]. 中国科学:地球科学, 42(7): 1104−1112. doi: 10.1007/s11783-011-0280-z

    Zhu Xiaying, Liu Yimin, Wu Guoxiong. 2012. An assessment of summer sensible heat flux on the Tibetan Plateau from eight data sets [J]. Sci. China Earth Sci. (in Chinese), 42(7): 1104−1112. doi: 10.1007/s11783-011-0280-z
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  646
  • HTML全文浏览量:  183
  • PDF下载量:  223
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-15
  • 录用日期:  2022-01-21
  • 网络出版日期:  2022-01-21
  • 刊出日期:  2022-03-16

目录

    /

    返回文章
    返回