高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

实时天气背景依赖的反射率因子间接同化及多暴雨个例试验

黄静 陈耀登 陈海琴 王黎娟

黄静, 陈耀登, 陈海琴, 等. 2022. 实时天气背景依赖的反射率因子间接同化及多暴雨个例试验[J]. 大气科学, 46(3): 691−706 doi: 10.3878/j.issn.1006-9895.2201.21145
引用本文: 黄静, 陈耀登, 陈海琴, 等. 2022. 实时天气背景依赖的反射率因子间接同化及多暴雨个例试验[J]. 大气科学, 46(3): 691−706 doi: 10.3878/j.issn.1006-9895.2201.21145
HUANG Jing, CHEN Yaodeng, CHEN Haiqin, et al. 2022. Real-Time Background-Dependent Indirect Assimilation of Radar Reflectivity Factor and Experiments for Multi Heavy Rainfall Cases [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(3): 691−706 doi: 10.3878/j.issn.1006-9895.2201.21145
Citation: HUANG Jing, CHEN Yaodeng, CHEN Haiqin, et al. 2022. Real-Time Background-Dependent Indirect Assimilation of Radar Reflectivity Factor and Experiments for Multi Heavy Rainfall Cases [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(3): 691−706 doi: 10.3878/j.issn.1006-9895.2201.21145

实时天气背景依赖的反射率因子间接同化及多暴雨个例试验

doi: 10.3878/j.issn.1006-9895.2201.21145
基金项目: 国家自然科学基金项目42075148,国家重点研发计划重点专项项目2017YFC1502102,灾害天气国家重点实验室开放课题2021LASW-A08
详细信息
    作者简介:

    黄静,女,1998年出生,硕士研究生,主要从事资料同化与数值天气模拟研究。E-mail: hjing60@163.com

    通讯作者:

    陈耀登, E-mail: keyu@nuist.edu.cn

  • 中图分类号: P456.7

Real-Time Background-Dependent Indirect Assimilation of Radar Reflectivity Factor and Experiments for Multi Heavy Rainfall Cases

Funds: National Natural Science Foundation of China (Grant 42075148), National Key Research and Development Program of China (Grant 2017YFC1502102), State Key Laboratory of Severe Weather (Grant 2021LASW-A08 )
  • 摘要: 为避免直接同化时反射率非线性观测算子线性化带来的线性近似误差问题,目前许多研究和业务中还常采用间接同化方式来同化雷达反射率因子,其通过背景场温度判定水凝物类型及比例。基于一种实时天气背景依赖的雷达反射率因子间接同化方案,进行了4次暴雨过程(2次强对流,2次锋面)的循环同化及预报试验。结果表明:对于强对流暴雨个例,相对于传统温度判定方案,天气背景依赖方案的温度预报误差更小、降水预报评分更高,而对于锋面过程区别不明显;进一步机理分析表明,对于强对流暴雨个例,由于背景依赖方案在同化反射率因子时引入了实时天气背景信息,使得分析场水凝物结构能够更好表征实际对流特征且与其它模式变量更为协调,进而改善了模式预报的热、动力及水汽条件,从而改善了降雨预报效果;而锋面暴雨由浅对流过程占主导,水凝物以低层的雨水为主导,冰相水凝物对于该过程的影响较小,由于两种方案反演的雨水结构和量级均相似,因此降雨预报差异较小。
  • 图  1  4次暴雨过程的6 h累积降水量(单位:mm):(a) 2019年7月6日06~12时(协调世界时,下同);(b)2019年7月12日18~00时;(c)2018年7月5日00~06时;(d)2018年7月26日09~15时

    Figure  1.  6-h accumulative precipitation (units: mm) of four heavy rainfall processes (a) 0600–1200 UTC on July 6, 2019; (b) 1800–0000 UTC on July 12, 2019; (c) 0000–0600 UTC on July 5, 2018; (d) 0900–1500 UTC on July 26, 2018

    图  2  研究区域及同化观测站点分布。全部同化观测站点分布(左),雷达观测站点分布(右)

    Figure  2.  Research area and distribution of assimilation observation stations. Distribution of all assimilation observation stations (left), distribution of radar observation stations (right)

    图  3  循环同化预报流程。GTS代表常规观测,Radar代表雷达观测,包括雷达径向风和由雷达反射率反演的水凝物。GTS同化间隔为3小时,Radar同化间隔为15分钟,每隔1小时进行一次3小时预报

    Figure  3.  Cycling assimilation and forecast process. GTS represents conventional observations, and Radar stands for radar observations, which include radial velocity and hydrometeors retrieved from radar reflectivity. The GTS assimilation interval is 3 h, and the radar assimilation interval is 15 min, with a 3 h forecast carried out every hour

    图  4  4个个例两组试验的逐小时平均FSS降水评分:(a,d,g,j)0~1 h预报;(b,e,h,k)1~2 h预报;(c,f,i,l)2~3 h预报

    Figure  4.  Averaged FSS (Fraction Skill Scores) of the hourly-accumulated precipitation forecasts for two experiments of four cases: (a, d, g, j) 0–1 h; (b, e, h, k) 1–2 h; (c, f, i, l) 2–3 h

    图  5  4个个例两组试验3 h预报场的平均RMSE,评估变量分别为风速UV(单位:m s−1),温度T(单位:°C)以及相对湿度(RH)。黑色线代表Exp-ZT试验,红色线代表Exp-BG试验,阴影为95%置信区间

    Figure  5.  Averaged root mean square error (RMSE) of 3-h forecast field for the two experiments of four cases. The evaluation variables are wind speed U, V (units: m s−1), temperature T (units: °C), and relative humidity (RH). The black line represents Exp-ZT, the red line represents the Exp-BG, and the shadow represents the 95% confidence interval

    图  6  强对流暴雨个例(Case 1)的观测(左)与试验Exp-ZT(中)和Exp-BG(右)模拟的3 h逐小时累积降水量(阴影,单位:mm)对比(起报时间为2019年7月6日08时):(a,b,c)0~1 h;(d,e,f)1~2 h;(g,h,j)2~3 h

    Figure  6.  Hourly precipitation (units: mm) of the observation (left), the Exp-ZT (middle), and the Exp-BG (right) for the convective rainfall case (Case 1) (forecast from 0800 UTC on July 6), 2019: (a, b, c) 0–1 h; (d, e, f) 1–2 h; (g, h, j) 2–3 h

    图  7  锋面暴雨个例(Case 2)的观测(左)与试验Exp-ZT(中)和Exp-BG(右)模拟的3 h逐小时累积降水量(阴影,单位:mm)对比(起报时间为2019年7月12日20时):(a,b,c)0~1 h;(d,e,f)1~2 h;(g,h,j)2~3 h

    Figure  7.  Hourly precipitation (units: mm) of the observation (left), the Exp-ZT (middle), and the Exp-BG (right) for the frontal process (Case 2) (forecast at 2000 UTC on July 12, 2019): (a, b, c) 0–1 h; (d, e, f) 1–2 h; (g, h, j) 2–3 h

    图  8  2019年7月(a,b)6日08时沿 33°N~34°N和(c,d)12日20时沿 30°N~31°N平均水凝物混合比最大值反演场垂直剖面:(a,c)Exp-ZT试验;(b,d)Exp-BG试验。绿色等值线:Qrain(单位:g kg−1,等值线分别为0.1,0.5,1.0,2.0);蓝色线等值线:Qsnow(单位:g kg−1,等值线分别为0.01,1.0,2.5,3.5);阴影:Qgraup,黑色虚线:0°C等温线

    Figure  8.  Vertical cross sections of the maximum retrieved hydrometeor mixing ratio (units: g kg−1) averaged along 33°N–34°N at (a, b) 0800 UTC on July 6, 2019 and along 30°N–31°N at (c, d) 0000 UTC on July 12, 2019: (a, c) Exp-ZT; (b, d) Exp-BG. The contour values of Qrain (green lines) are 0.1, 0.5, 1.0 and 2.0. The contour values of Qsnow (blue lines) are 0.01, 1.0, 2.5, and 3.5. The shade is Qgraup, and the dotted black line represents the 0°C line

    图  9  2019年7月6日08时(上)和12日20时(下)水凝物(QsnowQgraup)混合比分析增量(阴影,单位:g kg−1):(a,c,e,g)Exp-ZT试验;(b,d,f,h)Exp-BG试验

    Figure  9.  Hydrometeor analysis increment mixing ratio (shaded, units: g kg−1) at 0800 UTC on July 6, 2019 (top) and at 2000 UTC on July 12, 2019 (bottom): (a, c, e, g) Exp-ZT; (b, d, f, h) Exp-BG

    图  10  2019年7月(a,b)6日09时(08时起报)沿着AB(见图6)和(c,d)12日23时(20时起报)沿着CD(见图7)的相当位温预报场垂直剖面(阴影,单位:K):(a,c)试验Exp-ZT;(b,d)试验Exp-BG

    Figure  10.  Vertical cross sections of equivalent potential temperature forecast field (shaded, units: K) along AB (in Fig.6) (a, b) at 0900 UTC (forecast from 0800 UTC) on July 6, 2019 and along CD (in Fig.7) (c, d) at 2300 UTC (forecast from 2000 UTC) on July 12, 2019: (a, c) Exp-ZT; (b, d) Exp-BG

    图  11  2019年7月(a,b)6日09时(08时起报)沿着AB和(c,d)12日23时(20时起报)沿着CD的相对湿度(阴影)及风场的预报场(矢量,单位:m s−1):(a,c)试验Exp-ZT;(b,d)试验Exp-BG

    Figure  11.  Relative humidity (shaded) and wind (vector, units: m s−1) forecast fields along AB (a, b) at 0900 UTC (forecast from 0800 UTC) on July 6, 2019 and along CD (c, d) at 2300 UTC (forecast from 2000 UTC) on July 12, 2019: (a, c) Exp-ZT; (b, d) Exp-BG

    图  12  2019年7月(a,b)6日09时(08时起报)沿着AB和(c,d)12日23时(20时起报)沿着CD的散度(填色,单位:10−4s−1)及风场的预报场(矢量,单位:m s−1):(a,c)试验Exp-ZT;(b,d) 试验Exp-BG

    Figure  12.  Divergence (shaded, units: 10−4s−1) and wind (vector, units: m s−1) forecast fields along AB (a, b) at 0900 UTC (forecast from 0800 UTC) on July 6, 2019 and along CD (c, d) at 2300 UTC (forecast from 2000 UTC) on July 12, 2019: (a, c) Exp-ZT; (b, d) Exp-BG

    表  1  研究选取的四次暴雨过程

    Table  1.   Four heavy rainfall cases selected in the study

    个例名称生命史个例类型
    Case 12019年7月6日06~12时局地强对流
    Case 22019年7月12日18时至13日03时锋面降水
    Case 32018年7月5日00~06时锋面降水
    Case 42018年7月26日09~15时多孤立单体强对流
    下载: 导出CSV

    表  2  试验设计

    Table  2.   Experimental design

    试验名称同化资料反射率因子同化方案
    Exp-ZT常规观测、径向风和反射率温度判定方案
    Exp-BG常规观测、径向风和反射率背景依赖方案
    下载: 导出CSV
  • [1] Carlin J T, Ryzhkov A V, Snyder J C, et al. 2016. Hydrometeor mixing ratio retrievals for storm-scale radar data assimilation: Utility of current relations and potential benefits of polarimetry [J]. Mon. Wea. Rev., 144(8): 2981−3001. doi: 10.1175/MWR-D-15-0423.1
    [2] Chang S F, Liou Y C, Sun J Z, et al. 2016. The implementation of the ice-phase microphysical process into a four-dimensional variational doppler radar analysis system (VDRAS) and its impact on parameter retrieval and quantitative precipitation nowcasting [J]. J. Atmos. Sci., 73(3): 1015−1038. doi: 10.1175/JAS-D-15-0184.1
    [3] 陈敏, 陈明轩, 范水勇. 2014. 雷达径向风观测在华北区域数值预报系统中的实时三维变分同化应用试验 [J]. 气象学报, 72(4): 658−677. doi: 10.11676/qxxb2014.070

    Chen Min, Chen Mingxuan, Fan Shuiyong. 2014. The real-time radar radial velocity 3DVar assimilation experiments for application to an operational forecast model in North China [J]. Acta Meteorologica Sinica (in Chinese), 72(4): 658−677. doi: 10.11676/qxxb2014.070
    [4] Chen H Q, Chen Y D, Gao J D, et al. 2020. A radar reflectivity data assimilation method based on background-dependent hydrometeor retrieval: An observing system simulation experiment [J]. Atmos. Res., 243: 105022. doi: 10.1016/j.atmosres.2020.105022
    [5] Chen H Q, Gao J D, Chen Y H, et al. 2021. Radar reflectivity data assimilation method based on background-dependent hydrometeor retrieval: Comparison with direct assimilation for real cases [J]. Quart. J. Roy. Meteor. Soc., 147(737): 2409−2428. doi: 10.1002/qj.4031
    [6] Chou M D, Suarez M J. 1999. A solar radiation parameterization for atmospheric studies [R]. NASA Tech. Memo. NASA/TM-1999-104606.
    [7] Dowell D C, Wicker L J, Snyder C. 2011. Ensemble Kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: Influences of reflectivity observations on storm-scale analyses [J]. Mon. Wea. Rev., 139(1): 272−294. doi: 10.1175/2010MWR3438.1
    [8] 范水勇, 王洪利, 陈敏, 等. 2013. 雷达反射率资料的三维变分同化研究 [J]. 气象学报, 71(3): 527−537. doi: 10.11676/qxxb2013.032

    Fan Shuiyong, Wang Hongli, Chen Min, et al. 2013. Study of the data assimilation of radar reflectivity with the WRF 3D-Var [J]. Acta Meteorologica Sinica (in Chinese), 71(3): 527−537. doi: 10.11676/qxxb2013.032
    [9] Gao J D, Stensrud D J. 2012. Assimilation of reflectivity data in a convective-scale, cycled 3DVAR framework with hydrometeor classification [J]. J. Atmos. Sci., 69(3): 1054−1065. doi: 10.1175/JAS-D-11-0162.1
    [10] 高守亭, 周玉淑, 冉令坤. 2018. 我国暴雨形成机理及预报方法研究进展 [J]. 大气科学, 42(4): 833−846. doi: 10.3878/j.issn.1006-9895.1802.17277

    Gao Shouting, Zhou Yushu, Ran Lingkun. 2018. A review on the formation mechanisms and forecast methods for torrential rain in China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(4): 833−846. doi: 10.3878/j.issn.1006-9895.1802.17277
    [11] Gilmore M S, Straka J M, Rasmussen E N. 2004. Precipitation and evolution sensitivity in simulated deep convective storms: Comparisons between liquid-only and simple ice and liquid phase microphysics [J]. Mon. Wea. Rev., 132(8): 1897−1916. doi:10.1175/1520-0493(2004)132<1897:PAESIS>2.0.CO;2
    [12] Gunn K L, Marshall J S. 1958. The distribution with size of aggregate snowflakes [J]. J. Atmos. Sci., 15(5): 452−461. doi:10.1175/1520-0469(1958)015<0452:TDWSOA>2.0.CO;2
    [13] Gustafsson N, Janjić T, Schraff C, et al. 2018. Survey of data assimilation methods for convective-scale numerical weather prediction at operational centres [J]. Quart. J. Roy. Meteor. Soc., 144(713): 1218−1256. doi: 10.1002/qj.3179
    [14] Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes [J]. Mon. Wea. Rev., 134(9): 2318−2341. doi: 10.1175/MWR3199.1
    [15] Hu M, Xue M, Brewster K. 2006. 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part I: Cloud analysis and its impact [J]. Mon. Wea. Rev., 134(2): 675−698. doi: 10.1175/MWR3092.1
    [16] Kain J S. 2004. The Kain–Fritsch convective parameterization: An update [J]. J. Appl. Meteor., 43(1): 170−181. doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
    [17] Lai A W, Gao J D, Koch S E, et al. 2019. Assimilation of radar radial velocity, reflectivity, and pseudo-water vapor for convective-scale NWP in a variational framework [J]. Mon. Wea. Rev., 147(8): 2877−2900. doi: 10.1175/MWR-D-18-0403.1
    [18] 李红梅, 周天军, 宇如聪. 2008. 近四十年我国东部盛夏日降水特性变化分析 [J]. 大气科学, 32(2): 358−370. doi: 10.3878/j.issn.1006-9895.2008.02.14

    Li Hongmei, Zhou Tianjun, Yu Rucong. 2008. Analysis of July–August daily precipitation characteristics variation in eastern china during 1958–2000 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(2): 358−370. doi: 10.3878/j.issn.1006-9895.2008.02.14
    [19] Liu C S, Xue M, Kong R. 2019. Direct assimilation of radar reflectivity data using 3DVAR: Treatment of hydrometeor background errors and OSSE tests [J]. Mon. Wea. Rev., 147(1): 17−29. doi: 10.1175/MWR-D-18-0033.1
    [20] Mlawer E J, Taubman S J, Brown P D, et al. 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave [J]. J. Geophys. Res., 102(D14): 16663−16682. doi: 10.1029/97JD00237
    [21] 冉令坤, 齐彦斌, 郝寿昌. 2014. “7.21”暴雨过程动力因子分析和预报研究 [J]. 大气科学, 38(1): 83−100. doi: 10.3878/j.issn.1006-9895.2013.12160

    Ran Lingkun, Qi Yanbin, Hao Shouchang. 2014. Analysis and forecasting of heavy rainfall case on 21 July 2012 with dynamical parameters [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38(1): 83−100. doi: 10.3878/j.issn.1006-9895.2013.12160
    [22] Smith Jr P L, Myers C G, Orville H D. 1975. Radar reflectivity factor calculations in numerical cloud models using bulk parameterization of precipitation [J]. J. Appl. Meteorol., 14(6): 1156−1165. doi:10.1175/1520-0450(1975)014<1156:RRFCIN>2.0.CO;2
    [23] Sun J Z, Crook N A. 1997. Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments [J]. J. Atmos. Sci., 54(12): 1642−1661. doi:10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2
    [24] 孙娟珍, 陈明轩, 范水勇. 2016. 雷达资料同化方法: 回顾与前瞻 [J]. 气象科技进展, 6(3): 17−27. doi: 10.3969/j.issn.2095-1973.2016.03.002

    Sun Juanzhen, Chen Mingxuan, Fan Shuiyong. 2016. Radar data assimilation methods: Review and future perspective [J]. Adv. Meteor. Sci. Technol. (in Chinese), 6(3): 17−27. doi: 10.3969/j.issn.2095-1973.2016.03.002
    [25] Sun J Z, Zhang Y, Ban J M, et al. 2020. Impact of combined assimilation of radar and rainfall data on short-term heavy rainfall prediction: A case study [J]. Mon. Wea. Rev., 148(5): 2211−2232. doi: 10.1175/MWR-D-19-0337.1
    [26] Thompson G, Field P R, Rasmussen R M, et al. 2008. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization [J]. Mon. Wea. Rev., 136(12): 5095−5115. doi: 10.1175/2008MWR2387.1
    [27] Tong M J, Xue M. 2005. Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments [J]. Mon. Wea. Rev., 133(7): 1789−1807. doi: 10.1175/MWR2898.1
    [28] 王宁, 平凡. 2019. 垂直分辨率对广州“5·7”特大暴雨数值模拟影响的研究 [J]. 大气科学, 43(6): 1245−1264. doi: 10.3878/j.issn.1006-9895.1812.18193

    Wang Ning, Ping Fan. 2019. The impact of vertical resolution at different levels on the numerical simulation of the torrential rain in Guangzhou on 7 May 2017 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(6): 1245−1264. doi: 10.3878/j.issn.1006-9895.1812.18193
    [29] Wang S Z, Liu Z Q. 2019. A radar reflectivity operator with ice-phase hydrometeors for variational data assimilation (version 1.0) and its evaluation with real radar data [J]. Geosci. Model Dev., 12(9): 4031−4051. doi: 10.5194/gmd-12-4031-2019
    [30] Wang H L, Sun J Z, Fan S Y, et al. 2013. Indirect assimilation of radar reflectivity with WRF 3D-Var and its impact on prediction of four summertime convective events [J]. J. Appl. Meteorol. Climatol., 52(4): 889−902. doi: 10.1175/JAMC-D-12-0120.1
    [31] Wang H L, Liu Y B, Zhao T L, et al. 2018. Incorporating geostationary lightning data into a radar reflectivity based hydrometeor retrieval method: An observing system simulation experiment [J]. Atmos. Res., 209: 1−13. doi: 10.1016/j.atmosres.2018.03.002
    [32] 薛一迪, 崔晓鹏. 2020. “威马逊”(1409)强降水物理过程模拟诊断研究 [J]. 大气科学, 44(6): 1320−1336. doi: 10.3878/j.issn.1006-9895.2003.19224

    Xue Yidi, Cui Xiaopeng. 2020. Diagnostic and numerical study on physical process of strong rainfall associated with rammasun (1409) [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(6): 1320−1336. doi: 10.3878/j.issn.1006-9895.2003.19224
    [33] 张诚忠, 薛纪善, 冯业荣, 等. 2019. 基于贝叶斯方案的雷达反射率反演水汽及其同化试验 [J]. 热带气象学报, 35(2): 145−153. doi: 10.16032/j.issn.1004-4965.2019.013

    Zhang Chengzhong, Xue Jishan, Feng Yerong, et al. 2019. Retrieval of water vapor from radar reflectivity based on baiyesian scheme and its assimilation test [J]. Journal of Tropical Meteorology (in Chinese), 35(2): 145−153. doi: 10.16032/j.issn.1004-4965.2019.013
    [34] 赵思雄, 孙建华. 2019. 我国暴雨机理与预报研究进展及其相关问题思考 [J]. 暴雨灾害, 38(5): 422−430. doi: 10.3969/j.issn.1004-9045.2019.05.004

    Zhao Sixiong, Sun Jianhua. 2019. Progress in mechanism study and forecast for heavy rain in China in recent 70 years [J]. Torrential Rain and Disasters (in Chinese), 38(5): 422−430. doi: 10.3969/j.issn.1004-9045.2019.05.004
    [35] 赵坤, 周仲岛, 胡东明, 等. 2007. 派比安台风(0606)登陆期间雨带中尺度结构的双多普勒雷达分析 [J]. 南京大学学报(自然科学版), 43(6): 606−620. doi: 10.3321/j.issn:0469-5097.2007.06.006

    Zhao Kun, Zhou Zhongdao, Hu Dongming, et al. 2007. The rainband structure of typhoon paibian (0606) during its landfall from dual-doppler radar observations [J]. Journal of Nanjing University (Natural Sciences) (in Chinese), 43(6): 606−620. doi: 10.3321/j.issn:0469-5097.2007.06.006
    [36] 周天军, 陈晓龙, 吴波. 2019. 支撑“未来地球”计划的气候变化科学前沿问题 [J]. 科学通报, 64(19): 1967−1974. doi: 10.1360/N972018-00818

    Zhou Tianjun, Chen Xiaolong, Wu Bo. 2019. Frontier issues on climate change science for supporting Future Earth [J]. Chinese Sci. Bull. (in Chinese), 64(19): 1967−1974. doi: 10.1360/N972018-00818
    [37] Zrnić D S, Ryzhkov A, Straka J, et al. 2001. Testing a procedure for automatic classification of hydrometeor types [J]. J. Atmos. Oceanic Technol., 18(6): 892−913. doi:10.1175/1520-0426(2001)018<0892:TAPFAC>2.0.CO;2
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  326
  • HTML全文浏览量:  107
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-07
  • 录用日期:  2022-02-24
  • 网络出版日期:  2022-03-16
  • 刊出日期:  2022-05-19

目录

    /

    返回文章
    返回