Real-Time Background-Dependent Indirect Assimilation of Radar Reflectivity Factor and Experiments for Multi Heavy Rainfall Cases
-
摘要: 为避免直接同化时反射率非线性观测算子线性化带来的线性近似误差问题,目前许多研究和业务中还常采用间接同化方式来同化雷达反射率因子,其通过背景场温度判定水凝物类型及比例。基于一种实时天气背景依赖的雷达反射率因子间接同化方案,进行了4次暴雨过程(2次强对流,2次锋面)的循环同化及预报试验。结果表明:对于强对流暴雨个例,相对于传统温度判定方案,天气背景依赖方案的温度预报误差更小、降水预报评分更高,而对于锋面过程区别不明显;进一步机理分析表明,对于强对流暴雨个例,由于背景依赖方案在同化反射率因子时引入了实时天气背景信息,使得分析场水凝物结构能够更好表征实际对流特征且与其它模式变量更为协调,进而改善了模式预报的热、动力及水汽条件,从而改善了降雨预报效果;而锋面暴雨由浅对流过程占主导,水凝物以低层的雨水为主导,冰相水凝物对于该过程的影响较小,由于两种方案反演的雨水结构和量级均相似,因此降雨预报差异较小。Abstract: In present operating systems, indirect assimilation is frequently used to assimilate the radar reflectivity factor to avoid the problems caused by the linearization of the observation operator. Based on a real-time background-dependent radar reflectivity factor indirect assimilation scheme, cycling assimilation and forecasting experiments of four heavy rainfall processes (two convective and two frontal) were carried out. The results show that compared with the traditional temperature-determination scheme, the background-dependent scheme has smaller temperature forecast errors and higher precipitation forecast scores for the severe convective rainfall cases, but the difference in frontal process is not obvious. Further analysis shows that for severe convective rainfall, the background-dependent scheme introduced real-time background information when assimilating the reflectivity factor, allowing the hydrometeor structure of the analysis field to characterize the actual convective characteristics better and be more coordinated with other model variables, thereby improving the thermal, dynamic, and humidity conditions of the model forecast, thus improving precipitation forecasting. For heavy frontal rainfall, the hydrometeor structural difference in the analysis field of the two schemes is not obvious; thus, the difference in precipitation forecast is small.
-
Key words:
- Heavy rainfall /
- Radar data assimilation /
- Reflectivity factor /
- Indirect assimilation
-
图 1 4次暴雨过程的6 h累积降水量(单位:mm):(a) 2019年7月6日06~12时(协调世界时,下同);(b)2019年7月12日18~00时;(c)2018年7月5日00~06时;(d)2018年7月26日09~15时
Figure 1. 6-h accumulative precipitation (units: mm) of four heavy rainfall processes (a) 0600–1200 UTC on July 6, 2019; (b) 1800–0000 UTC on July 12, 2019; (c) 0000–0600 UTC on July 5, 2018; (d) 0900–1500 UTC on July 26, 2018
图 3 循环同化预报流程。GTS代表常规观测,Radar代表雷达观测,包括雷达径向风和由雷达反射率反演的水凝物。GTS同化间隔为3小时,Radar同化间隔为15分钟,每隔1小时进行一次3小时预报
Figure 3. Cycling assimilation and forecast process. GTS represents conventional observations, and Radar stands for radar observations, which include radial velocity and hydrometeors retrieved from radar reflectivity. The GTS assimilation interval is 3 h, and the radar assimilation interval is 15 min, with a 3 h forecast carried out every hour
图 5 4个个例两组试验3 h预报场的平均RMSE,评估变量分别为风速U、V(单位:m s−1),温度T(单位:°C)以及相对湿度(RH)。黑色线代表Exp-ZT试验,红色线代表Exp-BG试验,阴影为95%置信区间
Figure 5. Averaged root mean square error (RMSE) of 3-h forecast field for the two experiments of four cases. The evaluation variables are wind speed U, V (units: m s−1), temperature T (units: °C), and relative humidity (RH). The black line represents Exp-ZT, the red line represents the Exp-BG, and the shadow represents the 95% confidence interval
图 6 强对流暴雨个例(Case 1)的观测(左)与试验Exp-ZT(中)和Exp-BG(右)模拟的3 h逐小时累积降水量(阴影,单位:mm)对比(起报时间为2019年7月6日08时):(a,b,c)0~1 h;(d,e,f)1~2 h;(g,h,j)2~3 h
Figure 6. Hourly precipitation (units: mm) of the observation (left), the Exp-ZT (middle), and the Exp-BG (right) for the convective rainfall case (Case 1) (forecast from 0800 UTC on July 6), 2019: (a, b, c) 0–1 h; (d, e, f) 1–2 h; (g, h, j) 2–3 h
图 7 锋面暴雨个例(Case 2)的观测(左)与试验Exp-ZT(中)和Exp-BG(右)模拟的3 h逐小时累积降水量(阴影,单位:mm)对比(起报时间为2019年7月12日20时):(a,b,c)0~1 h;(d,e,f)1~2 h;(g,h,j)2~3 h
Figure 7. Hourly precipitation (units: mm) of the observation (left), the Exp-ZT (middle), and the Exp-BG (right) for the frontal process (Case 2) (forecast at 2000 UTC on July 12, 2019): (a, b, c) 0–1 h; (d, e, f) 1–2 h; (g, h, j) 2–3 h
图 8 2019年7月(a,b)6日08时沿 33°N~34°N和(c,d)12日20时沿 30°N~31°N平均水凝物混合比最大值反演场垂直剖面:(a,c)Exp-ZT试验;(b,d)Exp-BG试验。绿色等值线:Qrain(单位:g kg−1,等值线分别为0.1,0.5,1.0,2.0);蓝色线等值线:Qsnow(单位:g kg−1,等值线分别为0.01,1.0,2.5,3.5);阴影:Qgraup,黑色虚线:0°C等温线
Figure 8. Vertical cross sections of the maximum retrieved hydrometeor mixing ratio (units: g kg−1) averaged along 33°N–34°N at (a, b) 0800 UTC on July 6, 2019 and along 30°N–31°N at (c, d) 0000 UTC on July 12, 2019: (a, c) Exp-ZT; (b, d) Exp-BG. The contour values of Qrain (green lines) are 0.1, 0.5, 1.0 and 2.0. The contour values of Qsnow (blue lines) are 0.01, 1.0, 2.5, and 3.5. The shade is Qgraup, and the dotted black line represents the 0°C line
图 10 2019年7月(a,b)6日09时(08时起报)沿着AB(见图6)和(c,d)12日23时(20时起报)沿着CD(见图7)的相当位温预报场垂直剖面(阴影,单位:K):(a,c)试验Exp-ZT;(b,d)试验Exp-BG
Figure 10. Vertical cross sections of equivalent potential temperature forecast field (shaded, units: K) along AB (in Fig.6) (a, b) at 0900 UTC (forecast from 0800 UTC) on July 6, 2019 and along CD (in Fig.7) (c, d) at 2300 UTC (forecast from 2000 UTC) on July 12, 2019: (a, c) Exp-ZT; (b, d) Exp-BG
图 11 2019年7月(a,b)6日09时(08时起报)沿着AB和(c,d)12日23时(20时起报)沿着CD的相对湿度(阴影)及风场的预报场(矢量,单位:m s−1):(a,c)试验Exp-ZT;(b,d)试验Exp-BG
Figure 11. Relative humidity (shaded) and wind (vector, units: m s−1) forecast fields along AB (a, b) at 0900 UTC (forecast from 0800 UTC) on July 6, 2019 and along CD (c, d) at 2300 UTC (forecast from 2000 UTC) on July 12, 2019: (a, c) Exp-ZT; (b, d) Exp-BG
图 12 2019年7月(a,b)6日09时(08时起报)沿着AB和(c,d)12日23时(20时起报)沿着CD的散度(填色,单位:10−4s−1)及风场的预报场(矢量,单位:m s−1):(a,c)试验Exp-ZT;(b,d) 试验Exp-BG
Figure 12. Divergence (shaded, units: 10−4s−1) and wind (vector, units: m s−1) forecast fields along AB (a, b) at 0900 UTC (forecast from 0800 UTC) on July 6, 2019 and along CD (c, d) at 2300 UTC (forecast from 2000 UTC) on July 12, 2019: (a, c) Exp-ZT; (b, d) Exp-BG
表 1 研究选取的四次暴雨过程
Table 1. Four heavy rainfall cases selected in the study
个例名称 生命史 个例类型 Case 1 2019年7月6日06~12时 局地强对流 Case 2 2019年7月12日18时至13日03时 锋面降水 Case 3 2018年7月5日00~06时 锋面降水 Case 4 2018年7月26日09~15时 多孤立单体强对流 表 2 试验设计
Table 2. Experimental design
试验名称 同化资料 反射率因子同化方案 Exp-ZT 常规观测、径向风和反射率 温度判定方案 Exp-BG 常规观测、径向风和反射率 背景依赖方案 -
[1] Carlin J T, Ryzhkov A V, Snyder J C, et al. 2016. Hydrometeor mixing ratio retrievals for storm-scale radar data assimilation: Utility of current relations and potential benefits of polarimetry [J]. Mon. Wea. Rev., 144(8): 2981−3001. doi: 10.1175/MWR-D-15-0423.1 [2] Chang S F, Liou Y C, Sun J Z, et al. 2016. The implementation of the ice-phase microphysical process into a four-dimensional variational doppler radar analysis system (VDRAS) and its impact on parameter retrieval and quantitative precipitation nowcasting [J]. J. Atmos. Sci., 73(3): 1015−1038. doi: 10.1175/JAS-D-15-0184.1 [3] 陈敏, 陈明轩, 范水勇. 2014. 雷达径向风观测在华北区域数值预报系统中的实时三维变分同化应用试验 [J]. 气象学报, 72(4): 658−677. doi: 10.11676/qxxb2014.070Chen Min, Chen Mingxuan, Fan Shuiyong. 2014. The real-time radar radial velocity 3DVar assimilation experiments for application to an operational forecast model in North China [J]. Acta Meteorologica Sinica (in Chinese), 72(4): 658−677. doi: 10.11676/qxxb2014.070 [4] Chen H Q, Chen Y D, Gao J D, et al. 2020. A radar reflectivity data assimilation method based on background-dependent hydrometeor retrieval: An observing system simulation experiment [J]. Atmos. Res., 243: 105022. doi: 10.1016/j.atmosres.2020.105022 [5] Chen H Q, Gao J D, Chen Y H, et al. 2021. Radar reflectivity data assimilation method based on background-dependent hydrometeor retrieval: Comparison with direct assimilation for real cases [J]. Quart. J. Roy. Meteor. Soc., 147(737): 2409−2428. doi: 10.1002/qj.4031 [6] Chou M D, Suarez M J. 1999. A solar radiation parameterization for atmospheric studies [R]. NASA Tech. Memo. NASA/TM-1999-104606. [7] Dowell D C, Wicker L J, Snyder C. 2011. Ensemble Kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: Influences of reflectivity observations on storm-scale analyses [J]. Mon. Wea. Rev., 139(1): 272−294. doi: 10.1175/2010MWR3438.1 [8] 范水勇, 王洪利, 陈敏, 等. 2013. 雷达反射率资料的三维变分同化研究 [J]. 气象学报, 71(3): 527−537. doi: 10.11676/qxxb2013.032Fan Shuiyong, Wang Hongli, Chen Min, et al. 2013. Study of the data assimilation of radar reflectivity with the WRF 3D-Var [J]. Acta Meteorologica Sinica (in Chinese), 71(3): 527−537. doi: 10.11676/qxxb2013.032 [9] Gao J D, Stensrud D J. 2012. Assimilation of reflectivity data in a convective-scale, cycled 3DVAR framework with hydrometeor classification [J]. J. Atmos. Sci., 69(3): 1054−1065. doi: 10.1175/JAS-D-11-0162.1 [10] 高守亭, 周玉淑, 冉令坤. 2018. 我国暴雨形成机理及预报方法研究进展 [J]. 大气科学, 42(4): 833−846. doi: 10.3878/j.issn.1006-9895.1802.17277Gao Shouting, Zhou Yushu, Ran Lingkun. 2018. A review on the formation mechanisms and forecast methods for torrential rain in China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(4): 833−846. doi: 10.3878/j.issn.1006-9895.1802.17277 [11] Gilmore M S, Straka J M, Rasmussen E N. 2004. Precipitation and evolution sensitivity in simulated deep convective storms: Comparisons between liquid-only and simple ice and liquid phase microphysics [J]. Mon. Wea. Rev., 132(8): 1897−1916. doi:10.1175/1520-0493(2004)132<1897:PAESIS>2.0.CO;2 [12] Gunn K L, Marshall J S. 1958. The distribution with size of aggregate snowflakes [J]. J. Atmos. Sci., 15(5): 452−461. doi:10.1175/1520-0469(1958)015<0452:TDWSOA>2.0.CO;2 [13] Gustafsson N, Janjić T, Schraff C, et al. 2018. Survey of data assimilation methods for convective-scale numerical weather prediction at operational centres [J]. Quart. J. Roy. Meteor. Soc., 144(713): 1218−1256. doi: 10.1002/qj.3179 [14] Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes [J]. Mon. Wea. Rev., 134(9): 2318−2341. doi: 10.1175/MWR3199.1 [15] Hu M, Xue M, Brewster K. 2006. 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part I: Cloud analysis and its impact [J]. Mon. Wea. Rev., 134(2): 675−698. doi: 10.1175/MWR3092.1 [16] Kain J S. 2004. The Kain–Fritsch convective parameterization: An update [J]. J. Appl. Meteor., 43(1): 170−181. doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2 [17] Lai A W, Gao J D, Koch S E, et al. 2019. Assimilation of radar radial velocity, reflectivity, and pseudo-water vapor for convective-scale NWP in a variational framework [J]. Mon. Wea. Rev., 147(8): 2877−2900. doi: 10.1175/MWR-D-18-0403.1 [18] 李红梅, 周天军, 宇如聪. 2008. 近四十年我国东部盛夏日降水特性变化分析 [J]. 大气科学, 32(2): 358−370. doi: 10.3878/j.issn.1006-9895.2008.02.14Li Hongmei, Zhou Tianjun, Yu Rucong. 2008. Analysis of July–August daily precipitation characteristics variation in eastern china during 1958–2000 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(2): 358−370. doi: 10.3878/j.issn.1006-9895.2008.02.14 [19] Liu C S, Xue M, Kong R. 2019. Direct assimilation of radar reflectivity data using 3DVAR: Treatment of hydrometeor background errors and OSSE tests [J]. Mon. Wea. Rev., 147(1): 17−29. doi: 10.1175/MWR-D-18-0033.1 [20] Mlawer E J, Taubman S J, Brown P D, et al. 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave [J]. J. Geophys. Res., 102(D14): 16663−16682. doi: 10.1029/97JD00237 [21] 冉令坤, 齐彦斌, 郝寿昌. 2014. “7.21”暴雨过程动力因子分析和预报研究 [J]. 大气科学, 38(1): 83−100. doi: 10.3878/j.issn.1006-9895.2013.12160Ran Lingkun, Qi Yanbin, Hao Shouchang. 2014. Analysis and forecasting of heavy rainfall case on 21 July 2012 with dynamical parameters [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38(1): 83−100. doi: 10.3878/j.issn.1006-9895.2013.12160 [22] Smith Jr P L, Myers C G, Orville H D. 1975. Radar reflectivity factor calculations in numerical cloud models using bulk parameterization of precipitation [J]. J. Appl. Meteorol., 14(6): 1156−1165. doi:10.1175/1520-0450(1975)014<1156:RRFCIN>2.0.CO;2 [23] Sun J Z, Crook N A. 1997. Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments [J]. J. Atmos. Sci., 54(12): 1642−1661. doi:10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2 [24] 孙娟珍, 陈明轩, 范水勇. 2016. 雷达资料同化方法: 回顾与前瞻 [J]. 气象科技进展, 6(3): 17−27. doi: 10.3969/j.issn.2095-1973.2016.03.002Sun Juanzhen, Chen Mingxuan, Fan Shuiyong. 2016. Radar data assimilation methods: Review and future perspective [J]. Adv. Meteor. Sci. Technol. (in Chinese), 6(3): 17−27. doi: 10.3969/j.issn.2095-1973.2016.03.002 [25] Sun J Z, Zhang Y, Ban J M, et al. 2020. Impact of combined assimilation of radar and rainfall data on short-term heavy rainfall prediction: A case study [J]. Mon. Wea. Rev., 148(5): 2211−2232. doi: 10.1175/MWR-D-19-0337.1 [26] Thompson G, Field P R, Rasmussen R M, et al. 2008. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization [J]. Mon. Wea. Rev., 136(12): 5095−5115. doi: 10.1175/2008MWR2387.1 [27] Tong M J, Xue M. 2005. Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments [J]. Mon. Wea. Rev., 133(7): 1789−1807. doi: 10.1175/MWR2898.1 [28] 王宁, 平凡. 2019. 垂直分辨率对广州“5·7”特大暴雨数值模拟影响的研究 [J]. 大气科学, 43(6): 1245−1264. doi: 10.3878/j.issn.1006-9895.1812.18193Wang Ning, Ping Fan. 2019. The impact of vertical resolution at different levels on the numerical simulation of the torrential rain in Guangzhou on 7 May 2017 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(6): 1245−1264. doi: 10.3878/j.issn.1006-9895.1812.18193 [29] Wang S Z, Liu Z Q. 2019. A radar reflectivity operator with ice-phase hydrometeors for variational data assimilation (version 1.0) and its evaluation with real radar data [J]. Geosci. Model Dev., 12(9): 4031−4051. doi: 10.5194/gmd-12-4031-2019 [30] Wang H L, Sun J Z, Fan S Y, et al. 2013. Indirect assimilation of radar reflectivity with WRF 3D-Var and its impact on prediction of four summertime convective events [J]. J. Appl. Meteorol. Climatol., 52(4): 889−902. doi: 10.1175/JAMC-D-12-0120.1 [31] Wang H L, Liu Y B, Zhao T L, et al. 2018. Incorporating geostationary lightning data into a radar reflectivity based hydrometeor retrieval method: An observing system simulation experiment [J]. Atmos. Res., 209: 1−13. doi: 10.1016/j.atmosres.2018.03.002 [32] 薛一迪, 崔晓鹏. 2020. “威马逊”(1409)强降水物理过程模拟诊断研究 [J]. 大气科学, 44(6): 1320−1336. doi: 10.3878/j.issn.1006-9895.2003.19224Xue Yidi, Cui Xiaopeng. 2020. Diagnostic and numerical study on physical process of strong rainfall associated with rammasun (1409) [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(6): 1320−1336. doi: 10.3878/j.issn.1006-9895.2003.19224 [33] 张诚忠, 薛纪善, 冯业荣, 等. 2019. 基于贝叶斯方案的雷达反射率反演水汽及其同化试验 [J]. 热带气象学报, 35(2): 145−153. doi: 10.16032/j.issn.1004-4965.2019.013Zhang Chengzhong, Xue Jishan, Feng Yerong, et al. 2019. Retrieval of water vapor from radar reflectivity based on baiyesian scheme and its assimilation test [J]. Journal of Tropical Meteorology (in Chinese), 35(2): 145−153. doi: 10.16032/j.issn.1004-4965.2019.013 [34] 赵思雄, 孙建华. 2019. 我国暴雨机理与预报研究进展及其相关问题思考 [J]. 暴雨灾害, 38(5): 422−430. doi: 10.3969/j.issn.1004-9045.2019.05.004Zhao Sixiong, Sun Jianhua. 2019. Progress in mechanism study and forecast for heavy rain in China in recent 70 years [J]. Torrential Rain and Disasters (in Chinese), 38(5): 422−430. doi: 10.3969/j.issn.1004-9045.2019.05.004 [35] 赵坤, 周仲岛, 胡东明, 等. 2007. 派比安台风(0606)登陆期间雨带中尺度结构的双多普勒雷达分析 [J]. 南京大学学报(自然科学版), 43(6): 606−620. doi: 10.3321/j.issn:0469-5097.2007.06.006Zhao Kun, Zhou Zhongdao, Hu Dongming, et al. 2007. The rainband structure of typhoon paibian (0606) during its landfall from dual-doppler radar observations [J]. Journal of Nanjing University (Natural Sciences) (in Chinese), 43(6): 606−620. doi: 10.3321/j.issn:0469-5097.2007.06.006 [36] 周天军, 陈晓龙, 吴波. 2019. 支撑“未来地球”计划的气候变化科学前沿问题 [J]. 科学通报, 64(19): 1967−1974. doi: 10.1360/N972018-00818Zhou Tianjun, Chen Xiaolong, Wu Bo. 2019. Frontier issues on climate change science for supporting Future Earth [J]. Chinese Sci. Bull. (in Chinese), 64(19): 1967−1974. doi: 10.1360/N972018-00818 [37] Zrnić D S, Ryzhkov A, Straka J, et al. 2001. Testing a procedure for automatic classification of hydrometeor types [J]. J. Atmos. Oceanic Technol., 18(6): 892−913. doi:10.1175/1520-0426(2001)018<0892:TAPFAC>2.0.CO;2 -