高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

诱发四川冕宁“6.26”山洪灾害的突发性暴雨特征及其形成机制

陈博宇 谌芸 孙继松 陈涛 陈朝平 胡宁

陈博宇, 谌芸, 孙继松, 等. 2023. 诱发四川冕宁“6.26”山洪灾害的突发性暴雨特征及其形成机制[J]. 大气科学, 47(1): 1−19 doi: 10.3878/j.issn.1006-9895.2201.21186
引用本文: 陈博宇, 谌芸, 孙继松, 等. 2023. 诱发四川冕宁“6.26”山洪灾害的突发性暴雨特征及其形成机制[J]. 大气科学, 47(1): 1−19 doi: 10.3878/j.issn.1006-9895.2201.21186
CHEN Boyu, CHEN Yun, SUN Jisong, et al. 2023. Characteristics and Formation Mechanism of the Sudden Rainstorm Inducing the “6.26” Mountain Torrent Disaster in Mianning, Sichuan Province [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 47(1): 1−19 doi: 10.3878/j.issn.1006-9895.2201.21186
Citation: CHEN Boyu, CHEN Yun, SUN Jisong, et al. 2023. Characteristics and Formation Mechanism of the Sudden Rainstorm Inducing the “6.26” Mountain Torrent Disaster in Mianning, Sichuan Province [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 47(1): 1−19 doi: 10.3878/j.issn.1006-9895.2201.21186

诱发四川冕宁“6.26”山洪灾害的突发性暴雨特征及其形成机制

doi: 10.3878/j.issn.1006-9895.2201.21186
基金项目: 国家自然科学基金项目91937301、41930972,国家重点研发计划项目2018YFC1505705、2018YFC1507200,灾害天气国家重点实验室开放课题2021LASW-A16
详细信息
    作者简介:

    陈博宇,男,1985年出生,博士,主要从事定量降水预报、集合预报研究。E-mail: chenboyu@cma.gov.cn

    通讯作者:

    谌芸,E-mail: chenyun@cma.gov.cn;孙继松,E-mail: sunjs@cma.gov.cn

  • 中图分类号: P458

Characteristics and Formation Mechanism of the Sudden Rainstorm Inducing the “6.26” Mountain Torrent Disaster in Mianning, Sichuan Province

Funds: National Natural Science Foundation of China (Grants 91937301, 41930972), National Key Research and Development Program of China (Grants 2018YFC1505705, 2018YFC1507200), Open Research Program of the State Key Laboratory of Severe Weather (Grant 2021LASW-A16)
  • 摘要: 基于多源观测、再分析和对流可分辨模式预报资料,运用物理量诊断、标准化异常、相似过程比较等方法,分析了2020年6月26日四川冕宁突发性暴雨过程的特征和形成机制。结果表明:(1)该过程是一次伴有多条带状γ中尺度对流系统、“列车效应”产生极端小时雨量的局地突发性暴雨过程,其对流回波质心较低,对流云团具有中尺度对流复合体云团特征;(2)冕宁北部的对流冷池出流与较强的谷地偏南气流相遇形成的辐合抬升构成了对流的触发机制;(3)川西南低空偏南气流具有阶段性增强特征并提供了持续的暖湿空气输送,其在过程初期与下山冷池的相互作用及后期与盆地西部南下冷空气的汇合,使对流反复在冕宁站西侧和南侧初生,并在下游形成“列车效应”;(4)对比历史相似过程,环境大气的对流有效位能等物理量具有更显著的异常和异常持续性;(5)川西南北部的高海拔地形对延缓冷空气进入安宁河谷和维持河谷内的不稳定层结有显著作用,并且该区域地形强迫抬升形成了河谷上游地区潜在的对流触发条件。最后给出了此次暴雨过程形成机制的概念模型。
  • 图  1  (a)2020年6月27日08时(北京时,下同)凉山州24 h降水量(彩色圆点,单位:mm)、气候(1981~2010年)平均的6、7月月平均降水量之和(黄色等值线,单位:mm)及地形高度(填色,单位:m);(b)冕宁县地形分布;(c)2020年26日16时至27日03时冕宁县、惠安镇、曹古乡和灵山寺逐小时雨量(柱形)和累计雨量(折线)。图a中,蓝色线表示凉山州的州界;方框区域表示本文关注区域,即冕宁县中部和北部

    Figure  1.  (a) Twenty-four-hour precipitation (color dots, units: mm) in Liangshan Prefecture at 0800 BJT (Beijing time) on 27 June 2020, the climatological (1981–2010) mean sum of monthly mean precipitation (yellow isolines, units: mm) in June and July, and terrain height (shadings, units: m); (b) terrain distribution of Mianning; (c) hourly (bars) and accumulative (lines) precipitation at Mianning, Hui’ an, Caogu, and Lingshan temple from 1600 BJT on 26 June to 0300 BJT on 27 June 2020. In Fig. a, blue line represents Liangshan Prefecture boundary; box indicates the area of concern, namely the central and northern Mianning

    图  2  2020年6月26日14时(a)500 hPa位势高度(黑色等值线,单位:dagpm)、700 hPa风(箭头,单位:m s−1)、整层可降水量PWAT(绿色填色,单位:mm)、200 hPa风速(蓝色填色,单位:m s−1)、海平面气压场(红色等值线,单位:hPa),(b)200 hPa位势(实线,单位:m2 s−2)、散度(填色,单位:10−5 s−1)、500~700 hPa垂直风切变(≥12 m s−1,虚线)和700 hPa风(风向杆,单位:m s−1);(c)2020年26日20时西昌站T–lnp图。图b中红色星表示冕宁站位置。图c中黑、蓝色线分别代表温度、露点温度;CAPE、CIN、SI、LI表示对流有效位能、对流抑制能量、沙氏指数、抬升指数

    Figure  2.  (a) 500-hPa geopotential height (black isolines, units: dagpm), 700-hPa wind (arrows, units: m s−1), whole precipitable water (PWAT, green shadings, units: mm), 200-hPa wind speed (blue shadings, units: m s−1), sea level pressure (red isolines, units: hPa), (b) 200-hPa geopotential (solid lines; units: m2 s−2), divergence (shadings, unit: 10−5 s−1), 500–700-hPa vertical wind shear (≥12 m s−1; dashed lines), and 700-hPa wind (barbs, units: m s−1) at 1400 BJT on 26 June 2020; (c) T–lnp chart of Xichang station at 2000 BJT on 26 June 2020. In Fig. b, red star indicates the location of Mianning station. In Fig. c, black (blue) line indicates temperature (dew point temperature); CAPE, CIN, SI, LI represent convective available potential energy, convective inhibition energy, Showalter index, lifting index, respectively

    图  3  2020年6月26日(a)16时、(b)19时、(c)22时和(d)27日01时TBB(填色,单位:°C)、小时雨量(≥20 mm,圆点)。箭头指示的为中尺度对流系统(MCS)。图b中,字母A、B、C表示云团编号

    Figure  3.  TBB (Black Body Temperature, shadings, units: °C) and hourly precipitation (≥20 mm, dots) at (a) 1600 BJT, (b) 1900 BJT, (c) 2200 BJT on 26 June, (d) 0100 BJT on 27 June 2020. The arrow indicates a mesoscale convective system (MCS). In Fig. b, letters A, B, C indicate the number of cloud clusters, respectively

    图  4  2020年6月26日(a)17时、(b)19时和(c)22时1.5°仰角雷达反射率因子(单位:dBZ),(d)沿着图4b直线的反射率因子垂直剖面。图a–c中,+和■分别表示冕宁站和灵山寺站位置;图b中直线表示剖线

    Figure  4.  Radar reflectivity factor (units: dBZ) of 1.5° elevation angle at (a) 1700 BJT, (b) 1900 BJT, and (c) 2200 BJT on 26 June 2020; (d) vertical cross section of reflectivity factor along line in Fig. 4b. In Figs. a–c, “+” and “■” indicate the location of Mianning and Lingshan temple stations, respectively. In Fig. b, the line indicates the cross-section line

    图  5  2020年6月26日(a)18时、(b)21时和(c)27日00时雷达组合反射率因子(≥35 dBZ,等值线)、小时雨量(彩色圆点,单位:mm)、地形高度(填色,单位:m)。三角形代表冕宁站位置

    Figure  5.  Radar composite reflectivity factor (≥35 dBZ, isolines), hourly precipitation (color dots, units: mm), terrain height (shadings, units: m) at (a) 1800 BJT, (b) 2100 BJT on 26 June and (c) 0000 BJT on 27 June 2020. Triangle indicates the location of Mianning station

    图  6  2020年6月26日17时CLDAS资料(a)地面风(风向杆,单位:m s−1)、气温(填色,单位:°C)、1 h变温(等值线,单位:°C),(b)地面流场(流线),(c)17时、(d)23时温差(参考气温为经向平均气温,等值线,单位:°C)、自动站观测的地面风(风向杆,单位:m s−1)。图b–d中填色表示地形高度(单位:m)

    Figure  6.  (a) Surface wind (barbs, units: m s−1), temperature (shadings, units: °C), and 1-h temperature change (isolines, units: °C), (b) surface flows (streamlines) obtained from CLDAS data at 1700 BJT 26 June 2020, temperature differences (reference temperature is the meridional mean temperature, isolines, units: °C), surface wind (barbs, units: m s−1) observed from automatic station at (c) 1700 BJT and (d) 2300 BJT 26 June 2020. In Figs. b–d, shadings represent terrain (units: m)

    图  7  2020年6月26日14~22时(a)冕宁、(b)甘洛、(c)石棉和(d)灵山寺5分钟降水量(P,单位:mm)、15分钟变压(PRS_15min,单位:hPa)、地面气温(TEM,单位:°C)、25日同时刻地面气温(TEM_L,单位:°C)和同时刻近10 d地面平均气温(TEM_M,单位:°C)及逐小时云量(CLO_COV)

    Figure  7.  Five-minute precipitation (P, units: mm), 15-minute allobaric (PRS_15min; units: hPa), surface temperature (TEM, units: °C), surface temperature (TEM_L, units: ℃) at the same time on 25 June, surface mean temperature (TEM_M, units: ℃) at the same time in the past ten days, and hourly cloud cover (CLO_COV) in (a) Mianning, (b) Ganluo, (c) Shimian, and (d) Lingshan temple from 1400 BJT to 2200 BJT on 26 June 2020

    图  8  (a)2020年6月26日18时风场(风向杆,单位:m s−1)、假相当位温(红色实线,单位:K)、垂直速度(≤−0.2 Pa s−1,蓝色虚线)、三维雷达反射率因子(彩色阴影,单位:dBZ)和地形(灰色填色)沿图6a黑色虚线的垂直剖面;(b)2020年26日12时至27日12时冕宁站风廓线(风向杆,单位:m s−1)、温度(等值线,单位:°C)和散度(填色,单位:10−5 s−1

    Figure  8.  Cross sections of (a) wind (barbs, units: m s−1), pseudo-equivalent potential temperature (red solid lines, units: K), vertical velocity (≤−0.2 Pa s−1, blue dashed lines), 3D-reflectivity factor (color shadings, units: dBZ), and terrain (grey shadings) along the black dashed line in Fig. 6a at 1800 BJT on 26 June 2020; (b) wind profile (barbs, units: m s−1), temperature (isolines, units: °C), and divergence (shadings, units: 10−5 s−1) from 1200 BJT on 26 June to 1200 BJT on 27 June 2020

    图  9  (a)2020年26日23时700 hPa风(箭头,单位:m s−1)和水汽通量(填色,单位:g cm−1 hPa−1 s−1),红色星表示冕宁站位置;(b)700 hPa比湿(填色,单位:g kg−1)的纬度—时间图,经度位置为120.2°E

    Figure  9.  (a) 700-hPa wind (arrows, units: m s−1) and moisture flux (shadings, units: g cm−1 hPa−1 s−1) at 2300 BJT on 26 June 2020, red star indicates the location of Mianning station; (b) latitude–time chart of 700-hPa specific humidity (shadings, units: g kg−1), the longitude is 120.2°E

    图  10  2020年“6.26”(左)和2015年 “7.14”(右)暴雨过程环境大气特征对比:(a)2020年6月26日18时、(b)2015年7月14日14时对流有效位能CAPE(等值线,单位:J kg−1);(c)2020年6月26日23时、(d)2015年7月14日16时垂直积分水汽通量散度(VIDMF,等值线,单位:10−3 kg m−2 s−1);(e)2020年6月26日26日18时、(f)2015年7月14日14时垂直积分北向水汽通量(VINMF,等值线,单位:kg m−1 s−1)。填色分别表示CAPE、VIDMF和VINMF的标准化异常,风向杆表示700 hPa风(单位:m s−1),折线图表示物理量(CAPE、VIDMF和VINMF,红线)大值区(以“○”所在位置为代表)、气候态(粗黑线)及气候态增加或减少若干倍标准差后(灰线)的变量随时间的变化。图a–f中,“+”表示冕宁站位置

    Figure  10.  Comparisons of environmental atmosphere features between torrential rain “6.26” (left) in 2020 and torrential rain “7.14” (right) in 2015: CAPE (convective available energy, isolines, units: J kg−1) at (a) 1800 BJT on 26 June 2020 and (b) 1400 BJT on 14 July 2015; vertical integral of the divergence of moisture flux (VIDMF, isolines, units: 10−3 kg m−2 s−1) at (c) 2300 BJT on 26 June 2020 and (d) 1600 BJT on 14 July 2015; vertical integral of northward moisture flux (VINMF, isolines, units: kg m−1 s−1) at (e) 1800 BJT on 26 June 2020 and (f) 1400 BJT on 14 July 2015. Shadings represent the standardized anomalies of CAPE, VIDMF, and VINMF, respectively; the barbs indicates 700-hPa wind (units: m s−1); the line chart represents changes of a physical quantity (CAPE, VIDMF, and VINMF; red lines), climate state (thick black lines), and the states (grey lines) after adding or subtracting several times of standard deviation to the climate state in large value area (represented by the location of “○”) of physical quantity. In Figs. a–f, “+” indicates the location of Mianning station

    图  11  2020年6月26日17时云量(圆点,单位:%)、地面风(风向杆,单位:m s−1)、气温(≥30°C,数值和红色等值线)、500 hPa位势高度(蓝色等值线,单位:dagpm)。填色表示地形高度(填色,单位:m),白色线表示凉山州边界

    Figure  11.  Cloud cover (dots, units: %), surface wind (barbs, units: m s−1), temperature (≥30°C, values and red isolines), 500-hPa geopotential height (blue isolines, units: dagpm) at 1700 BJT on 26 June 2020. The shadings represent terrain height (units: m), and white lines represent Liangshan Prefecture boundary

    图  12  2020年6月26日(a)17时、(b)23时和2015年7月14日(c)14时、(d)20时沿图6a蓝色虚线的vw气流(箭头,单位:m s−1)、温度平流(彩色填色;单位:10−4 K s−1)及地形(黑色填色,右侧纵坐标,单位:km)的垂直剖面。v、w分别表示经向风和垂直方向的风

    Figure  12.  Cross sections of vw flow (arrows, units: m s−1), temperature advection (color shadings, units: 10−4 K s−1), and terrain (black shadings, right y-axis, units: km) along blue dashed line in Fig. 6a at (a) 1700 BJT and (b) 2300 BJT on 26 June 2020 and (c) 1400 BJT and (d) 2000 BJT on 14 July 2015. v and w represent meriditional wind and vertical wind, respectively

    图  13  2020年6月26日19时(上)、22时(下)(a、c)地面风(箭头,单位:m s−1)、温度平流(等值线,单位:10−4 K s−1)、模式地形高度(填色,单位:km),(b、d)700 hPa风(箭头,单位:m s−1)、温度平流(等值线,单位:10−4 K s−1)、模式3000 m以上地形(灰色填色)。紫色圆点代表冕宁站位置

    Figure  13.  (a, c) Surface wind (arrows, units: m s−1), temperature advection (isolines, units: 10−4 K s−1), model terrain height (shadings, units: km), (b, d) 700-hPa wind (arrows, units: m s−1), temperature advection (isolines, units: 10−4 K s−1), above 3000-m model terrain (grey shadings) at 1900 BJT (top) and 2200 BJT (bottom) on 26 June 2020. Purple dot represents the location of Mianning station

    图  14  2020年6月26日19时(上)和22时(下)(a、c)雷达组合反射率因子(填色,单位:dBZ)、模式地形2800 m线(等值线),(b、d)沿图14a红色虚线的vw气流(箭头,单位:m s−1)、与经向平均气温的温差(实线和填色,单位:°C)、垂直速度(虚线;单位:m s−1)、模式地形(灰色填色)垂直剖面。图b、d中,红色三角形代表冕宁站位置

    Figure  14.  (a, c) Radar composite reflectivity factor (shadings, units: dBZ), 2800-m line of model terrain (isolines), (b, d) cross sections of vw flow (arrows, units: m s−1), temperature differences (reference temperature is the meridional mean temperature, solid line and shadings, units: °C), vertical velocity (dashed lines, units: m s−1), model terrain (grey shadings) along the red dashed line in Fig. 14a at 1900 BJT (top) and 2200 BJT (bottom) on 26 June 2020. In Figs. b and d, red triangle represents the location of Mianning station

    图  15  四川冕宁“6.26”突发性暴雨的形成机制概念模型:(a)多尺度系统和物理量配置;对流(b)触发、(c)维持机制示意图。图a中,填色表示地形高度(单位:m);图b、c中,三角形代表冕宁站位置,风向杆代表冕宁站南侧河谷地区的环境风

    Figure  15.  Formation mechanism conceptual model of “6.26” sudden rainstorm in Mianning of Sichuan Province: (a) Multiscale systems and physical quantity configuration; schematic of the (b) convection-triggering and (c) convection-maintenance mechanism. In Fig. a, shadings indicate terrain height (units: m). In Figs. b and d, triangle indicates the location of Mianning station, barbs indicate the environment wind in the valley on the south side of Mianning station

  • [1] Alexander L V, Zhang X, Peterson T C, et al. 2006. Global observed changes in daily climate extremes of temperature and precipitation [J]. J. Geophys. Res.: Atmos., 111(D5): D05109. doi: 10.1029/2005JD006290
    [2] 杜俊, 丁文峰, 任洪玉. 2015. 四川省不同类型山洪灾害与主要影响因素的关系 [J]. 长江流域资源与环境, 24(11): 1977−1983. doi: 10.11870/cjlyzyyhj201511023

    Du Jun, Ding Wenfeng, Ren Hongyu. 2015. Relationships between different types of flash flood disasters and their main impact factors in the Sichuan Province [J]. Resources and Environment in the Yangtze Basin (in Chinese), 24(11): 1977−1983. doi: 10.11870/cjlyzyyhj201511023
    [3] 高守亭, 周玉淑, 冉令坤. 2018. 我国暴雨形成机理及预报方法研究进展 [J]. 大气科学, 42(4): 833−846. doi: 10.3878/j.issn.1006-9895.1802.17277

    Gao Shouting, Zhou Yushu, Ran Lingkun. 2018. A review on the formation mechanisms and forecast methods for torrential rain in China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(4): 833−846. doi: 10.3878/j.issn.1006-9895.1802.17277
    [4] Hart R E, Grumm R H. 2001. Using normalized climatological anomalies to rank synoptic-scale events objectively [J]. Mon. Wea. Rev., 129(9): 2426−2442. doi: 10.1175/1520-0493(2001)129<2426:UNCATR>2.0.CO;2
    [5] 何光碧. 2012. 西南低涡研究综述 [J]. 气象, 38(2): 155−163.

    He Guangbi. 2012. Review of the southwest vortex research [J]. Meteor. Mon. (in Chinese), 38(2): 155−163.
    [6] Houze R A Jr. 2012. Orographic effects on precipitating clouds [J]. Rev. Geophys., 50(1): RG1001. doi: 10.1029/2011RG000365
    [7] 黄小彦, 孙继松, 刘文婷. 2020. 地形作用下低空急流的演变与强降水对流风暴系统的相互作用 [J]. 气象学报, 78(4): 551−567. doi: 10.11676/qxxb2020.034

    Huang Xiaoyan, Sun Jisong, Liu Wenting. 2020. The interaction between low-level jet evolution and severe convective rainstorms under topographic effect [J]. Acta Meteorologica Sinica (in Chinese), 78(4): 551−567. doi: 10.11676/qxxb2020.034
    [8] 金妍, 李国平. 2021. 爬流和绕流对山地突发性暴雨的影响 [J]. 高原气象, 40(2): 314−323. doi: 10.7522/j.issn.1000-0534.2020.00041

    Jin Yan, Li Guoping. 2021. Impact of flow around and flow over in sudden rainstorm on mountains [J]. Plateau Meteorology (in Chinese), 40(2): 314−323. doi: 10.7522/j.issn.1000-0534.2020.00041
    [9] 李国平. 2016. 近25年来中国山地气象研究进展 [J]. 气象科技进展, 6(3): 115−122. doi: 10.3969/j.issn.2095-1973.2016.03.016

    Li Guoping. 2016. Progress and prospects in research of mountain meteorology in China during the past 25 years [J]. Adv. Meteor. Sci. Technol. (in Chinese), 6(3): 115−122. doi: 10.3969/j.issn.2095-1973.2016.03.016
    [10] 李琴, 杨帅, 崔晓鹏, 等. 2016. 四川暴雨过程动力因子指示意义与预报意义研究 [J]. 大气科学, 40(2): 341−356. doi: 10.3878/j.issn.1006-9895.1507.14296

    Li Qin, Yang Shuai, Cui Xiaopeng, et al. 2016. Diagnosis and forecasting of dynamical parameters for a heavy rainfall event in Sichuan Province [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(2): 341−356. doi: 10.3878/j.issn.1006-9895.1507.14296
    [11] Luo Y L, Wu M W, Ren F M, et al. 2016. Synoptic situations of extreme hourly precipitation over China [J]. J. Climate, 29(24): 8703−8719. doi: 10.1175/JCLI-D-16-0057.1
    [12] 邵远坤, 沈桐立, 游泳, 等. 2005. 四川盆地近40 年来的降水特征分析 [J]. 西南农业大学学报 (自然科学版), 27(6): 749−752. doi: 10.3969/j.issn.1673-9868.2005.06.001

    Shao Yuankun, Shen Tongli, You Yong, et al. 2005. Precipitation features of Sichuan basin in the recent 40 decades [J]. Journal of Southwest Agricultural University (Natural Science) (in Chinese), 27(6): 749−752. doi: 10.3969/j.issn.1673-9868.2005.06.001
    [13] Shen X S, Wang J J, Li Z C, et al. 2020. Research and operational development of numerical weather prediction in China [J]. J. Meteor. Res., 34(4): 675−698. doi: 10.1007/s13351-020-9847-6
    [14] 师春香, 潘旸, 谷军霞, 等. 2019. 多源气象数据融合格点实况产品研制进展 [J]. 气象学报, 77(4): 774−783. doi: 10.11676/qxxb2019.043

    Shi Chunxiang, Pan Yang, Gu Junxia, et al. 2019. A review of multi-source meteorological data fusion products [J]. Acta Meteorologica Sinica (in Chinese), 77(4): 774−783. doi: 10.11676/qxxb2019.043
    [15] Sun J, Zhang F Q. 2017. Daily extreme precipitation and trends over China [J]. Science China Earth Sciences, 60(12): 2190−2203. doi: 10.1007/s11430-016-9117-8
    [16] Van Zomeren J, Van Delden A. 2007. Vertically integrated moisture flux convergence as a predictor of thunderstorms [J]. Atmospheric Research, 83(2–4): 435–445. doi:10.1016/j.atmosres.2005.08.015
    [17] 吴莉娟, 肖天贵, 顾林康, 等. 2011. 四川凉山平川镇“7.14”泥石流灾害的气象成因 [J]. 成都信息工程学院学报, 26(6): 675−686. doi: 10.16836/j.cnki.jcuit.2011.06.012

    Wu Lijuan, Xiao Tiangui, Gu Linkang, et al. 2011. Analysis on the meteorological causes of the July 14 extreme debris flow hazards in Pingchuan town of Liangshan Prefecture in Sichuan Province [J]. Journal of Chengdu University of Information Technology (in Chinese), 26(6): 675−686. doi: 10.16836/j.cnki.jcuit.2011.06.012
    [18] 肖递祥, 王佳津, 曹萍萍, 等. 2020. 四川盆地突发性暖区暴雨特征及环境场条件分析 [J]. 自然灾害学报, 29(3): 110−118. doi: 10.13577/j.jnd.2020.0312

    Xiao Dixiang, Wang Jiajin, Cao Pingping, et al. 2020. Characteristics and environmental conditions of the sudden warm-sector rainstorms in Sichuan basin [J]. Journal of Natural Disasters (in Chinese), 29(3): 110−118. doi: 10.13577/j.jnd.2020.0312
    [19] 谢家旭, 李国平. 2021. 重力波与对流耦合作用在一次山地突发性暴雨触发中的机理分析 [J]. 大气科学, 45(3): 617−632. doi: 10.3878/j.issn.1006-9895.2009.20137

    Xie Jiaxu, Li Guoping. 2021. Mechanism analysis of a sudden rainstorm triggered by the coupling of gravity wave and convection in mountainous area [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(3): 617−632. doi: 10.3878/j.issn.1006-9895.2009.20137
    [20] 熊俊楠, 赵云亮, 程维明, 等. 2018. 四川省山洪灾害时空分布规律及其影响因素研究 [J]. 地球信息科学学报, 20(10): 1443−1456. doi: 10.12082/dqxxkx.2018.180193

    Xiong Junnan, Zhao Yunliang, Cheng Weiming, et al. 2018. Temporal-spatial distribution and the influencing factors of mountain-flood disasters in Sichuan Province [J]. Journal of Geo-information Science (in Chinese), 20(10): 1443−1456. doi: 10.12082/dqxxkx.2018.180193
    [21] 徐珺, 毕宝贵, 谌芸, 等. 2018. “5.7”广州局地突发特大暴雨中尺度特征及成因分析 [J]. 气象学报, 76(4): 511−524. doi: 10.11676/qxxb2018.016

    Xu Jun, Bi Baogui, Chen Yun, et al. 2018. Mesoscale characteristics and mechanism analysis of the unexpected local torrential rain in Guangzhou on 7 May 2017 [J]. Acta Meteorologica Sinica (in Chinese), 76(4): 511−524. doi: 10.11676/qxxb2018.016
    [22] 郁淑华. 2003. 四川盆地泥石流、滑坡的时空分布特征及其气象成因分析 [J]. 高原气象, 22(S1): 83−89. doi: 10.3321/j.issn:1000-0534.2003.z1.011

    Yu Shuhua. 2003. Analyses on spatial-timporal characteristics of mud-rock flow and landslip in Sichuan basin and its meteorological cause [J]. Plateau Meteorology (in Chinese), 22(S1): 83−89. doi: 10.3321/j.issn:1000-0534.2003.z1.011
    [23] Zhang F, Zhang Q H, Sun J Z. 2021. Initiation of an elevated mesoscale convective system with the influence of complex terrain during Meiyu season [J]. J. Geophys. Res. :Atmos., 126(1): e2020JD033416. doi: 10.1029/2020JD033416
    [24] 张芳丽, 李国平, 罗潇. 2020. 四川盆地东北部一次突发性暴雨事件的影响系统分析 [J]. 高原气象, 39(2): 321−332. doi: 10.7522/j.issn.1000-0534.2019.00080

    Zhang Fangli, Li Guoping, Luo Xiao. 2020. Some influence factors of a sudden rainstorm event in northeast Sichuan basin of China [J]. Plateau Meteorology (in Chinese), 39(2): 321−332. doi: 10.7522/j.issn.1000-0534.2019.00080
    [25] 赵玉春, 许小峰, 崔春光. 2012. 川西高原东坡地形对流暴雨的研究 [J]. 气候与环境研究, 17(5): 607−616. doi: 10.3878/j.issn.1006-9585.2011.11056

    Zhao Yuchun, Xu Xiaofeng, Cui Chunguang. 2012. A Study of convective rainstorms along the east slope of western Sichuan plateau [J]. Climatic and Environmental Research (in Chinese), 17(5): 607−616. doi: 10.3878/j.issn.1006-9585.2011.11056
    [26] 钟燕川, 郭海燕, 徐金霞, 等. 2018. 四川省泥石流活动与降水因子特征 [J]. 水土保持研究, 25(6): 390−396. doi: 10.13869/j.cnki.rswc.20180705.002

    Zhong Yanchuan, Guo Haiyan, Xu Jinxia, et al. 2018. Characteristics of debris flow and precipitation in Sichuan province [J]. Research of Soil and Water Conservation (in Chinese), 25(6): 390−396. doi: 10.13869/j.cnki.rswc.20180705.002
    [27] 周长艳, 岑思弦, 李跃清, 等. 2011. 四川省近50年降水的变化特征及影响 [J]. 地理学报, 66(5): 619−630. doi: 10.11821/xb201105005

    Zhou Changyan, Cen Sixian, Li Yueqing, et al. 2011. Precipitation variation and its impacts in Sichuan in the last 50 years [J]. Acta Geographica Sinica (in Chinese), 66(5): 619−630. doi: 10.11821/xb201105005
    [28] 周秋雪, 康岚, 蒋兴文, 等. 2019. 四川盆地边缘山地强降水与海拔的关系 [J]. 气象, 45(6): 811−819. doi: 10.7519/j.issn.1000-0526.2019.06.007

    Zhou Qiuxue, Kang Lan, Jiang Xingwen, et al. 2019. Relationship between heavy rainfall and altitude in mountainous areas of Sichuan basin [J]. Meteor. Mon. (in Chinese), 45(6): 811−819. doi: 10.7519/j.issn.1000-0526.2019.06.007
  • 加载中
图(15)
计量
  • 文章访问数:  477
  • HTML全文浏览量:  89
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-26
  • 录用日期:  2022-02-23
  • 网络出版日期:  2022-02-23
  • 刊出日期:  2023-01-18

目录

    /

    返回文章
    返回