Inversion of Precipitation Parameters and Precipitation Type Classification Based on Micro Rain Radar
-
摘要: 本文基于微雨雷达原始的后向散射信号,采用一种新的功率谱处理算法(RaProM算法),在功率谱计算、噪声去除、退模糊等处理的基础上计算了雷达基本参量, 并反演了液态降水参数,例如雷达反射率因子、雨强等, 并对粒子相态进行识别。RaProM算法综合考虑粒子下落速度、等效雷达反射率因子、不同相态粒子的尺度特征以及是零度层亮带位置等信息,可识别的粒子相态包括雪、毛毛雨、雨、冰雹以及混合相态。选取了三个山东地区较为典型的个例对RaProM反演算法进行验证,即2021年7月2日典型层状云降水个例、2019年12月25日雨雪转换个例以及2018年3月4日零度层高度逐渐降低的降水个例。结果显示:粒子识别方法应用于典型层状云降水,垂直方向上不同相态粒子的分层较为明显,过冷层里的固态降水雪花、零度层附近冰水转换区的混合相态降水以及零度层以下的液态降水符合现有认识,验证了反演算法以及粒子识别算法的有效性。将结果进一步在雨雪转换降水相态识别中和零度层高度的检测,该反演算法均能得到较好应用,与同址同步观测的微波辐射计、云雷达、二维视频雨滴谱仪等观测结论一致。另外,与微雨雷达标准反演算法对比,RaProM算法的优势是没有粒子相态的原始假设,且考虑降水粒子向上的速度,反演结果与微波辐射计、云雷达在垂直结构上有较高的一致性。与地面激光雨滴谱仪观测数据对比显示,也有效提升了微雨雷达对雨滴谱和雨强的反演能力。Abstract: Based on the original backscattering signals of the micro rain radar and a new micro rain radar processing methodology (RaProM), the equivalent radar reflectivity, the particle falling velocity, and Doppler spectrum width are calculated after power spectrum calculation, noise removal, and dealiasing. Furthermore, the precipitation types are identified. The RaProM algorithm can identify particle phases, such as snow, drizzle, rain, hail, and their mixed types, considering particle falling velocity, equivalent radar reflectivity, particle size characteristics of different precipitation types, and presence of bright bands. In addition, liquid precipitation parameters, such as radar reflectivity factor and rain intensity, are computed. Subsequently, three typical cases of stratiform cloud precipitation on July 2, 2021, transition of rain and snow on December 25, 2019, and the precipitation with the height of the zero degree layer decreasing gradually on March 4, 2018, are selected to verify and discuss the results. The method of precipitation type classification is applied to typical stratiform precipitation, the vertical structure shows snowflakes in the supercooled water area, mixed-type precipitation in the ice-liquid conversion zone near the 0°C layer, and liquid precipitation below the bright band, proving the validity of the method. The methods are then applied to precipitation type classification and bright band detection. The results show that the RaProM algorithm has the advantage of making no assumptions about precipitation type and considering particle upward velocity (such as snowflakes) over the standard inversion process of micro rain radar. The RaProM algorithm results are in good agreement with the colocated microwave radiometer and cloud radar in the vertical structure, and the deviations from the ground disdrometer in raindrop size distribution and rain intensity are reduced compared with the products of micro rain radar.
-
图 2 (a、d)2021年7月2日12:00(协调世界时,下同)、(b、e)2019年12月26日00:00和(c、f)2018年3月4日00:00探空资料给出的三个时次干球温度与湿球温度的廓线(第一行)以及干球温度与湿球温度的偏差(第二行)
Figure 2. Vertical profiles of dry-bulb and wet-bulb temperatures (top line) and biases of dry-bulb and wet-bulb temperatures (bottom line) given by three radiosonde data at (a, d) 1200 UTC on July 2, 2021, (b, e) 0000 UTC on December 26, 2019, and (c, f) 0000 UTC on March 4, 2018
图 3 2021年7月2日16:00~20:00济南反射率因子随时间和空间的演变:(a)微雨雷达原始产品;(b)RaProM算法结果。(a、b)中黑色线、蓝色线为微波辐射计探测的0°C、−10°C层高度随时间的变化。(c)2021年7月2日16:00~20:00地面雨强(单位:mm h−1)随时间的演变,其中蓝色五角形为微雨雷达小时累积雨量,黑色圆点为RaProM算法反演的小时累积雨量,紫色点为区域自动气象站的小时雨强资料
Figure 3. Time–height distributions of radar reflectivity in Jinan from 1600 UTC to 2000 UTC on July 2, 2021: (a) Products of the micro rain radar; (b) depicts the result of the RaProM algorithm. The black line and the blue lines in (a, b) are the changes in the height of 0°C and −10°C layers detected by the microwave radiometer, respectively. (c) Evolution of surface rain intensity (units: mm h−1) from 1600 UTC to 2000 UTC on July 2, 2021, with the blue solid line representing the rain intensity of the micro rain radar product, the orange solid line representing the rain intensity inversion by the RaProM algorithm, and the purple dot indicating the hourly rain intensity data of regional automatic weather stations
图 4 2021年7月2日16:00~20:00粒子下落速度随时间和空间的演变:(a)微雨雷达原始产品;(b)RaProM算法结果;(c)Ka波段云雷达探测。(a、b)中黑色线、蓝色线为微波辐射计探测的0°C层、−10°C层高度随时间的变化。(d)2021年7月2日16:00~20:00 400 m高度上粒子下落末速度随时间的演变,红色、蓝色和黄色实线分别表示微雨雷达速度原始产品、RaProM算法反演值和云雷达反演值
Figure 4. Time–height distributions of particle falling velocity from 1600 UTC to 2000 UTC on July 2, 2021:(a) Products of the micro rain radar; (b) outcomes of the RaProM algorithm; (c) products of Ka band cloud radar. In (a, b), the black and blue lines symbolize the changes in the height of the 0°C and −10°C layers detected by the microwave radiometer, respectively. (d) Particle falling velocity at 400 m height from 1600 UTC to 2000 UTC on July 2, 2021, micro rain radar velocity original product is denoted by a solid red line, RaProM algorithm calculation result is denoted by a solid blue line, and the observation of cloud radar is denoted by a solid yellow line
图 5 2021年7月2日16:00~20:00微雨雷达反演的粒子相态的时空分布,图中黑色线、蓝色线分别为微波辐射计探测的0°C、−10°C层高度随时间的变化
Figure 5. Time–height distribution of precipitation type retrieved by micro rain radar in Jinan from 1600 UTC to 2000 UTC on July 2, 2021, where the black and blue lines represent the variations in the height of the 0°C and −10°C layers detected by microwave radiometer, respectively
图 7 2019年12月25日00:00~23:59济南粒子下落速度随时间和空间的演变:(a)微雨雷达产品;(b)RaProM算法结果。(c)2019年12月25日00:00~23:59微雨雷达最底层(200 m)高度上的粒子下落速度随时间的演变
Figure 7. Time–height distributions of particle falling velocity detected by micro rain radar in Jinan from 0000 UTC to 2359 UTC on December 25, 2021: (a) Products of the micro rain radar; (b) results of the RaProM algorithm. (c) The particle falling velocity at the lowest level (200 m) of the micro rain radar in Jinan from 0000 UTC to 2359 UTC on December 25, 2021
图 8 2019年12月25日00:00~23:59(a)雨雪转换过程微雨雷达反演粒子相态的时空分布和(b)二维视频雨滴谱仪2DVD观测的粒子形状(红色图片为前方视角粒子形状,蓝色为同一雨滴侧方视角粒子形状)
Figure 8. (a) Time–height distributions of precipitation types retrieved by micro rain radar and (b) depicts the shape of the drop observed by 2DVD (2D Video Distrometer) in Jinan from 0000 UTC to 2359 UTC on December 25, 2021. The red picture in (b) demonstrates the shape of the raindrop from the front view, while the blue picture illustrates the shape of the raindrop from the side view of the same raindrop
图 9 2018年3月3日23:30至4日15:30降水过程雷达反射率因子随时间和空间的演变:(a)微雨雷达产品;(b)RaProM算法结果;(c)Ka波段云雷达产品。(a、b)中红色三角线、蓝色线圈为微波辐射计探测的0°C、−10°C层高度随时间的变化。(d)2018年3月3日23:30至4日15:30降水过程济南国家地面自动站(站号:54823)和区域地面自动站(站号:D6066)观测的地面温度随时间的演变
Figure 9. Time–height distributions of radar reflectivity in Jinan from 2330 UTC on March 3 to 1530 UTC on March 4, 2018: (a) Product of the micro rain radar; (b) results of the RaProM algorithm; (c) products of Ka band cloud radar. In (a, b) the red triangle dot line and the blue circle dot line represent the changes in the height of the 0°C and −10°C layers detected by microwave radiometer, respectively. (d) The surface temperature evolution with time observed by the Jinan National Ground Automatic Station (No. 54823) and regional ground automatic station (No. D6066) in Jinan from 2330 UTC on March 3 to 1530 UTC on March 4, 2018
图 10 2018年3月3日23:30至4日15:30降水过程(a)微雨雷达反演的粒子相态的时空分布(红色实线为−10°C层的高度,黑色实线为0°C层的高度)以及(b)近地层粒子下落速度(单位:m s−1)和雨强(单位:mm h−1)随时间的演变
Figure 10. (a) Time–height distributions of precipitation type retrieved by micro rain radar and (b) evolutions of surface particle falling velocity (units: m s−1) and rainfall intensity (units: mm h−1) in Jinan from 2330 UTC on March 3 to 1530 UTC on March 4, 2018, in which the black and red lines are the changes in the height of the 0°C and −10°C layers detected by microwave radiometer, respectively
图 11 2018年3月3日23:30至4日15:30降水过程(a–c)地面粒子数浓度的随时间演变:(a)地面激光雨滴谱仪观测;(b)微雨雷达近地层的原始反演结果;(c)微雨雷达应用RaProM算法的反演结果。(d)2018年3月3日23:30至4日15:30降水过程雨强随时间的演变,其中红色实线为激光雨滴谱仪反演的雨强,蓝色实线为微雨雷达反演的雨强,绿色实线为微雨雷达应用RaProM算法反演的雨强
Figure 11. (a–c) Evolutions of surface raindrop size distribution over time during precipitation from 2330 UTC March 3 to 1530 UTC March 4, 2018: (a) Ground-based disdrometer; (b) products of micro rain radar near ground level; (c) inversion findings of micro rain radar applying the RaProM algorithm. (d) Evolutions of rain intensity over time during precipitation from 2330 UTC March 3 to 1530 UTC March 4, 2018, where the red solid line is the inversion of the disdrometer, the solid blue line is the products of the micro rain radar, and the solid green line is the inversion of the micro rain radar with the RaProM algorithm
表 1 微雨雷达参数配置
Table 1. Specification of micro rain radar
参数 指标 发射频率 24.23 GHz (K-band) 波长 12.38 mm 发射功率 50 mW 收发天线 偏置抛物面; 直径: 0.6 m 波束宽度 2° 调制方式 调频连续波FM-CW
(frequency-modulated continuous wave)时间分辨率 产品10~3600 s(可调),原始功率谱10s 高度分辨率 10~1000 m(可调),本研究:200 m 距离库数 31 谱速度分辨率 0.1905 m s−1 速度范围 0~12.192 m s−1 粒子直径范围 0.109~6 mm 探测高度 本研究:最大6000 m 尺寸 0.6 m×0.6 m×0.6 m -
[1] Acquistapace C, Löhnert U, Maahn M, et al. 2019. A new criterion to improve operational drizzle detection with ground-based remote sensing [J]. J. Atmos. Oceanic Technol., 36(5): 781−801. doi: 10.1175/JTECH-D-18-0158.1 [2] Atlas D, Srivastava R C, Sekhon R S. 1973. Doppler radar characteristics of precipitation at vertical incidence [J]. Rev. Geophys., 11(1): 1−35. doi: 10.1029/RG011i001p00001 [3] Bourgouin P. 2000. A method to determine precipitation types [J]. Wea. Forecasting, 15(5): 583−592. doi: 10.1175/1520-0434(2000)015<0583:AMTDPT>2.0.CO;2 [4] Cha J W, Chang K H, Yum S S, et al. 2009. Comparison of the bright band characteristics measured by micro rain radar (MRR) at a mountain and a coastal site in South Korea [J]. Adv. Atmos. Sci., 26(2): 211−221. doi: 10.1007/s00376-009-0211-0 [5] 陈勇, 刘辉志, 安俊岭, 等. 2010. 垂直指向测雨雷达的误差模拟及相互校准 [J]. 大气科学, 34(6): 1114−1126. doi: 10.3878/j.issn.1006-9895.2010.06.07Chen Y, Liu H Z, An J L, et al. 2010. Error analysis and intercalibrations of vertically pointing radars on the rainfall measurement [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34(6): 1114−1126. doi: 10.3878/j.issn.1006-9895.2010.06.07 [6] Chen Y, Liu H Z, An J L, et al. 2015. A field experiment on the small-scale variability of rainfall based on a network of micro rain radars and rain gauges [J]. J. Appl. Meteor. Climatol., 54(1): 243−255. doi: 10.1175/JAMC-D-13-0210.1 [7] 程智, 吴必文, 朱保林, 等. 2011. 湿球温度循环迭代算法及其应用 [J]. 气象, 37(1): 112−115. doi: 10.7519/j.issn.1000-0526.2011.1.015Cheng Z, Wu B W, Zhu B L, et al. 2011. Wet-Bulb temperature looping iterative scheme and its application [J]. Meteorological Monthly (in Chinese), 37(1): 112−115. doi: 10.7519/j.issn.1000-0526.2011.1.015 [8] 崔云扬, 周毓荃, 蔡淼. 2019. 利用微雨雷达研究一次冷锋云系降水的垂直结构分布及演变特征 [J]. 大气科学, 43(3): 618−633. doi: 10.3878/j.issn.1006-9895.1804.17307Cui Y Y, Zhou Y Q, Cai M. 2019. Vertical structure and evolution of precipitation associated with clouds along a cold front based on micro rain radar observations [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(3): 618−633. doi: 10.3878/j.issn.1006-9895.1804.17307 [9] 邓远平, 程麟生, 张小玲. 2000. 三相云显式降水方案和高原东部“96.1”暴雪成因的中尺度数值模拟 [J]. 高原气象(04): 401−414. doi: 10.3321/j.issn:1000-0534.2000.04.001Deng Y P, Cheng L S, Zhang X L. 2000. Three-phase cloud explicity precipitation scheme and mesoscale numerical simulation for generated cause of the “96.1” snowstorm [J]. Plateau Meteorology (in Chinese)(04): 401−414. doi: 10.3321/j.issn:1000-0534.2000.04.001 [10] 冯小真, 肖辉, 孙跃, 等. 2019. 基于双偏振雷达参量的层状云零度层亮带识别研究 [J]. 成都信息工程大学学报, 34(4): 333−341. doi: 10.16836/j.cnki.jcuit.2019.04.002Feng X Z, Xiao H, Sun Y, et al. 2019. Identification of the melting layer based on the X-band polarimetric radar scans [J]. Journal of Chengdu University of Information Technology (in Chinese), 34(4): 333−341. doi: 10.16836/j.cnki.jcuit.2019.04.002 [11] Foote G B, Toit P. 1969. Terminal velocity of raindrops aloft [J]. Journal of Applied Meteorology, 1969,8(2): 249−253. doi: 10.1175/1520-0450(1969)008<0249:TVORA>2.0.CO;2 [12] Garcia-Benadi A, Bech J, Gonzalez S, et al. 2020. Precipitation type classification of micro rain radar data using an improved Doppler spectral processing methodology [J]. Remote Sens., 12(24): 4113. doi: 10.3390/rs12244113 [13] Gunn R, Kinzer G D. 1949. The terminal velocity of fall for water droplets in Stagnant Air [J]. Journal of Atmospheric Sciences, 6(4): 243−248. doi: 10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2 [14] Hildebrand P H, Sekhon R S. 1974. Objective determination of the noise level in Doppler spectra [J]. Journal of Applied Meteorology, 13(7): 808−811. doi: 10.1175/1520-0450(1974)013<0808:ODOTNL>2.0.CO;2 [15] Kneifel S, Kulie M S, Bennartz R. 2011. A triple-frequency approach to retrieve microphysical snowfall parameters [J]. J. Geophys. Res. Atmos., 116(D11): D11203. doi: 10.1029/2010JD015430 [16] 孔照林, 赵放, 彭霞云, 等. 2016. 风廓线下落速度在浙江冬季降水相态识别中的应用 [J]. 气象, 42(9): 1090−1095. doi: 10.7519/j.issn.1000-0526.2016.08.006Kong Z L, Zhao F, Peng X Y, et al. 2016. Application of Wind profiler velocity data in identifying winter precipitation types in Zhejiang Province [J]. Meteorological Monthly (in Chinese), 42(9): 1090−1095. doi: 10.7519/j.issn.1000-0526.2016.08.006 [17] 李江波, 李根娥, 裴雨杰, 等. 2009. 一次春季强寒潮的降水相态变化分析 [J]. 气象, 35(7): 87−94. doi: 10.7519/j.issn.1000-0526.2009.7.013Li J B, Li G E, Pei Y J, et al. 2009. Analysis on the phase transformation of precipitation during a strong cold wave happened in spring [J]. Meteorological Monthly (in Chinese), 35(7): 87−94. doi: 10.7519/j.issn.1000-0526.2009.7.013 [18] 李青春, 程丛兰, 高华, 等. 2011. 北京一次冬季回流暴雪天气过程的数值分析 [J]. 气象, 37(11): 1380−1388. doi: 10.7519/j.issn.1000-0526.2011.11.008Li Q C, Cheng C L, Gao H, et al. 2011. Numerical simulation and analysis on a heavy snow of return-flow events in Beijing [J]. Meteorological Monthly (in Chinese), 37(11): 1380−1388. doi: 10.7519/j.issn.1000-0526.2011.11.008 [19] Maahn M, Kollias P. 2012. Improved micro rain radar snow measurements using Doppler spectra post-processing [J]. Atmos. Meas. Tech., 5(11): 2661−2673. doi: 10.5194/amt-5-2661-2012 [20] Makino K, Shiina T, Ota M. 2019. A precipitation classification system using vertical Doppler radar based on neural networks [J]. Radio Sci., 54(1): 20−33. doi: 10.1029/2018RS006567 [21] Peters G, Fischer B, Andersson T. 2002. Rain observations with a vertically looking micro rain radar (MRR) [J]. Boreal Environ. Res., 7(4): 353−362. [22] Peters G, Fischer B, Münster H, et al. 2005. Profiles of raindrop size distributions as retrieved by microrain radars [J]. J. Appl. Meteor. Climatol., 44(12): 1930−1949. doi: 10.1175/JAM2316.1 [23] 秦庆昌, 张琳娜, 于佳, 等. 2019. 北京地区两次雨雪转换过程的相态模拟研究 [J]. 高原气象, 38(5): 1027−1037. doi: 10.7522/j.issn.1000-0534.2018.00124Qin Q C, Zhang L N, Yu J, et al. 2019. Simulation study on phase state of two rain and snow processes in Beijing area [J]. Plateau Meteorology (in Chinese), 38(5): 1027−1037. doi: 10.7522/j.issn.1000-0534.2018.00124 [24] 饶晨, 肖辉, 姚振东, 等. 2020. 基于微雨雷达观测北京地区夏冬季降水个例特征分析 [J]. 成都信息工程大学学报, 35(4): 392−399. doi: 10.16836/j.cnki.jcuit.2020.04.005Rao C, Xiao H, Yao Z D, et al. 2020. Characteristic analysis of precipitation in summer and winter in northern China based on micro rain radar observation [J]. Journal of Chengdu University of Information Technology (in Chinese), 35(4): 392−399. doi: 10.16836/j.cnki.jcuit.2020.04.005 [25] 沈玉伟, 孙琦旻. 2013. 2010年冬季浙江两次强降雪过程的对比分析 [J]. 气象, 39(2): 218−225. doi: 10.7519/j.issn.1000-0526.2013.02.011Shen Y W, Sun Q M. 2013. Contrast analysis of two heavy snowfall events in Zhejiang [J]. Meteorological Monthly (in Chinese), 39(2): 218−225. doi: 10.7519/j.issn.1000-0526.2013.02.011 [26] 施红蓉, 李峰, 吴蕾, 等. 2014. 风廓线雷达对降水相态变化的观测分析 [J]. 气象, 40(10): 1259−1265. doi: 10.7519/j.issn.1000-0526.2014.10.010Shi H R, Li F, Wu L, et al. 2014. Analysis on observations of precipitation phase changes using wind profile radar data [J]. Meteorological Monthly (in Chinese), 40(10): 1259−1265. doi: 10.7519/j.issn.1000-0526.2014.10.010 [27] 宋灿, 周毓荃, 吴志会. 2019. 雨滴谱垂直演变特征的微雨雷达观测研究 [J]. 应用气象学报, 30(4): 479−490. doi: 10.11898/1001-7313.20190408Song C, Zhou Y Q, Wu Z H. 2019. Vertical profiles of raindrop size distribution observed by micro rain radar [J]. Journal of Applied Meteorological Science (in Chinese), 30(4): 479−490. doi: 10.11898/1001-7313.20190408 [28] 仝泽鹏, 杨莲梅, 曾勇, 等. 2021. 利用微雨雷达研究伊宁地区一次大雨过程的雨滴谱垂直演变特征 [J]. 干旱气象, 39(2): 279−287.Tong Z P, Yang L M, Zeng Y, et al. 2021. Vertical characteristics of raindrop size distribution during a heavy rain in Yining of Xinjiang based on micro-rain radar data [J]. Journal of Arid Meteorology (in Chinese), 39(2): 279−287. [29] Tridon F, Van Baelen J, Pointin Y. 2011. Aliasing in micro rain radar data due to strong vertical winds [J]. Geophys. Res. Lett., 38(2): L02804. doi: 10.1029/2010GL046018 [30] 王洪. 2017. 基于微降水雷达研究济南地区降水微物理参数 [D]. 中国科学院大学博士学位论文.Wang H. 2017. The study of precipitation microphysical parameters in Ji’nan based on micro rain radar [D]. Ph. D. dissertation (in Chinese), University of Chinese Academy of Sciences. [31] 王洪, 雷恒池, 杨洁帆. 2017. 微降水雷达测量精度分析 [J]. 气候与环境研究, 22(4): 392−404. doi: 10.3878/j.issn.1006-9585.2017.16166Wang H, Lei H C, Yang J F. 2017. Analysis of measurement accuracy of micro rain radar [J]. Climatic and Environmental Research (in Chinese), 22(4): 392−404. doi: 10.3878/j.issn.1006-9585.2017.16166 [32] Wang H, Lei H C, Yang J F. 2017. Microphysical processes of a stratiform precipitation event over eastern China: Analysis using micro rain radar data [J]. Adv. Atmos. Sci., 34(12): 1472−1482. doi: 10.1007/s00376-017-7005-6 [33] 王洪, 雷恒池, 杨洁帆, 等. 2020. 山东不同云系降水微物理参数特征 [J]. 大气科学, 44(2): 315−326. doi: 10.3878/j.issn.1006-9895.1905.18243Wang H, Lei H C, Yang J F, et al. 2020. Characteristics of rain microphysical parameters for different cloud systems in Shandong Province [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(2): 315−326. doi: 10.3878/j.issn.1006-9895.1905.18243 [34] Wang H, Wang W Q, Wang J, et al. 2021. Rainfall microphysical properties of landfalling typhoon Yagi (201814) based on the observations of micro rain radar and cloud radar in Shandong, China [J]. Adv. Atmos. Sci., 38(6): 994−1011. doi: 10.1007/s00376-021-0062-x [35] 王文波, 高晓梅, 李晓利, 等. 2020. 一次雨雪天气过程的风廓线雷达特征 [J]. 干旱气象, 38(1): 109−116. doi: 10.11755/j.issn.1006-7639(2020)-01-0109Wang W B, Gao X M, Li X L, et al. 2020. Analysis of wind profile radar characteristics during a rain and snow weather process [J]. Journal of Arid Meteorology (in Chinese), 38(1): 109−116. doi: 10.11755/j.issn.1006-7639(2020)-01-0109 [36] 温龙. 2016. 中国东部地区夏季降水雨滴谱特征分析 [D]. 南京大学硕士学位论文.Wen L. 2016. Microphysical characteristics of the raindrop size distribution observed in east China during the Asian summer monsoon season [D]. M. S. thesis (in Chinese), Nanjing University. [37] 温龙, 刘溯, 赵坤, 等. 2015. 两次降水过程的微降雨雷达探测精度分析 [J]. 气象, 41(5): 577−587. doi: 10.7519/j.issn.1000-0526.2015.05.006Wen L, Liu S, Zhao K, et al. 2015. Precision evaluation of micro rain radar observation in two precipitation events [J]. Meteorological Monthly (in Chinese), 41(5): 577−587. doi: 10.7519/j.issn.1000-0526.2015.05.006 [38] Wen L, Zhao K, Zhang G F, et al. 2016. Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-D video disdrometer and micro rain radar data [J]. J. Geophys. Res. Atmos., 121(5): 2265−2282. doi: 10.1002/2015JD024160 [39] 谢华生. 1978. 谈谈“湿球” [J]. 气象, 4(1): 40. doi: 10.7519/j.issn.1000-0526.1978.01.019Xie H S. 1978. Talk about “Wet bulb” [J]. Meteorological Monthly (in Chinese), 4(1): 40. doi: 10.7519/j.issn.1000-0526.1978.01.019 [40] 杨成芳, 姜鹏, 张少林, 等. 2013. 山东冬半年降水相态的温度特征统计分析 [J]. 气象, 39(3): 355−361. doi: 10.7519/j.issn.1000-0526.2013.03.010Yang C F, Jiang P, Zhang S L, et al. 2013. Analysis on temperature of precipitation types in cold seasons in Shandong [J]. Meteorological Monthly (in Chinese), 39(3): 355−361. doi: 10.7519/j.issn.1000-0526.2013.03.010 [41] 杨磊, 贺宏兵, 杨波, 等. 2019. 基于S波段双线偏振天气雷达的降水粒子相态识别 [J]. 气象与环境学报, 35(4): 127−132. doi: 10.3969/j.issn.1673-503X.2019.04.018Yang L, He H B, Yang B, et al. 2019. Identification of hydrometeors based on S-band dual-polarimetric radar measurement [J]. Journal of Meteorology and Environment (in Chinese), 35(4): 127−132. doi: 10.3969/j.issn.1673-503X.2019.04.018 [42] 俞小鼎. 2014. 关于冰雹的融化层高度 [J]. 气象, 40(6): 649−654. doi: 10.7519/j.issn.1000-0526.2014.06.001Yu X D. 2014. A note on the melting level of hail [J]. Meteorological Monthly (in Chinese), 40(6): 649−654. doi: 10.7519/j.issn.1000-0526.2014.06.001 [43] 张培昌, 杜秉玉, 戴铁丕. 2001. 雷达气象学 [M]. 2版. 北京: 气象出版社.Zhang P C, Du B Y, Dai T P. 2001. Radar Meteorology [M]. Second Edition. China Meteorological Press. [44] 张志杰, 王志楠. 2017. 呼和浩特市降水相态识别判据研究 [J]. 内蒙古林业科技, 43(1): 42−47. doi: 10.3969/j.issn.1007-4066.2017.01.012Zhang Z J, Wang Z N. 2017. Research on identification criterion of precipitation phase in Hohhot [J]. Journal of Inner Mongolia Forestry Science and Technology (in Chinese), 43(1): 42−47. doi: 10.3969/j.issn.1007-4066.2017.01.012 [45] 赵琳娜, 慕秀香, 马翠平, 等. 2021. 冬季稳定性降水相态预报研究进展 [J]. 应用气象学报, 32(1): 12−24. doi: 10.11898/1001-7313.20210102Zhao L N, Mu X X, Ma C P, et al. 2021. A review on stable precipitation type forecast in winter [J]. Journal of Applied Meteorological Science (in Chinese), 32(1): 12−24. doi: 10.11898/1001-7313.20210102 [46] 赵思雄, 孙建华, 陈红, 等. 2002. 北京“12·7”降雪过程的分析研究 [J]. 气候与环境研究, 7(1): 7−21. doi: 10.3878/j.issn.1006-9585.2002.01.02Zhao S X, Sun J H, Chen H, et al. 2002. A study on snowfall in Beijing on 7 December 2001 [J]. Climatic and Environmental Research (in Chinese), 7(1): 7−21. doi: 10.3878/j.issn.1006-9585.2002.01.02 [47] 郑丽娜, 杨成芳, 刘畅. 2016. 山东冬半年回流降雪形势特征及相关降水相态 [J]. 高原气象, 35(2): 520−527. doi: 10.7522/j.issn.1000-0534.2015.00055Zheng L N, Yang C F, Liu C. 2016. Study on circulation features of return-flow and related precipitation types during cold seasons in Shandong [J]. Plateau Meteorology (in Chinese), 35(2): 520−527. doi: 10.7522/j.issn.1000-0534.2015.00055 -