高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2021年郑州“7·20”极端暴雨雨滴谱特征及其对雷达定量降水估测的影响

张哲 戚友存 李东欢 赵占锋 崔丽曼 苏爱芳 王新敏

张哲, 戚友存, 李东欢, 等. 2022. 2021年郑州“7·20”极端暴雨雨滴谱特征及其对雷达定量降水估测的影响[J]. 大气科学, 46(4): 1002−1016 doi: 10.3878/j.issn.1006-9895.2201.21237
引用本文: 张哲, 戚友存, 李东欢, 等. 2022. 2021年郑州“7·20”极端暴雨雨滴谱特征及其对雷达定量降水估测的影响[J]. 大气科学, 46(4): 1002−1016 doi: 10.3878/j.issn.1006-9895.2201.21237
ZHANG Zhe, QI Youcun, LI Donghuan, et al. 2022. Raindrop Size Distribution Characteristics of the Extreme Rainstorm Event in Zhengzhou 20 July, 2021 and Its Impacts on Radar Quantitative Precipitation Estimation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(4): 1002−1016 doi: 10.3878/j.issn.1006-9895.2201.21237
Citation: ZHANG Zhe, QI Youcun, LI Donghuan, et al. 2022. Raindrop Size Distribution Characteristics of the Extreme Rainstorm Event in Zhengzhou 20 July, 2021 and Its Impacts on Radar Quantitative Precipitation Estimation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(4): 1002−1016 doi: 10.3878/j.issn.1006-9895.2201.21237

2021年郑州“7·20”极端暴雨雨滴谱特征及其对雷达定量降水估测的影响

doi: 10.3878/j.issn.1006-9895.2201.21237
基金项目: 国家重点研发计划项目2018YFC1507505,中国科学院 A 类战略性先导科技专项XDA2006040101,中国科学院百人计划项目,河南省级科技研发计划(应用攻关类)气象联合基金项目——基于雨滴谱和双偏振雷达资料的河南省定量降水估计技术研究
详细信息
    作者简介:

    张哲,男,1990年出生,博士,主要从事天气雷达降水研究。E-mail: zhangzhe_ucas@163.com

    通讯作者:

    戚友存,E-mail: Youcun.Qi@igsnrr.ac.cn

  • 中图分类号: P458

Raindrop Size Distribution Characteristics of the Extreme Rainstorm Event in Zhengzhou 20 July, 2021 and Its Impacts on Radar Quantitative Precipitation Estimation

Funds: National Key Research and Development Project (Grant 2018YFC1507505), Strategic Priority Research Program of Chinese Academy of Sciences (Grant XDA2006040101), Hundred Talents Program of Chinese Academy of Sciences, Henan Province Meteorological Joint Program
  • 摘要: 利用雨滴谱仪观测的雨滴谱数据,分析了2021年7月20日郑州极端暴雨的雨滴谱特征,并结合双偏振雷达观测,分析了不同定量降水估测(QPE)方法在此次极端暴雨过程中的性能。结果表明,在此次极端暴雨过程的最强降水时段,雨滴谱表现为很高的粒子数浓度和很大的粒子平均直径;而整个降水过程雨滴谱的截距参数与我国其它地区雨滴谱特征差异不明显,但质量加权平均直径大于其他地区的雨滴谱;在降水最强的2021年7月20日08:00~09:00(协调世界时,下同)前后,雨滴谱的特征发生了显著变化,首先是质量加权平均直径迅速增长,随后粒子数浓度也陡增,从而导致降水率的迅速增强。使用郑州双偏振雷达数据,基于各种QPE方法和参数计算得到了08:00~09:00的雷达反演降水量,并与雨量计观测结果比较。结果表明对于基于反射率的QPE关系(R(ZH)),如果不提高或者去除反射率上限进行QPE,会导致降水严重低估,且该方法对参数的准确性较为依赖;基于差传播相移率的QPE关系(R(Kdp))对雨滴谱差异性敏感度相对较低,其性能主要依赖于差传播相移率的准确性;最优的R(Kdp)关系反演效果比R(ZH)更好,能达到实际降水量的70%以上。
  • 图  1  2021年7月20日(a)质控前与(b)质控后的雨滴谱仪与雨量计观测的1分钟降水量比较

    Figure  1.  Scatter plots of 1-min rainfall observed by disdrometer versus rain gauge (a) before quality control and (b) after quality control on July 20, 2021

    图  2  2021年7月20日08:00~09:00(协调世界时,下同)雨滴谱仪观测的降水粒子速度和等效直径的频数散点,颜色表示雨滴的个数。粗实线为雨滴理论下落末速度,两条细实线分别为下落速度的1.5倍和0.5倍

    Figure  2.  Frequency scatterplot of raindrop size and velocity at 0800 UTC–0900 UTC July 20, 2021, with colors indicating the drop numbers. The bold solid line represents the theoretical terminal velocity of raindrops, and the thin solid lines represent 1.5 and 0.5 times the theoretical line

    图  3  2021年7月20日08:00~09:00雨滴谱仪观测的雨滴谱特征量的频率分布:(a)质量加权平均直径Dm(单位:mm);(b)降水率R(单位:mm h−1);(c)粒子数浓度Nt(单位:m−3);(d)归一化的截距参数Nw(单位:mm−1 m−3)。图中还表示了该特征量的均值(Mean)和标准差(SD)

    Figure  3.  Frequency of different raindrop size distribution (DSD) parameters observed by disdrometer at 0800 UTC–0900 UTC, July 20, 2021. (a) mass-weighted mean diameter (Dm), (b) rain rate R, (c) total number concentration (Nt), and (d) normalized intercept parameter (Nw), superimposed with mean values (Mean) and standard deviations (SD)

    图  4  2021年7月20日雨滴谱仪观测的(a)R–Dm的频数分布和(b)Dm–Nw的散点分布。(a)中黑线和实线分别是使用全部样本和降水率大于100 mm h−1的样本利用最小二乘法拟合得到的拟合曲线,填色表示样本数。(b)中红色叉、蓝色圆点和红色圆点分别是全天的1分钟对流性降水样本、全天的1分钟层状云降水样本和08:00~09:00的1分钟降水样本;黑色方框分别是Bringi et al.(2003)中的海洋性和大陆性对流性降水的Dmlg(Nw)的分布区域;黑色实线为Bringi et al.(2003)中层状云降水的Dm–Nw关系

    Figure  4.  (a) Scatter density for R versus Dm, (b) scatter plot for Dm versus Nw superimposed with a power-law relationship using the least-squares fit method on July 20, 2021. The black line and red line in (a) indicate the fitting result for all samples and for samples with rain rates greater than 100 mm h−1, the color indicate samples number.. In (b), red crosses and blue hollow dots represent 1-minute convection and stratiform samples on July 20, 2021; red dots represent 1-minute samples at 0800 UTC–0900 UTC July 20, 2021; mean values for convection (purple) and stratiform (gray) of different studies are also superimposed; the black line is the lg(Nw)–Dm relationship for stratiform in Bringi et al. (2003); two rectangles are maritime and continental convective clusters in Bringi et al. (2003)

    图  5  2021年7月20日06:30~09:59雨滴谱特征量的时间变化(红线、蓝线和黑线分别表示NtDmR)。其中灰色矩形区域是07:43~09:08时段,即降水率超过100 mm h−1的时段

    Figure  5.  Time series of DSD parameters at 0630 UTC–0959 UTC July 20, 2021. Red, blue, and black lines represent Nt, Dm, and R, respectively. The gray box is the period with a rain rate larger than 100 mm h−1, namely, 0743 UTC–0908 UTC

    图  6  使用表1中不同关系参数的反演得到的降水率与雷达观测量的关系:(a)基于R(ZH)关系RZh的变化;(b)基于R(Kdp)关系RKdp的变化。图中的绿色、红色和黑色线分别代表使用表1中业务、08:00~09:00和全天关系得到的降水率。(a)中的垂直于Y轴的实线和虚线分别表示反射率为53 dBZ和55 dBZ时降水率的值

    Figure  6.  Retrieved rain rate versus radar parameters using different QPE parameters in Table 1. (a) Reflectivity (Zh)versus rain rate based on R(ZH) method and (b) Kdp versus rain rate based on R(Kdp) method. The green, red, and black curve lines represent the retrieved rain rate using parameters of “Operational”, “0800UTC–0900 UTC”, and “Whole day” in Table 1. The solid and dashed lines perpendicular to the Y axis in (a) represent the rain rates with reflectivity of 53 and 55 dBZ, respectively

    图  7  2021年7月20日08:00~09:00雨滴谱仪观测的降水率与基于(a、b)R(ZH)和(c、d)R(Kdp)反演关系计算得到的降水率比较:(a、c)使用全天参数;(b、d)使用08:00~09:00参数

    Figure  7.  Scatter plots of rain rate observed by disdrometer verus that retrieved using (a, b) R(ZH) and (c, d) R(Kdp) with parameters obtained based on samples of (a, c) the whole day and (b, d) 0800 UTC–0900 UTC at 0800 UTC–0900 UTC July 20, 2021

    图  8  2021年7月21日08:00~08:54时刻郑州雷达第二仰角在雨滴谱仪位置的ZhKdp,实线、长虚线和短虚线分别表示Zh、原始观测的Kdp及使用线性规划(LP)方法获得的Kdp

    Figure  8.  Zh and Kdp of the second tilt of Zhengzhou Doppler radar at the disdrometer’ s location at 0800 UTC–0854 UTC. The solid, long dashed, and short dashed lines respectively represent Zh, observed Kdp, and Kdp retrieved with linear programming (LP) method

    图  9  使用不同方法计算得到的08:00~09:00的雷达估计降水量。左、中、右的各五个柱状分别表示使用表1中的业务关系、全天关系和08:00~09:00关系得到的结果。点、横线、左斜线、分别表示使用R(ZH)关系且反射率上限设为53 dBZ、设为55 dBZ以及不设反射率上限;右斜线和格子纹柱状表示使用R(Kdp)关系且Kdp值来自基数据以及来自线性规划方法百分数表示雷达估测降水量与雨量计观测降水量的比值。

    Figure  9.  Hourly rainfall at 0800 UTC–0900 UTC estimated using different QPE methods. The groups with 5 bars located at the left, middle, and right portion of the plot represent the result using the parameters of “Operational,” “Whole day,” and “0800 UTC–0900 UTC” in Table 1. The dotted, transverse line, left slash, right slash, and cross pattern bars in each group represent the result using R(ZH) with Zh capped at 53 dBZ, at 55 dBZ, and without Zh cap, R(Kdp) with Kdp obtained from radar volume data and using linear programming method. The percentage indicates the ratio of radar estimated rainfall to gauge observational rainfall.

    表  1  S波段雷达降水反演关系参数

    Table  1.   S-band radar quantitative precipitation estimation parameters

    反演关系来源关系参数
    ab
    $ R({Z_H}) = aZ_H^b $业务0.01700.714
    全天0.01700.706
    08:00~09:000.21480.521
    $ R({K_{dp}}) = aK_{dp}^b $业务44.00.822
    全天45.20.820
    08:00~09:0057.70.711
    下载: 导出CSV
  • [1] Beard K V, Johnson D B, Baumgardner D. 1986. Aircraft observations of large raindrops in warm, shallow, convective clouds [J]. Geophys. Res. Lett., 13(10): 991−994. doi: 10.1029/GL013i010p00991
    [2] Brandes E A, Zhang G F, Vivekanandan J. 2002. Experiments in rainfall estimation with a polarimetric radar in a subtropical environment [J]. J. Appl. Meteor. Climatol., 41(6): 674−685. doi: 10.1175/1520-0450(2002)041<0674:EIREWA>2.0.CO;2
    [3] Bringi V N, Chandrasekar V. 2001. Polarimetric Doppler Weather Radar: Principles and Applications [M]. Cambridge: Cambridge University Press, 636pp.
    [4] Bringi V N, Chandrasekar V, Hubbert J, et al. 2003. Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis [J]. J. Atmos. Sci., 60(2): 354−365. doi: 10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2
    [5] Cao Q, Zhang G F, Brandes E, et al. 2008. Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma [J]. J. Appl. Meteor. Climatol., 47(8): 2238−2255. doi: 10.1175/2008JAMC1732.1
    [6] Chandrasekar V, Bringi V N. 1988. Error structure of multiparameter radar and surface measurements of rainfall. Part I: Differential reflectivity [J]. J. Atmos. Oceanic Technol., 5(6): 783−795. doi: 10.1175/1520-0426(1988)005<0783:ESOMRA>2.0.CO;2
    [7] Chandrasekar V, Bringi V N, Balakrishnan N, et al. 1990. Error structure of multiparameter radar and surface measurements of rainfall. Part III: Specific differential phase [J]. J. Atmos. Oceanic Technol., 7(5): 621−629. doi: 10.1175/1520-0426(1990)007<0621:ESOMRA>2.0.CO;2
    [8] Chen H N, Chandrasekar V. 2015. The quantitative precipitation estimation system for Dallas–Fort Worth (DFW) urban remote sensing network [J]. J. Hydrol., 531: 259−271. doi: 10.1016/j.jhydrol.2015.05.040
    [9] Chen B J, Yang J, Pu J P. 2013. Statistical characteristics of raindrop size distribution in the Meiyu season observed in eastern China [J]. J. Meteor. Soc. Japan, 91(2): 215−227. doi: 10.2151/jmsj.2013-208
    [10] Chen B J, Wang J, Gong D L. 2016. Raindrop size distribution in a midlatitude continental squall line measured by Thies optical disdrometers over East China [J]. J. Appl. Meteor. Climatol., 55(3): 621−634. doi: 10.1175/JAMC-D-15-0127.1
    [11] Chen B J, Hu Z Q, Liu L P, et al. 2017a. Raindrop size distribution measurements at 4, 500 m on the Tibetan Plateau during TIPEX-III [J]. J. Geophys. Res., 122(20): 11092−11106. doi: 10.1002/2017JD027233
    [12] Chen G, Zhao K, Zhang G F, et al. 2017b. Improving polarimetric C-band radar rainfall estimation with two-dimensional video disdrometer observations in eastern China [J]. J. Hydrometeorol., 18(5): 1375−1391. doi: 10.1175/JHM-D-16-0215.1
    [13] 楚荣忠, 王致君, 刘黎平, 等. 1997. 双线偏振雷达降雨估测分析 [J]. 气象学报, 55(1): 103−109. doi: 10.11676/qxxb1997.011

    Chu Rongzhong, Wang Zhijun, Liu Liping, et al. 1997. Preliminary analysis of rainfall estimate utilizing dual linear polarization radar [J]. Acta Meteor. Sinica (in Chinese), 55(1): 103−109. doi: 10.11676/qxxb1997.011
    [14] Cifelli R, Chandrasekar V, Lim S, et al. 2011. A new dual-polarization radar rainfall algorithm: Application in Colorado precipitation events [J]. J. Atmos. Oceanic Technol., 28(3): 352−364. doi: 10.1175/2010JTECHA1488.1
    [15] Friedrich K, Higgins S, Masters F J, et al. 2013. Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall [J]. J. Atmos. Oceanic Technol., 30(9): 2063−2080. doi: 10.1175/JTECH-D-12-00254.1
    [16] Giangrande S E, McGraw R, Lei L. 2013. An application of linear programming to polarimetric radar differential phase processing [J]. J. Atmos. Oceanic Technol., 30(8): 1716−1729. doi: 10.1175/JTECH-D-12-00147.1
    [17] Ji L, Chen H N, Li L, et al. 2019. Raindrop size distributions and rain characteristics observed by a PARSIVEL disdrometer in Beijing, northern China [J]. Remote Sens, 11(12): 1479. doi: 10.3390/rs11121479
    [18] 金祺, 袁野, 刘慧娟, 等. 2015. 江淮之间夏季雨滴谱特征分析 [J]. 气象学报, 73(4): 778−788. doi: 10.11676/qxxb2015.036

    Jin Qi, Yuan Ye, Liu Huijuan, et al. 2015. Analysis of microphysical characteristics of the raindrop spectrum over the area between the Yangtze River and the Huaihe River during summer [J]. Acta Meteor. Sinica (in Chinese), 73(4): 778−788. doi: 10.11676/qxxb2015.036
    [19] 寇蕾蕾, 李应超, 楚志刚, 等. 2018. C波段双偏振多普勒天气雷达资料分析及在定量估计降水中的应用研究 [J]. 热带气象学报, 34(4): 460−471. doi: 10.16032/j.issn.1004-4965.2018.04.003

    Kou Leilei, Li Yingchao, Chu Zhigang, et al. 2018. C-band dual-polarization Doppler weather radar data analysis and its application in quantitative precipitation estimation [J]. J. Trop. Meteor. (in Chinese), 34(4): 460−471. doi: 10.16032/j.issn.1004-4965.2018.04.003
    [20] 刘红燕, 雷恒池. 2006. 基于地面雨滴谱资料分析层状云和对流云降水的特征 [J]. 大气科学, 30(4): 693−702. doi: 10.3878/j.issn.1006-9895.2006.04.14

    Liu Hongyan, Lei Hengchi. 2006. Characteristics of rain from stratiform versus convective cloud based on the surface raindrop data [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30(4): 693−702. doi: 10.3878/j.issn.1006-9895.2006.04.14
    [21] Luo L, Xiao H, Yang H L, et al. 2020. Raindrop size distribution and microphysical characteristics of a great rainstorm in 2016 in Beijing, China [J]. Atmos. Res., 239: 104895. doi: 10.1016/j.atmosres.2020.104895
    [22] Ma Y, Ni G H, Chandra C V, et al. 2019. Statistical characteristics of raindrop size distribution during rainy seasons in the Beijing urban area and implications for radar rainfall estimation [J]. Hydrol. Earth Syst. Sci., 23(10): 4153−4170. doi: 10.5194/hess-23-4153-2019
    [23] Maki M, Keenan T D, Sasaki Y, et al. 2001. Characteristics of the raindrop size distribution in tropical continental squall lines observed in Darwin, Australia [J]. J. Appl. Meteor. Climatol., 40(8): 1393−1412. doi: 10.1175/1520-0450(2001)040<1393:COTRSD>2.0.CO;2
    [24] Marzano F S, Cimini D, Montopoli M. 2010. Investigating precipitation microphysics using ground-based microwave remote sensors and disdrometer data [J]. Atmos. Res., 97(4): 583−600. doi: 10.1016/j.atmosres.2010.03.019
    [25] Niu S J, Jia X C, Sang J R, et al. 2010. Distributions of raindrop sizes and fall velocities in a semiarid plateau climate: Convective versus stratiform rains [J]. J. Appl. Meteor. Climatol., 49(4): 632−645. doi: 10.1175/2009JAMC2208.1
    [26] 冉令坤, 李舒文, 周玉淑, 等. 2021. 2021年河南“7.20”极端暴雨动、热力和水汽特征观测分析 [J]. 大气科学, 45(6): 1366−1383. doi: 10.3878/j.issn.1006-9895.2109.21160

    Ran Lingkun, Li Shuwen, Zhou Yushu, et al. 2021. Observational analysis of the dynamic, thermal, and water vapor characteristics of the "7.20" extreme rainstorm event in Henan Province, 2021 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(6): 1366−1383. doi: 10.3878/j.issn.1006-9895.2109.21160
    [27] Ryzhkov A V, Zrnić D S. 1995. Comparison of dual-polarization radar estimators of rain [J]. J. Atmos. Oceanic Technol., 12(2): 249−256. doi: 10.1175/1520-0426(1995)012<0249:CODPRE>2.0.CO;2
    [28] Seliga T A, Bringi V N. 1976. Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation [J]. J. Appl. Meteor. Climatol., 15(1): 69−76. doi: 10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2
    [29] 苏爱芳, 吕晓娜, 崔丽曼, 等. 2021. 郑州“7.20”极端暴雨天气的基本观测分析 [J]. 暴雨灾害, 40(5): 445−454. doi: 10.3969/j.issn.1004-9045.2021.05.001

    Su Aifang, Lü Xiaona, Cui Liman, et al. 2021. The basic observational analysis of "7.20" extreme rainstorm in Zhengzhou [J]. Torr. Rain Dis. (in Chinese), 40(5): 445−454. doi: 10.3969/j.issn.1004-9045.2021.05.001
    [30] 孙跃, 肖辉, 杨慧玲, 等. 2021. 基于遥感数据光流场的2021年郑州“7·20”特大暴雨动力条件和水凝物输送特征分析 [J]. 大气科学, 45(6): 1384−1399. doi: 10.3878/j.issn.1006-9895.2109.21155

    Sun Yue, Xiao Hui, Yang Huiling, et al. 2021. Analysis of dynamic conditions and hydrometeor transport of Zhengzhou superheavy rainfall event on 20 July 2021 based on optical flow field of remote sensing data [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(6): 1384−1399. doi: 10.3878/j.issn.1006-9895.2109.21155
    [31] Tang Q, Xiao H, Guo C W, et al. 2014. Characteristics of the raindrop size distributions and their retrieved polarimetric radar parameters in northern and southern China [J]. Atmos. Res., 135–136: 59–75. doi: 10.1016/j.atmosres.2013.08.003
    [32] Testud J, Oury S, Black R A, et al. 2001. The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing [J]. J. Appl. Meteor. Climatol., 40(6): 1118−1140. doi: 10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2
    [33] Tokay A, Petersen W A, Gatlin P, et al. 2013. Comparison of raindrop size distribution measurements by collocated disdrometers [J]. Atmos. Oceanic Technol., 30(8): 1672−1690. doi: 10.1175/JTECH-D-12-00163.1
    [34] Tokay A, Wolff D B, Petersen W A. 2014. Evaluation of the new version of the laser-optical disdrometer, OTT Parsivel2 [J]. Atmos. Oceanic Technol., 31(6): 1276−1288. doi: 10.1175/JTECH-D-13-00174.1
    [35] 王俊, 姚展予, 侯淑梅, 等. 2016. 一次飑线过程的雨滴谱特征研究 [J]. 气象学报, 74(3): 450−464. doi: 10.11676/qxxb2016.034

    Wang Jun, Yao Zhanyu, Hou Shumei, et al. 2016. Characteristics of the raindrop size distribution in a squall line measured by Thies optical disdrometers [J]. Acta Meteor. Sinica (in Chinese), 74(3): 450−464. doi: 10.11676/qxxb2016.034
    [36] Wang H, Kong F Y, Wu N G, et al. 2019. An investigation into microphysical structure of a squall line in South China observed with a polarimetric radar and a disdrometer [J]. Atmos. Res., 226: 171−180. doi: 10.1016/j.atmosres.2019.04.009
    [37] Waterman P C. 1965. Matrix formulation of electromagnetic scattering [J]. Proc. IEEE, 53(8): 805−812. doi: 10.1109/PROC.1965.4058
    [38] Wen L, Zhao K, Zhang G F, et al. 2016. Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-D video disdrometer and Micro Rain Radar data [J]. J. Geophys. Res., 121(5): 2265−2282. doi: 10.1002/2015JD024160
    [39] Wu Y H, Liu L P. 2017. Statistical characteristics of raindrop size distribution in the Tibetan Plateau and southern China [J]. Adv. Atmos. Sci., 34(6): 727−736. doi: 10.1007/s00376-016-5235-7
    [40] Zhang J, Tang L, Cocks S, et al. 2020. A dual-polarization radar synthetic QPE for operations [J]. J. Hydrometeorol., 21(11): 2507−2521. doi: 10.1175/JHM-D-19-0194.1
    [41] 张哲, 戚友存, 朱自伟, 等. 2021. 深圳S波段与X波段双偏振雷达在定量降水估计中的应用 [J]. 气象学报, 79(5): 786−803. doi: 10.11676/qxxb2021.042

    Zhang Zhe, Qi Youcun, Zhu Ziwei, et al. 2021. Application of radar quantitative precipitation estimation using S-band and X-band polarimetric radars in Shenzhen [J]. Acta Meteor. Sinica (in Chinese), 79(5): 786−803. doi: 10.11676/qxxb2021.042
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  830
  • HTML全文浏览量:  178
  • PDF下载量:  283
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-09
  • 录用日期:  2022-04-11
  • 网络出版日期:  2022-04-11
  • 刊出日期:  2022-07-19

目录

    /

    返回文章
    返回