高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于火箭和高炮真实催化轨迹的一次对流云消减雨的数值模拟

刘卫国 史月琴 党娟 陶玥 周毓荃

刘卫国, 史月琴, 党娟, 等. 2023. 基于火箭和高炮真实催化轨迹的一次对流云消减雨的数值模拟[J]. 大气科学, 47(2): 430−452 doi: 10.3878/j.issn.1006-9895.2202.21077
引用本文: 刘卫国, 史月琴, 党娟, 等. 2023. 基于火箭和高炮真实催化轨迹的一次对流云消减雨的数值模拟[J]. 大气科学, 47(2): 430−452 doi: 10.3878/j.issn.1006-9895.2202.21077
LIU Weiguo, SHI Yueqin, DANG Juan, et al. 2023. Numerical Simulation of a Convective Cloud Rainfall Reduction Based on the Realistic Seeding Trajectories of Rocket and Artillery [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 47(2): 430−452 doi: 10.3878/j.issn.1006-9895.2202.21077
Citation: LIU Weiguo, SHI Yueqin, DANG Juan, et al. 2023. Numerical Simulation of a Convective Cloud Rainfall Reduction Based on the Realistic Seeding Trajectories of Rocket and Artillery [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 47(2): 430−452 doi: 10.3878/j.issn.1006-9895.2202.21077

基于火箭和高炮真实催化轨迹的一次对流云消减雨的数值模拟

doi: 10.3878/j.issn.1006-9895.2202.21077
基金项目: 国家重点研发计划项目2018YFC1507901、2016YFA0601701,中国气象局重点创新团队支持项目CMA2022ZD10,国家自然科学基金项目41075099
详细信息
    作者简介:

    刘卫国,男,1973年出生,主要从事云降水物理和数值模拟研究。E-mail: liuwg@cma.gov.cn

  • 中图分类号: P481

Numerical Simulation of a Convective Cloud Rainfall Reduction Based on the Realistic Seeding Trajectories of Rocket and Artillery

Funds: National Key Research and Development Project (Grants 2018YFC1507901, 2016YFA0601701), CMA Key Innovation Team Project (Grant CMA2022ZD10), National Natural Science Foundation of China (Grant 41075099)
  • 摘要: 效果评估仍是人工影响天气研究面临的困难问题,数值模式在催化效果的评估方面有望发挥更大作用,建立能够模拟真实催化过程的数值模式是一条可行的途径。本文对一套三维中尺度催化模式进行了改进,采用了新的碘化银核化计算方案,在模式中增加了人工冰晶预报量及相关微物理过程,并实现了对地面火箭和高炮作业方式的仿真模拟。使用改进后的模式,采用500 m的水平分辨率,模拟了2019年9月1日华北地区一次对流云系的人工消减雨作业过程,对催化作业的消减雨效果进行了数值评估,并对碘化银在对流云中的核化特征及其催化作用机制进行了分析。结果表明:(1)催化作业对目标云系的雷达回波强度产生了一些影响,催化导致较多降水粒子滞留在高空,使得云体上部的回波强度略有增加,云体中下部的回波强度减弱,但催化作业并未改变目标云系雷达回波的自然演变趋势。(2)催化作业达到了一定的消减雨效果,作业区下游出现大面积减雨区,降水总量减少,降水强度减弱,局地最大减雨量为0.27 mm,主要影响区的平均减雨率为5.1%。(3)碘化银催化剂主要的核化方式为凝结冻结核化,其次为接触冻结核化。(4)催化作业造成了过量播撒,人工冰晶的成长占据竞争优势,它抑制了过冷层中其他水成物的自然增长过程,人工冰晶的凝华增长是导致云中水汽和云水消耗量增加的主要原因,凝华潜热的释放最终也引起云中垂直气流发生变化。(5)冷云降水是此次降水的主要物理机制,受催化的影响,暖层中霰融化过程的减弱导致雨滴总质量减少,这是降水减弱的主要原因,落入暖层下部的雨滴数量减少则是降水减弱的另一原因。
  • 图  1  2019年9月1日11:00(北京时,下同)(a)500 hPa位势高度场(等值线,单位:dagpm)、700 hPa风场(风向杆,单位:m s–1)和比湿(阴影,单位:g kg–1),(b)500 hPa位势高度场(等值线,单位:dagpm)、850 hPa风场(风向杆,单位:m s–1)和比湿(阴影,单位:g kg–1

    Figure  1.  (a) 500-hPa geopotential height (contours, units: dagpm), wind (barbs, units: m s−1) and specific humidity (shadings, units: g kg−1) at 700 hPa, (b) 500-hPa geopotential height (contours, units: dagpm), wind (barbs, units: m s−1) and specific humidity (shadings, units: g kg−1) at 850 hPa at 1100 BJT (Beijing time) on 1 September 2019

    图  2  2019年9月1日观测的(a)12:00、(b)14:00、(c)16:30雷达组合反射率(单位:dBZ

    Figure  2.  Observed radar composite reflectivity (units: dBZ) at (a) 1200 BJT, (b) 1400 BJT, and (c) 1630 BJT on 1 September 2019

    图  3  2019年9月1日实际4轮次催化作业中,火箭作业轨迹(黑线)和炮弹播撒点(圆圈)的水平投影位置分别与(a)14:42、(b)15:00、(c)15:12、(d)15:30观测的雷达组合反射率(阴影,单位:dBZ)叠加。图中三角为作业站点位置,数字对应表1中的站点编号,A、B、E为正文中各对流单体的名称

    Figure  3.  Horizontal projection of both rocket seeding trajectories (black lines) and artillery seeding points (circles) in four rounds of actual seeding operation overlay with observed radar composite reflectivity (shadings, units: dBZ) at (a) 1442 BJT, (b) 1500 BJT, (c) 1512 BJT, and (d) 1530 BJT on 1 September 2019. The triangles indicate the location of operation sites. The numbers correspond to the site numbers in Table 1. A, B, and E are the names of convection cells mentioned in the paper

    图  4  模拟区域设置

    Figure  4.  Settings of simulation domains

    图  5  2019年9月1日(a1–a3)实况与(b1–c3)模拟的雷达组合反射率(单位:dBZ)的对比:(a1)14:12;(a2)14:24;(a3)14:30;(b1)13:50;(b2)14:00;(b3)14:05;(c1)14:10;(c2)14:25;(c3)14:30。黑色直线对应图6中垂直剖面的位置,A、B、C、D为正文中各对流单体的名称

    Figure  5.  Comparison of (a1–a3) observed and (b1–c3) simulated radar composite reflectivity (units: dBZ) on 1 September 2019: (a1) 1412 BJT; (a2) 1424 BJT; (a3) 1430 BJT; (b1) 1350 BJT; (b2) 1400 BJT; (b3) 1405 BJT; (c1) 1410 BJT; (c2) 1425 BJT; (c3) 1430 BJT. The black lines correspond to the location of the vertical cross section in Fig. 6. A, B, C, and D are the names of convection cells mentioned in the paper

    图  6  2019年9月1日(a1–a3)实况与(b1–b3)模拟的雷达回波(单位:dBZ)垂直剖面:(a1)14:12;(a2)14:24;(a3)14:30;(b1)13:50;(b2)14:00;(b3)14:05。图b1–b3中的黑色等值线为温度(单位:°C)

    Figure  6.  Vertical cross sections of (a1–a3) observed and (b1–b3) simulated radar reflectivity (units: dBZ) on 1 September 2019: (a1) 1412 BJT; (a2) 1424 BJT; (a3) 1430 BJT; (b1) 1350 BJT; (b2) 1400 BJT; (b3) 1405 BJT. In Figs. b1–b3, black contours denote temperature (units: °C)

    图  7  2019年9月1日模拟(阴影)和实况(填色圆圈)的小时雨量(单位:mm)对比。模拟结果:(a1)12:00、(a2)13:00、(a3)14:00、(b1)11:30、(b2)12:30、(b3)13:30;实况:(a1、b1)12:00、(a2、b2)13:00、(a3、b3)14:00

    Figure  7.  Simulated (shadings) and observed (colored circles) 1-h rainfall (units: mm) on 1 September 2019. Simulated rainfall: (a1) 1200 BJT, (a2) 1300 BJT, (a3) 1400 BJT, (b1) 1130 BJT, (b2) 1230 BJT, (b3) 1330 BJT; observed rainfall: (a1, b1) 1200 BJT, (a2, b2) 1300 BJT, (a3, b3) 1400 BJT

    图  8  2019年9月1日催化模拟的4轮次作业中火箭作业轨迹(黑线)和炮弹播撒点(圆圈)的水平投影位置分别与催化时的雷达组合反射率(阴影,单位:dBZ)的叠加:(a)14:15;(b)14:35;(c)14:45;(d)14:50

    Figure  8.  Horizontal projection of both rocket seeding trajectories (black lines) and artillery seeding points (circles) in the simulated four rounds of seeding operation overlayed with the simulated radar composite reflectivity (shadings, units: dBZ) at (a) 1415 BJT, (b) 1435 BJT, (c) 1445 BJT, and (d) 1450 BJT on 1 September 2019

    图  9  2019年9月1日经过作业点4及其催化轨迹的(a1–a4)实况和(b1–b4)模拟的雷达回波(阴影,单位:dBZ)垂直剖面。图a1、b1中,黑色圆圈为高炮播撒点;图a2–a4、b2–b4中,黑色曲线为火箭作业轨迹;图b1–b4中,蓝色等值线为垂直速度(单位:m s−1);红色等值线为5分钟后的碘化银浓度(单位:103 L−1)分布。图a1–a4时间分别为14:42、15:00、15:12、15:30;图b1–b4时间为14:15、14:35、14:45、14:50

    Figure  9.  (a1–a4) Observed and (b1–b4) simulated vertical cross sections of radar reflectivity (shadings, units: dBZ) from operation site 4 to its rocket seeding trajectories (black solid lines in Figs. a2–a4, b2–b4) or artillery seeding points (black circles in Figs. a1, b1) on 1 September 2019. In Figs. b1–b4, blue contours denote vertical velocity (units: m s−1); red contours denote the distribution of silver iodide concentration (units: 103 L−1) after 5 minutes. Observations are at (a1) 1442 BJT, (a2) 1500 BJT, (a3) 1512 BJT, and (a4) 1530 BJT. Simulation were performed at (b1) 1415 BJT, (b2) 1435 BJT, (b3) 1445 BJT, and (b4) 1450 BJT

    图  10  2019年9月1日(a1、b1)14:45、(a2、b2)15:00、(a3、b3)15:15、(a4、b4)15:40的(a1–a4)雷达组合反射率及(b1–b4)雷达反射率垂直剖面。等值线为自然云的值,阴影为催化云减自然云的差值。a1–a4中红色虚线为剖面的位置

    Figure  10.  (a1–a4) Radar composite reflectivity (units: dBZ) and (b1–b4) vertical cross sections of radar reflectivity (units: dBZ) at (a1, b1) 1445 BJT, (a2, b2) 1500 BJT, (a3, b3) 1515 BJT, and (a4, b4) 1540 BJT on 1 September 2019. The contours denote the reflectivity of the unseeded cloud, and the color shadings represent the reflectivity differences between the seeded cloud minus the unseeded cloud. The red dashed lines in Figs. a1–a4 signify locations of vertical cross sections

    图  11  2019年9月1日14:00~16:00模拟的(a、b)自然降水(蓝色等值线,单位:mm)、降水量差值(阴影,催化云减自然云,单位:mm)、碘化银垂直方向最大浓度(红色等值线,单位:L−1)和(c)降水总量变化和降水强度变化(催化云减自然云)的时间分布

    Figure  11.  (a, b) Unseeded cloud rainfall (blue contours, units: mm), rainfall differences (shadings, units: mm), maximum vertical concentration (red contours, units: L−1) of AgI, and (c) temporal evolution of total rainfall amount difference and rainfall intensity difference simulated from 1400 BJT to 1600 BJT on 1 September 2019. All the above differences refer to the values of the seeded cloud minus the unseeded cloud

    图  12  2019年9月1日14:25(上)、14:40(中)、14:55(下)催化云各物理量的垂直剖面(图10a1–a4中红色虚线为剖面的位置):(a1、b1、c1)大于30 dBZ雷达回波(灰色阴影)、碘化银浓度(红色等值线,等值线值为10−6 L−1)及其核化新生的人工冰晶数浓度(彩色阴影,单位:L−1);(a2、b2、c2)自然冰晶(红色等值线)和人工冰晶(彩色阴影)的数浓度(单位:L−1);(a3、b3、c3)云水混合比(彩色阴影,单位:g kg−1)及其相对自然云的变化(催化云-自然云,红色等值线,虚线值为−0.001 g kg−1,实线值为0.001 g kg−1)。黑色等值线为垂直气流速度(单位:m s−1)。

    Figure  12.  Vertical cross sections (the red dashed lines in Figs. 10a1–a4 signify locations of vertical cross sections) of physical quantities for the seeded cloud at 1425 BJT (top), 1440 BJT (middle) and 1455 BJT (bottom) on 1 September 2019: (a1, b1, c1) radar reflectivity greater than 30 dBZ (gray shadings), the concentration (red contour with value 10−6 L−1) of AgI, and newly generated artificial ice crystal (color shadings, units: L−1); (a2, b2, c2) number concentration (units: L−1) of unseeded ice crystal (red contours) and artificial ice crystal (color shadings); (a3, b3, c3) cloud water mixing ratio (color shadings, units: g kg−1) and differences between seeded cloud minus unseeded cloud (red contours, dashed line with value −0.001 g kg−1 and solid lines with value 0.001 g kg−1). Black contours represent vertical flow velocity (units: m s−1)

    图  13  2019年9月1日图11b所示区域中催化云与自然云中冷区的(a)水汽和云水总量、(b)冰晶总数、(c)冰晶平均直径及其差值随时间变化。2019年9月1日图11b所示区域中催化云中(d)碘化银各核化机制的新生人工冰晶数以及人工冰晶(e)总质量和(f)总数量的转化率随时间变化。图d–f中实线为人工冰晶源项,虚线为人工冰晶汇项。图a–c中的差值均由催化云减去自然云所得,其中图b中的差值是指催化云中自然冰晶数减自然云中的冰晶数

    Figure  13.  Time series of (a) the total mass of water vapor and cloud water, (b) total number of ice crystals, and (c) average diameter of ice crystals and their differences in the cold regions of seeded cloud and unseeded cloud in the region shown in Fig. 11b on 1 September 2019. The time series of (d) the number of new artificial ice crystals produced by each nucleation mechanism of AgI and the conversion rates of (e) the total mass and (f) total number of artificial ice crystals in the seeded cloud in the region shown in Fig. 11b on 1 September 2019. In Figs. d–f, solid lines denote the artificial ice crystal source terms, and dashed lines indicate the artificial ice crystal sink terms. In Figs. a–c, differences refer to the values of the seeded cloud minus the unseeded cloud, and the unseeded ice crystals number difference in (b) is obtained by subtracting the number of unseeded ice crystals in the seeded cloud from that in the unseeded cloud

    图  14  2019年9月1日图11b区域中,自然云中(a1、a2)冰晶、(b1、b2)雪、(c1、c2)霰、(d1、d2)雨滴的质量(左列,单位:106 kg)和数量(右列)的总量(等值线)以及它们与催化云的差值(阴影,催化云减自然云,质量差值的单位:106 kg)随高度和时间的分布

    Figure  14.  The distribution of total amount (contours) in unseeded cloud and their differences (shadings, seeded cloud minus unseeded cloud) for hydrometeor mass (left column, units: 106 kg) and the hydrometeor particles number (right column) with height and time in the region shown in Fig. 11b on 1 September 2019: (a1, a2) Ice crystal; (b1, b2) snow; (c1, c2) graupel; (d1, d2) rain

    图  15  2019年9月1日图11b区域中冷区的(a1、a2)雪、(b1、b2)霰和(c1、c2)暖区雨滴主要源汇项的(a1、b1、c1)质量和(a2、b2、c2)数量转化率差(催化云减自然云)随时间分布。实线代表源项,虚线代表汇项

    Figure  15.  The time series of conversion rates differences (seeded cloud minus unseeded cloud) of (a1, b1, c1) total mass and (a2, b2, c2) total number for (a1, a2) snow and (b1, b2) graupel within the cold cloud range, and (c1, c2) rain within the warm cloud range in the region shown in Fig. 11b on 1 September 2019. Solid lines indicate the source terms, and dashed lines represent the sink terms

    图  16  2019年9月1日图11b区域中,自然云区域平均的(a)垂直气流速度、(b)霰粒和(c)雨滴的下落末速度(等值线,单位:10−2 m s−1)及它们与催化云的差值(阴影,单位:10−2 m s−1,催化云减自然云)随高度和时间的分布

    Figure  16.  The distribution of regional averages (contours) in unseeded cloud and their differences (shadings, seeded cloud minus unseeded cloud) for velocities (units: 10−2 m s−1) with height and time in the region shown in Fig. 11b on 1 September 2019: (a) Vertical airflow velocities; (b) graupel particles terminal velocities; (c) snow particles terminal velocities

    表  1  2019年9月1日地面火箭和高炮的作业信息

    Table  1.   The seeding operation information of both ground-based rockets and artillery on 1 September 2019

    作业轮次作业时段高炮炮弹数量火箭弹数量含AgI总量/g
    站点1站点2站点3站点4站点5站点6站点1站点2站点3站点4站点5站点6
    114:41~14:4218182632 94
    214:58~14:59526365675
    315:13~15:1522202363366665
    415:27~15:28366375
    下载: 导出CSV
  • [1] Chen B J, Xiao H. 2010. Silver iodide seeding impact on the microphysics and dynamics of convective clouds in the high plains [J]. Atmos. Res., 96(2–3): 186–207. doi:10.1016/j.atmosres.2009.04.001
    [2] 陈宝君, 李爱华, 吴林林, 等. 2016. 暖底对流云催化的微物理和动力效应的数值模拟 [J]. 大气科学, 40(2): 271−288. doi: 10.3878/j.issn.1006-9895.1503.14271

    Chen Baojun, Li Aihua, Wu Linlin, et al. 2016. Modeling the microphysical and dynamical effects of silver iodide seeding of warm-based convective clouds [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(2): 271−288. doi: 10.3878/j.issn.1006-9895.1503.14271
    [3] 陈德辉, 胡志晋, 徐大海, 等. 2004. CAMS大气数值预报模式系统研究[M]. 北京: 气象出版社, 190pp

    Chen Dehui, Hu Zhijin, Xu Dahai, et al. 2004. Study on CAMS Atmospheric Numerical Prediction Model System (in Chinese) [M]. Beijing: China Meteorological Press, 190pp.
    [4] 陈敏, Huang Xiangyu, Wang Wei. 2012. 数字滤波初始化(DFI)在高水平分辨率模式中的应用 [J]. 气象学报, 70(1): 109−118. doi: 10.11676/qxxb2012.010

    Chen Min, Huang Xiangyu, Wang Wei. 2012. Difficulties in the implementation of the digital filter initialization in a high resolution numerical weather forecast model [J]. Acta Meteorologica Sinica (in Chinese), 70(1): 109−118. doi: 10.11676/qxxb2012.010
    [5] Ćurić M, Janc D. 1990. Numerical study of the cloud seeding effects [J]. Meteor. Atmos. Phys., 42(2): 145−164. doi: 10.1007/BF01041762
    [6] Ćurić M, Janc D. 1993. Dependence of the simulated seeding effects of Cb cloud on the types of the AgI agents [J]. Meteor. Atmos. Phys., 52(1): 91−100. doi: 10.1007/BF01025755
    [7] Ćurić M, Janc D, Vučković V. 2006. Seeding agent dispersion within convective cloud as simulated by a 3-D numerical model [J]. Meteor. Atmos. Phys., 92(3): 205−216. doi: 10.1007/s00703-005-0159-2
    [8] Ćurić M, Janc D, Vučković V. 2007. Cloud seeding impact on precipitation as revealed by cloud-resolving mesoscale model [J]. Meteor. Atmos. Phys, 95(3): 179−193. doi: 10.1007/s00703-006-0202-y
    [9] 党娟, 苏正军, 房文, 等. 2016. 三七炮弹的碘化银成核率检测 [J]. 应用气象学报, 27(2): 140−147. doi: 10.11898/1001-7313.20160202

    Dang Juan, Su Zhengjun, Fang Wen, et al. 2016. The experiment of ice nucleus generating efficiency by model 37 silver iodide shell [J]. J. Appl. Meteor. Sci. (in Chinese), 27(2): 140−147. doi: 10.11898/1001-7313.20160202
    [10] 党娟, 苏正军, 房文, 等. 2018. 几种碘化银焰剂成冰性能检测 [J]. 气象科技, 46(3): 619−624. doi: 10.19517/j.1671-6345.20170290

    Dang Juan, Su Zhengjun, Fang Wen, et al. 2018. Examination and analysis of ice nucleating properties of several AgI pyrotechnic nucleants [J]. Meteor. Sci. Technol. (in Chinese), 46(3): 619−624. doi: 10.19517/j.1671-6345.20170290
    [11] Farley R D, Nguyen P, Orville H D. 1994. Numerical simulation of cloud seeding using a three-dimensional cloud model [J]. The Journal of Weather Modification, 26(1): 113−124.
    [12] Garstang M, Bruintjes R, Serafin R, et al. 2005. Weather modification: Finding common ground [J]. Bull. Amer. Meteor. Soc., 86(5): 647−656. doi: 10.1175/BAMS-86-5-647
    [13] Guo X L, Zheng G G, Jin D Z. 2006. A numerical comparison study of cloud seeding by silver iodide and liquid carbon dioxide [J]. Atmos. Res. , 79(3–4): 183–226. doi: 10.1016/j.atmosres.2005.04.005
    [14] Hashimoto A, Murakami M. 2016. Numerical simulations of glaciogenic cloud seeding with dry ice pellets and liquid carbon dioxide under simplified conditions [J]. SOLA, 12: 22−26. doi: 10.2151/sola.2016-005
    [15] 何观芳, 胡志晋. 1991. 人工影响积雨云机制的数值研究 [J]. 应用气象学报, 2(1): 32−39.

    He Guanfang, Hu Zhijin. 1991. Numerical study on mechanism of artificial modification of cumulonimbus clouds [J]. Quart. J. Appl. Meteor. (in Chinese), 2(1): 32−39.
    [16] 何晖, 金华, 李宏宇, 等. 2012. 2008年奥运会开幕式日人工消减雨作业中尺度数值模拟的初步结果 [J]. 气候与环境研究, 17(1): 46−58. doi: 10.3878/j.issn.1006-9585.2011.10043

    He Hui, Jin Hua, Li Hongyu, et al. 2012. Preliminary study of the mesoscale numerical simulation of the rain mitigation operation during the Opening Ceremony of the 2008 Beijing Olympic Games [J]. Climatic and Environmental Research (in Chinese), 17(1): 46−58. doi: 10.3878/j.issn.1006-9585.2011.10043
    [17] 洪延超. 1998. 三维冰雹云催化数值模式 [J]. 气象学报, 56(6): 641−653. doi: 10.11676/qxxb1998.060

    Hong Yanchao. 1998. A 3-D hail cloud numerical seeding model [J]. Acta Meteorologica Sinica (in Chinese), 56(6): 641−653. doi: 10.11676/qxxb1998.060
    [18] Hsie E Y, Farley R D, Orville H D. 1980. Numerical simulation of ice-phase convective cloud seeding [J]. J. Appl. Meteor., 19(8): 950−977. doi: 10.1175/1520-0450(1980)019<0950:NSOIPC>2.0.CO;2
    [19] 胡志晋, 严采蘩. 1986. 层状云微物理过程的数值模拟(一)——微物理模式 [J]. 气象科学院院刊, 1(1): 37−52.

    Hu Zhijin, Yan Caifan. 1986. Numerical simulation of microphysical processes in stratiform clouds (I)—Microphysical model [J]. Journal of Academy of Meteorological Science (in Chinese), 1(1): 37−52.
    [20] 胡志晋, 何观芳. 1987. 积雨云微物理过程的数值模拟(一)——微物理模式 [J]. 气象学报, 45(4): 467−484. doi: 10.11676/qxxb1987.060

    Hu Zhijin, He Guanfang. 1987. Numerical simulation of microprocesses in cumulonimbus clouds (I)—Microphysical model [J]. Acta Meteorologica Sinica (in Chinese), 45(4): 467−484. doi: 10.11676/qxxb1987.060
    [21] 黄燕, 徐华英. 1994. 播撒碘化银粒子进行人工防雹的数值试验 [J]. 大气科学, 18(5): 612−621. doi: 10.3878/j.issn.1006-9895.1994.05.12

    Huang Yan, Xu Huaying. 1994. Numerical experiments on hail suppression by AgI seeding [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 18(5): 612−621. doi: 10.3878/j.issn.1006-9895.1994.05.12
    [22] Kopp F J, Orville H D, Farley R D, et al. 1983. Numerical simulation of dry ice cloud seeding experiments [J]. J. Climate Appl. Meteor., 22(9): 1542−1556. doi: 10.1175/1520-0450(1983)022<1542:NSODIC>2.0.CO;2
    [23] 李红斌, 周德平, 濮文耀. 2005. 火箭增雨作业部位和催化剂量的确定 [J]. 气象, 31(10): 42−46. doi: 10.7519/j.issn.1000-0526.2005.10.011

    Li Hongbin, Zhou Deping, Pu Wenyao. 2005. The determination of catalyzing points and project quantity in rocket rain enhancement [J]. Meteor. Mon. (in Chinese), 31(10): 42−46. doi: 10.7519/j.issn.1000-0526.2005.10.011
    [24] 黎祖贤, 刘红武, 廖俊, 等. 2016. 基于外弹道计算的人影高炮作业安全评估方法 [J]. 气象科技, 44(1): 152−156. doi: 10.3969/j.issn.1671-6345.2016.01.024

    Li Zuxian, Liu Hongwu, Liao Jun, et al. 2016. A safety assessment method of weather modification operation based on external trajectory calculation [J]. Meteor. Sci. Technol. (in Chinese), 44(1): 152−156. doi: 10.3969/j.issn.1671-6345.2016.01.024
    [25] 刘诗军, 胡志晋, 游来光. 2005. 碘化银核化过程的数值模拟研究 [J]. 气象学报, 63(1): 30−40. doi: 10.3321/j.issn:0577-6619.2005.01.004

    Liu Shijun, Hu Zhijin, You Laiguang. 2005. The numerical simulation of AgI nucleation in cloud [J]. Acta Meteorologica Sinica (in Chinese), 63(1): 30−40. doi: 10.3321/j.issn:0577-6619.2005.01.004
    [26] 刘卫国, 陶玥, 党娟, 等. 2016. 2014年春季华北两次降水过程的人工增雨催化数值模拟研究 [J]. 大气科学, 40(4): 669−688. doi: 10.3878/j.issn.1006-9895.1508.15138

    Liu Weiguo, Tao Yue, Dang Juan, et al. 2016. Seeding modeling study of two precipitation processes over northern China in the spring of 2014 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(4): 669−688. doi: 10.3878/j.issn.1006-9895.1508.15138
    [27] 刘卫国, 陶玥, 周毓荃. 2021a. 层状云催化宏微观物理响应的数值模拟研究 [J]. 大气科学, 45(1): 37−57. doi: 10.3878/j.issn.1006-9895.2005.19209

    Liu Weiguo, Tao Yue, Zhou Yuquan. 2021a. Numerical simulation of the macro and micro physical responses of stratiform cloud seeding [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(1): 37−57. doi: 10.3878/j.issn.1006-9895.2005.19209
    [28] 刘卫国, 陶玥, 周毓荃, 等. 2021. 基于飞机真实轨迹的一次层状云催化的增雨效果及其作用机制的模拟研究 [J]. 气象学报, 79(2): 340−358. doi: 10.11676/qxxb2021.011

    Liu Weiguo, Tao Yue, Zhou Yuquan, et al. 2021. Simulation of stratiform cloud seeding, its rainfall enhancement effect and mechanism study based on a real trajectory of aircraft [J]. Acta Meteorologica Sinica (in Chinese), 79(2): 340−358. doi: 10.11676/qxxb2021.011
    [29] 楼小凤, 孙晶, 史月琴, 等. 2014. 减弱对流云降水的AgI催化原理的数值模拟研究 [J]. 气象学报, 72(4): 782−793. doi: 10.11676/qxxb2014.044

    Lou Xiaofeng, Sun Jing, Shi Yueqin, et al. 2014. Numerical study of the AgI seeding principle for decreasing the convective cloud rainfall [J]. Acta Meteorologica Sinica (in Chinese), 72(4): 782−793. doi: 10.11676/qxxb2014.044
    [30] Meyers M P, DeMott P J, Cotton W R. 1995. A comparison of seeded and nonseeded orographic cloud simulations with an explicit cloud model [J]. J. Appl. Meteor., 34(4): 834−846. doi: 10.1175/1520-0450(1995)034<0834:ACOSAN>2.0.CO;2
    [31] Orville H D. 1996. A review of cloud modeling in weather modification [J]. Bull. Amer. Meteor. Soc., 77(7): 1535−1556. doi: 10.1175/1520-0477(1996)077<1535:AROCMI>2.0.CO;2
    [32] 秦长学. 2005. 火箭增雨作业相关技术研究 [J]. 气象科技, 33(S1): 70−73. doi: 10.19517/j.1671-6345.2005.s1.016

    Qin Changxue. 2005. Study of rocket cloud-seeding techniques [J]. Meteor. Sci. Technol. (in Chinese), 33(S1): 70−73. doi: 10.19517/j.1671-6345.2005.s1.016
    [33] Reisin T, Tzivion S, Levin Z. 1996. Seeding convective clouds with ice nuclei or hygroscopic particles: A numerical study using a model with detailed microphysics [J]. J. Appl. Meteor., 35(9): 1416−1434. doi: 10.1175/1520-0450(1996)035<1416:SCCWIN>2.0.CO;2
    [34] Simpson J, Wiggert V. 1969. Models of precipitating cumulus towers [J]. Mon. Wea. Rev., 97(7): 471−489. doi: 10.1175/1520-0493(1969)097<0471:MOPCT>2.3.CO;2
    [35] Simpson J, Simpson R H, Andrews D A, et al. 1965. Experimental cumulus dynamics [J]. Rev. Geophys., 3(3): 387−431. doi: 10.1029/RG003i003p00387
    [36] 孙百安, 姜水平. 2010. 风对BL-1A型增雨防雹火箭弹道的影响及修正 [J]. 气象科技, 38(5): 625−628. doi: 10.3969/j.issn.1671-6345.2010.05.017

    Sun Baian, Jiang Shuiping. 2010. Effect of winds on trajectory of BL-1A hail-suppressing/rain-enhancing rockets and its correction [J]. Meteor. Sci. Technol. (in Chinese), 38(5): 625−628. doi: 10.3969/j.issn.1671-6345.2010.05.017
    [37] 陶玥, 齐彦斌, 洪延超. 2009. 霰粒子下落速度对云系及降水发展影响的数值研究 [J]. 气象学报, 67(3): 370−381. doi: 10.3321/j.issn:0577-6619.2009.03.003

    Tao Yue, Qi Yanbin, Hong Yanchao. 2009. Numerical simulations of the influence of the graupel fall terminal velocity on cloud system and precipitation development [J]. Acta Meteorologica Sinica (in Chinese), 67(3): 370−381. doi: 10.3321/j.issn:0577-6619.2009.03.003
    [38] WMO. 2018. Peer review report on global precipitation enhancement activities [R]. WWRP 2018-1.
    [39] 许焕斌. 2014. 人工影响天气动力学研究[M]. 北京: 气象出版社, 145pp

    Xu Huanbin. 2014. Studies of Dynamics in Weather Modification (in Chinese) [M]. Beijing: China Meteorological Press, 145pp.
    [40] Xue L L, Hashimoto A, Murakami M, et al. 2013. Implementation of a silver iodide cloud-seeding parameterization in WRF. Part I: Model description and idealized 2D sensitivity tests [J]. J. Appl. Meteor. Climatol., 52(6): 1433−1457. doi: 10.1175/JAMC-D-12-0148.1
    [41] Xue L L, Chu X, Rasmussen R, et al. 2016. A case study of radar observations and WRF LES simulations of the impact of ground-based glaciogenic seeding on orographic clouds and precipitation. Part II: AgI dispersion and seeding signals simulated by WRF [J]. J. Appl. Meteor. Climatol., 55(2): 445−464. doi: 10.1175/JAMC-D-15-0115.1
    [42] 杨绍忠. 2006. 含碘化银人工冰核检测问题 [J]. 气象, 32(11): 25−31. doi: 10.3969/j.issn.1000-0526.2006.11.004

    Yang Shaozhong. 2006. Detection about AgI-type seeding agents of China [J]. Meteor. Mon. (in Chinese), 32(11): 25−31. doi: 10.3969/j.issn.1000-0526.2006.11.004
    [43] 余兴, 王晓玲, 戴进. 2002. 过冷层状云中飞机播云有效区域的模拟研究 [J]. 气象学报, 60(2): 205−214. doi: 10.3321/j.issn:0577-6619.2002.02.010

    Yu Xing, Wang Xiaoling, Dai Jin. 2002. Research on simulation of effective range for cloud seeding by aircraft within super-cooled stratus [J]. Acta Meteorologica Sinica (in Chinese), 60(2): 205−214. doi: 10.3321/j.issn:0577-6619.2002.02.010
    [44] 查思佳, 张慧娇, 李逍潇, 等. 2020. 2014年南京青奥会开幕式日降水过程数值模拟研究 [J]. 大气科学, 44(6): 1258−1274. doi: 10.3878/j.issn.1006-9895.2002.19200

    Zha Sijia, Zhang Huijiao, Li Xiaosa, et al. 2020. Numerical simulation of precipitation processes during the Opening Ceremony of the Nanjing 2014 Youth Olympic Games [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(6): 1258−1274. doi: 10.3878/j.issn.1006-9895.2002.19200
    [45] 张慧娇. 2018. 南京青奥会开幕式人工催化消减雨作业的效果和机理研究 [D]. 南京大学硕士学位论文, 99pp.

    Zhang Huijiao. 2018. Study on the effect and mechanism of mitigating or suppressing precipitation by cloud seeding on Opening Ceremony of Nanjing Youth Olympic Games [D]. M. S. thesis (in Chinese), Nanjing University, 99pp.
    [46] 张雨芳. 2018. 多单体对流云团的自然发展和人工催化的数值模拟 [D]. 国防科技大学硕士学位论文, 84pp.

    Zhang Yufang. 2018. Research on the simulation and cloud seeding experiment of one multi-cell convective cloud process [D]. M. S. thesis (in Chinese), National University of Defense Technology, 84pp. doi:10.27052/d.cnki.gzjgu.2018.000229
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  256
  • HTML全文浏览量:  53
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-07
  • 录用日期:  2022-02-18
  • 网络出版日期:  2022-02-11
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回