高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气候态调整对华北冬、夏季气候监测的影响研究

李晓帆 于长文 龚志强 封国林 车少静 李天宇

李晓帆, 于长文, 龚志强, 等. 2023. 气候态调整对华北冬、夏季气候监测的影响研究[J]. 大气科学, 47(3): 599−615 doi: 10.3878/j.issn.1006-9895.2202.21200
引用本文: 李晓帆, 于长文, 龚志强, 等. 2023. 气候态调整对华北冬、夏季气候监测的影响研究[J]. 大气科学, 47(3): 599−615 doi: 10.3878/j.issn.1006-9895.2202.21200
LI Xiaofan, YU Changwen, GONG Zhiqiang, et al. 2023. Differences between Various North China Climatic Normals in Winter and Summer: A Study of Its Impact on Climate Monitoring [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 47(3): 599−615 doi: 10.3878/j.issn.1006-9895.2202.21200
Citation: LI Xiaofan, YU Changwen, GONG Zhiqiang, et al. 2023. Differences between Various North China Climatic Normals in Winter and Summer: A Study of Its Impact on Climate Monitoring [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 47(3): 599−615 doi: 10.3878/j.issn.1006-9895.2202.21200

气候态调整对华北冬、夏季气候监测的影响研究

doi: 10.3878/j.issn.1006-9895.2202.21200
基金项目: 国家重点研发计划项目2018YFA0606301,国家自然科学基金项目42075057、42275050,河北省气象局延伸期重要天气过程智能预测技术创新团队
详细信息
    作者简介:

    李晓帆,女,1992年出生,硕士,工程师,主要从事短期气候预测研究。E-mail: lxf_cma@163.com

    通讯作者:

    龚志强,E-mail: gongzq@cma.gov.cn

  • 中图分类号: P466

Differences between Various North China Climatic Normals in Winter and Summer: A Study of Its Impact on Climate Monitoring

Funds: National Key Research and Development Program of China (Grant 2018YFA0606301), National Natural Science Foundation of China (Grants 42075057, 42275050), Hebei Meteorological Bureau Innovative Team of the Intelligent Forecast of the Extended Range Important Weather Process
  • 摘要: 本研究对比分析了不同气候态下,华北冬、夏季降水及气温的差异,分析了气候平均值的改变对历史极端事件监测的可能影响。研究结果发现,1991~2020年(简称气候Ⅱ态)的冬季和夏季的平均降水量均略多于1981~2010年(简称气候Ⅰ态),但接近或略少于1961~2020年的平均降水量,平均降水量逐年变化幅度冬季Ⅱ态小于Ⅰ态,夏季反之。气候Ⅱ态冬季降水空间分布不均,夏季较Ⅰ态呈“中部减少,东西增加”的分布型。冬季和夏季极端降水阈值Ⅱ态(0.86 mm和22.0 mm)较Ⅰ态(0.83 mm和21.6 mm)均略有提高,造成近60年华北大部基于Ⅱ态阈值的冬、夏季极端降水日数较Ⅰ态略减少。此外,气候Ⅱ态的华北冬、夏季平均气温均明显高于Ⅰ态,也高于1961~2020年平均值。Ⅱ态气温较Ⅰ态基本呈全区增加特征,但空间分布不均匀。冬季极端低温和夏季极端高温阈值Ⅱ态(−9.8°C和27.9°C)较Ⅰ态(−10.2°C和27.5°C)均有所有所提高,造成华北大部分地区基于Ⅱ态阈值的近60年冬季极端低温日数较Ⅰ态有所增加,夏季极端高温日数较Ⅰ态存在不同程度的减少。因此,新气候态下华北气温和降水均值,华北大部极端降水阈值和极端气温阈值均有所提高,造成气候监测中更容易出现气温偏低,降水偏少,历史极端事件监测中极端事件略减少的情况,在未来10年的气候监测预测业务中要充分考虑新气候态可能造成的影响。
  • 图  1  选取的华北逐日气象要素265个观测台站分布

    Figure  1.  Distributions of the selected 265 daily meteorological element observation stations in North China

    图  2  1961~2020年华北(a)冬季和(b)夏季平均降水量曲线(单位:mm)。灰色实线为1961~2020年平均降水量,蓝色实线为1981~2010年(气候Ⅰ态)平均降水量,红色实线为1991~2020年(气候Ⅱ态)平均降水量;aveⅠ为1981~2010年平均降水量,aveⅡ为1991~2020年平均降水量,ave 60 为1981~2020年平均降水量;S1为1981~2010年标准差,S2为1991~2020年标准差

    Figure  2.  The average (a) winter and (b) summer precipitation in North China from 1961 to 2020 (units: mm). Gray lines: the average precipitation between 1961 and 2020, blue lines: between 1981 and 2010 (climate state Ⅰ), and red lines: between 1991 and 2020 (climate state Ⅱ). Conversely, ave Ⅰ indicates the mean precipitation between 1981 and 2010, ave Ⅱ: between 1991 and 2020, and ave 60: between 1981 and 2020. S1 indicates the standard deviation for 1981–2010, S2: 1991–2020

    图  3  华北冬季降水量气候态分布(单位:mm):(a)1991~2020年平均;(b)1991~2020年与1981~2010年差值(打点区通过90%显著性检验);(c)冬季降水概率分布曲线

    Figure  3.  Climatic distribution of the winter precipitation in North China (units: mm): (a) Averages in 1991–2020; (b) differences between 1991–2020 and 1981–2010 (dotted areas indicate the 90% significance level); (c) probability distribution curve of winter precipitation

    图  4  图3,但为夏季

    Figure  4.  As in Fig. 3, but for the distribution of summer

    图  5  1961~2020年华北降水异常概率分布;(a) 1961~2020年冬季相对于Ⅰ态出现负降水异常的概率;(b)同图(a),但为Ⅱ态;(c)图(b)与(a)的差值;(d)1961~2020年夏季相对于Ⅰ态出现正降水异常的概率;(e)同图(d),但为Ⅱ态;(f)图(e)与(d)的差值

    Figure  5.  The distribution of precipitation anomaly probabilities in North China from 1961 to 2020: (a) Probability of negative winter precipitation anomalies from 1961 to 2020 relative to state Ⅰ; (b) as in Fig. 5a, except relative to state Ⅱ; (c) difference between Fig. 5b and Fig. 5a; (d) probability of positive summer precipitation anomalies from 1961 to 2020 relative to state Ⅰ; (e) as in Fig. 5d, except relative to state Ⅱ; (e) difference between Fig. 5e and Fig. 5d

    图  6  华北冬季极端降水阈值气候态及1961~2020年平均极端降水日数分布:(a)气候Ⅰ态极端降水阈值(单位:mm);(b)气候Ⅱ态极端降水阈值(单位:mm);(c)Ⅱ态与Ⅰ态极端降水阈值的差(单位:mm);(d)Ⅰ态下1961~2020年平均极端降水日数(单位:d);(e)Ⅱ态下1961~2020年平均极端降水日数(单位:d);(f)Ⅱ态与Ⅰ态下1961~2020年极端降水日数的差(单位:d)

    Figure  6.  The distribution of the extreme winter precipitation threshold in North China and the average number of extreme precipitation days from 1961 to 2020: (a) Extreme precipitation threshold for the climate in state Ⅰ (units: mm); (b) as in Fig. 6a, but for the climate in state Ⅱ; (c) extreme precipitation threshold difference between states Ⅱ and Ⅰ (units: mm); (d) the average number of extreme precipitation days from 1961 to 2020 relative to state Ⅰ (units: d); (e) as in Fig. 6d, but relative to state Ⅱ; (f) difference in the number of extreme precipitation days from 1961 to 2020 between states Ⅱ and Ⅰ (units: d)

    图  7  图6,但为夏季

    Figure  7.  As in Fig. 6, but for the distribution of summer

    图  8  1961~2020年华北(a)冬季和(b)夏季平均气温曲线(单位:°C)。灰色实线为1961~2020年平均气温,蓝色实线为1981~2010年平均气温,红色实线为1991~2020年平均气温;aveⅠ为1981~2010年平均气温,aveⅡ为1991~2020年平均气温,ave 60 为1981~2020年平均气温;S1为1981~2010年标准差,S2为1991~2020年标准差

    Figure  8.  Average (a) winter and (b) summer temperatures in North China from 1961 to 2020 (units: mm). Gray lines: the average temperatures for 1961–2020, blue lines: 1981–2010, red lines: 1991–2020. Conversely, ave Ⅰ indicates the mean temperature for 1981–2010, ave Ⅱ: 1991–2020, and ave 60: 1981–2020. S1 indicates the standard deviation for 1981–2010, S2: 1991–2020

    图  9  华北冬季平均气温气候态分布(单位:°C);(a)1991~2020年平均;(b)1991~2020年与1981~2010年差值(打点区通过95%显著性检验);(c) 冬季气温概率分布曲线

    Figure  9.  Climatic distribution of the winter temperatures in North China (units: ℃): (a) Averages from 1991–2020; (b) the difference between 1991–2020 and 1981–2010 (dotted areas indicate a 95% significance level); (c) probability distribution curve for the winter temperatures

    图  10  图9,但为夏季

    Figure  10.  As in Fig. 9, but for the distribution of summer

    图  11  1961~2020年华北平均气温距平负异常概率分布:(a)1961~2020年冬季相对于Ⅰ态出现负气温异常的概率;(b)同图(a),但为Ⅱ态;(c)图(b)与(a)的差值;(d)1961~2020年夏季相对于Ⅰ态出现负气温异常的概率;(e)同图(d),但为Ⅱ态;(f)图(e)与(d)的差值

    Figure  11.  Negative temperature anomaly probability distributions in North China from 1961 to 2020: (a) Probability of negative winter temperature anomalies from 1961 to 2020 relative to state Ⅰ; (b) as in Fig. 11a, except relative to state Ⅱ; (c) difference between Fig. 11b and Fig. 11a; (d) probability of negative summer temperature anomalies from 1961 to 2020 relative to state Ⅰ; (e) as in Fig. 11d, except relative to state Ⅱ; (f) difference between Fig. 11e and Fig. 11d

    图  12  华北冬季极端低温阈值气候态及1961~2020年平均极端低温日数分布:(a)气候Ⅰ态极端低温阈值(单位:°C);(b)气候Ⅱ态极端低温阈值(单位:°C);(c)Ⅱ态与Ⅰ态极端低温阈值的差(单位:°C);(d)Ⅰ态下近1961~2020年平均极端低温日数(单位:d);(e)Ⅱ态下近1961~2020年平均极端低温日数(单位:d);(f)Ⅱ态与Ⅰ态下近1961~2020年极端低温日数的差(单位:d)

    Figure  12.  The distribution of the winter extremely low temperature threshold in North China and the average number of extremely low-temperature days from 1961 to 2020: (a) Extremely low-temperature threshold of the climate in state Ⅰ (units: ℃); (b) as in Fig. 12a, but for the climate state Ⅱ; (c) extreme low-temperature threshold differences between states Ⅱ and Ⅰ (units: ℃); (d) the average number of extreme low-temperature days from 1961 to 2020 relative to state Ⅰ (units: d); (e) as in Fig. 12d, but relative to state Ⅱ (units: d); (f) difference in the number of extreme low-temperature days from 1961 to 2020 between states Ⅱ and Ⅰ (units: d)

    图  13  华北夏季极端高温阈值气候态及1961~2020年平均极端高温日数分布:(a)气候Ⅰ态极端高温阈值(单位:℃);(b).气候Ⅱ态极端高温阈值(单位:℃);(c)Ⅱ态与Ⅰ态极端高温阈值的差(单位:℃);(d)气候Ⅰ态下1961~2020年平均极端高温日数(单位:d);(e)气候Ⅱ态下1961~2020年平均极端高温日数(单位:d);(f)Ⅱ态与Ⅰ态下1961~2020年极端高温日数的差(单位:d)

    Figure  13.  The distribution of the summer extreme high-temperature threshold in North China and the average number of extremely high–temperature days from 1961 to 2020: (a) Extreme high-temperature threshold of the climate in state Ⅰ (units: ℃); (b) as in Fig. 13a, but for the climate in state Ⅱ; (c) difference in the extreme low-temperature thresholds between states Ⅱ and Ⅰ (units: ℃); (d) the average number of extreme high-temperature days from 1961 to 2020 relative to state Ⅰ (units: d); (e) as in Fig. 13d, but relative to state Ⅱ (units: d); (f) difference in the number of extreme high-temperature days from 1961 to 2020 between state Ⅱ and state Ⅰ (units: d)

  • [1] Angel J R, Easterling W E, Kirsch S W. 1993. Towards defining appropriate averaging periods for climate normal [J]. Climatol. Bull., 27(2): 29−44.
    [2] Cao L J, Yan Z W, Zhao P, et al. 2017. Climatic warming in China during 1901–2015 based on an extended dataset of instrumental temperature records [J]. Environ. Res. Lett., 12(6): 064005. doi: 10.1088/1748-9326/aa68e8
    [3] 陈世荣. 1990. 气候平均值的计算及意义 [J]. 海洋预报, 7(4): 49−54. doi: 10.11737/j.issn.1003-0239.1990.0.008

    Chen S R. 1990. The computation of climatological normal and its significance [J]. Marine Forecasts (in Chinese), 7(4): 49−54. doi: 10.11737/j.issn.1003-0239.1990.0.008
    [4] Court A. 1968. Climatic Normal as Predictors: Parts I–V [M]. Bedford: Air Force Cambridge Research Lab.
    [5] 丁一汇, 王会军. 2016. 近百年中国气候变化科学问题的新认识 [J]. 科学通报, 61(10): 1029−1041. doi: 10.1360/N972015-00638

    Ding Y H, Wang H J. 2016. Newly acquired knowledge on the scientific issues related to climate change over the recent 100 years in China [J]. Chinese Sci. Bull. (in Chinese), 61(10): 1029−1041. doi: 10.1360/N972015-00638
    [6] 丁裕国, 江志红. 2009. 极端气候研究方法导论 [M]. 北京: 气象出版社. Ding Y G, Jiang Z H. 2009. Introduction to Extreme Climate Research Methods (in Chinese) [M]. Beijing: China Meteorological Press.
    [7] 房一禾, 赵春雨, 王颖, 等. 2016. 新、旧气候态的差异及对东北地区气候业务的影响 [J]. 气候变化研究进展, 12(3): 193−201. doi: 10.12006/j.issn.1673-1719.2015.160

    Fang Y H, Zhao C Y, Wang Y, et al. 2016. The difference between new and old climatic stage and its influence on climatic operation in the Northeast China [J]. Climate Change Research (in Chinese), 12(3): 193−201. doi: 10.12006/j.issn.1673-1719.2015.160
    [8] 高荣, 邹旭凯, 王遵娅, 等. 2012. 中国极端天气气候事件图集 [M]. 北京: 气象出版社. Gao R, Zou X K, Wang Z Y, et al. 2012. The Atlas of Extreme Weather and Climate Events in China (in Chinese) [M]. Beijing: China Meteorological Press.
    [9] Gu X H, Zhang Q, Singh V P, et al. 2019. Potential contributions of climate change and urbanization to precipitation trends across China at national, regional and local scales [J]. Int. J. Climatol., 39(6): 2998−3012. doi: 10.1002/joc.5997
    [10] 郝立生, 马宁, 何丽烨, 等. 2021. 北半球夏季大气低频振荡演变特征及其与华北夏季降水的关系 [J]. 大气科学, 45(6): 1259−1272. doi: 10.3878/j.issn.1006-9895.2101.20239

    Hao L S, Ma N, He L Y, et al. 2021. Evolution characteristics of BSISO and its relationship with summer precipitation in North China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(6): 1259−1272. doi: 10.3878/j.issn.1006-9895.2101.20239
    [11] IPCC. 2013. Summary for policymakers [M]//Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker T F, Qin D, Plattner G K, et al, Eds. Cambridge: Cambridge University Press.
    [12] Karl T R. 1988. Multi-year fluctuations of temperature and precipitation: The gray area of climate change [J]. Climatic Change, 12(2): 179−197. doi: 10.1007/BF00138938
    [13] Karl T R, Riebsame W E. 1984. The identification of 10- to 20-year temperature and precipitation fluctuations in the contiguous United States [J]. J. Appl. Meteor., 23(6): 950−966. doi: 10.1175/1520-0450(1984)023<0950:TIOTYT>2.0.CO;2
    [14] 雷向杰, 黄祖英, 田武文, 等. 2005. 两个30年气候平均值的差异及其对气候业务的影响 [J]. 气象科技, 33(2): 124−127. doi: 10.19517/j.1671-6345.2005.02.006

    Lei X J, Huang Z Y, Tian W W, et al. 2005. Difference of two 30-year averages and its influence on operational climatic analysis [J]. Meteorological Science and Technology (in Chinese), 33(2): 124−127. doi: 10.19517/j.1671-6345.2005.02.006
    [15] Li Y Z, Wang L, Zhou H X, et al. 2019. Urbanization effects on changes in the observed air temperatures during 1977–2014 in China [J]. Int. J. Climatol., 39(1): 251−265. doi: 10.1002/joc.5802
    [16] 林婧婧, 张强. 2015. 我国南北方气温和降水气候态变化特征及其对气候检测结果的影响 [J]. 气候变化研究进展, 11(4): 281−287. doi: 10.3969/j.issn.1673-1719.2015.04.007

    Lin J J, Zhang Q. 2015. Characteristics of temperature and precipitation climate state change in the South and the North of China and its influence of climate monitoring [J]. Progressus Inquisitiones de Mutatione Climatis (in Chinese), 11(4): 281−287. doi: 10.3969/j.issn.1673-1719.2015.04.007
    [17] Mitchell J M Jr. 1976. An overview of climatic variability and its causal mechanisms [J]. Quat. Res., 6(4): 481−493. doi: 10.1016/0033-5894(76)90021-1
    [18] 秦大河, 陈振林, 罗勇, 等. 2007. 气候变化科学的最新认知 [J]. 气候变化研究进展, 3(2): 63−73. doi: 10.3969/j.issn.1673-1719.2007.02.001

    Qin D H, Chen Z L, Luo Y, et al. 2007. Updated understanding of climate change sciences [J]. Advances in Climate Change Research (in Chinese), 3(2): 63−73. doi: 10.3969/j.issn.1673-1719.2007.02.001
    [19] Sabin T E, Shulman M D. 1985. A statistical evaluation of the efficiency of the climatic normal as a predictor [J]. J. Climatol., 5(1): 63−77. doi: 10.1002/joc.3370050106
    [20] 史道济. 2006. 实用极值统计方法 [M]. 天津: 天津科学技术出版社.

    Shi D J. 2006. Practical Extreme Value Statistical Method (in Chinese) [M]. Tianjin: Tianjin Science and Technology Press.
    [21] 宋连春, 巢清尘, 朱晓金, 等. 2019. 2019年中国气候变化蓝皮书 [M]. 北京: 中国气象局气候变化中心.

    Song L C, Chao Q C, Zhu X J, et al. 2019. Blue Paper on Climate Change in China in 2019 (in Chinese) [M]. Beijing: Climate Change Center of China Meteorological Administration.
    [22] 童宣, 严中伟, 李珍, 等. 2018. 近百年中国两次年代际气候变暖中的冷、暖平流背景 [J]. 气象学报, 76(4): 554−565. doi: 10.11676/qxxb2018.014

    Tong X, Yan Z W, Li Z, et al. 2018. The background of cold/warm advection for two interdecadal warming processes during the last century in China [J]. Acta Meteor. Sinica (in Chinese), 76(4): 554−565. doi: 10.11676/qxxb2018.014
    [23] 王秀文, 李月安. 2003. 新气候平均值在中期预报业务中的应用 [J]. 气象, 29(1): 43−45. doi: 10.3969/j.issn.1000-0526.2003.01.011

    Wang X W, Li Y A. 2003. Application of new normals to med-range forecast operation [J]. Meteorological Monthly (in Chinese), 29(1): 43−45. doi: 10.3969/j.issn.1000-0526.2003.01.011
    [24] 王永光. 2002. 多年平均值的改变对中国气候业务的影响 [J]. 气象, 28(8): 41−43. doi: 10.3969/j.issn.1000-0526.2002.08.009

    Wang Y G. 2002. The influences of normals change upon climate operation of China [J]. Meteorological Monthly (in Chinese), 28(8): 41−43. doi: 10.3969/j.issn.1000-0526.2002.08.009
    [25] 魏凤英. 2007. 现代气候统计诊断与预测技术[M]. 2版. 北京: 气象出版社, 296pp.

    Wei F Y. 2007. Modern Statistical Diagnosis and Prediction Technology on Climate[M]. 2nd ed. Beijing: China Meteorological Press, 296pp.
    [26] 严中伟, 丁一汇, 翟盘茂, 等. 2020. 近百年中国气候变暖趋势之再评估 [J]. 气象学报, 78(3): 370−378. doi: 10.11676/qxxb2020.028

    Yan Z W, Ding Y H, Zhai P M, et al. 2020. Re-assessing climatic warming in China since the last century [J]. Acta Meteor. Sinica (in Chinese), 78(3): 370−378. doi: 10.11676/qxxb2020.028
    [27] 姚慧茹, 李栋梁, 王慧. 2017. 1981~2012年西北东部夏季降水不同强度雨日变化及其环流特征的对比分析 [J]. 气象学报, 75(3): 384−399. doi: 10.11676/qxxb2017.032

    Yao H R, Li D L, Wang H. 2017. A comparative analysis of the atmospheric circulation in summertime rainy days with different precipitation intensity in eastern Northwest China during 1981–2012 [J]. Acta Meteor. Sinica (in Chinese), 75(3): 384−399. doi: 10.11676/qxxb2017.032
    [28] 翟盘茂, 廖圳, 陈阳, 等. 2017. 气候变暖背景下降水持续性与相态变化的研究综述 [J]. 气象学报, 75(4): 527−538. doi: 10.11676/qxxb2017.047

    Zhai P M, Liao Z, Chen Y, et al. 2017. A review on changes in precipitation persistence and phase under the background of global warming [J]. Acta Meteor. Sinica (in Chinese), 75(4): 527−538. doi: 10.11676/qxxb2017.047
    [29] 赵宗慈, 罗勇, 王绍武, 等. 2015. 全球变暖中的科学问题 [J]. 气象与环境学报, 31(1): 1−5. doi: 10.3969/j.issn.1673-503X.2015.01.001

    Zhao Z C, Luo Y, Wang S W, et al. 2015. Science issues on global warming [J]. Journal of Meteorology and Environment (in Chinese), 31(1): 1−5. doi: 10.3969/j.issn.1673-503X.2015.01.001
  • 加载中
图(13)
计量
  • 文章访问数:  448
  • HTML全文浏览量:  82
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-30
  • 录用日期:  2022-03-25
  • 网络出版日期:  2023-01-12
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回