高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于波作用方程的南疆西部干旱区暴雨的组织化机理研究

李娜 冉令坤 焦宝峰 常友治 谢越

李娜, 冉令坤, 焦宝峰, 等. 2022. 基于波作用方程的南疆西部干旱区暴雨的组织化机理研究[J]. 大气科学, 46(6): 1557−1576 doi: 10.3878/j.issn.1006-9895.2202.21245
引用本文: 李娜, 冉令坤, 焦宝峰, 等. 2022. 基于波作用方程的南疆西部干旱区暴雨的组织化机理研究[J]. 大气科学, 46(6): 1557−1576 doi: 10.3878/j.issn.1006-9895.2202.21245
LI Na, RAN Lingkun, JIAO Baofeng, et al. 2022. Analysis of Organization Mechanism of a Rainstorm Based on the Potential Vorticity Wave-Relation Equation in the Western Arid of Southern Xinjiang [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(6): 1557−1576 doi: 10.3878/j.issn.1006-9895.2202.21245
Citation: LI Na, RAN Lingkun, JIAO Baofeng, et al. 2022. Analysis of Organization Mechanism of a Rainstorm Based on the Potential Vorticity Wave-Relation Equation in the Western Arid of Southern Xinjiang [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(6): 1557−1576 doi: 10.3878/j.issn.1006-9895.2202.21245

基于波作用方程的南疆西部干旱区暴雨的组织化机理研究

doi: 10.3878/j.issn.1006-9895.2202.21245
基金项目: 国家重点研发计划项目2018YFC1507104,中国科学院战略性先导科技专项XDA17010105,中国科学院大气物理研究所基本科研费支持“十四五规划”项目7-224151,吉林省科技发展计划项目20180201035SF,中国科学院区域重点项目KFJ-STS-QYZD-2021-01-001,国家自然科学基金项目41965010
详细信息
    作者简介:

    李娜,女,1987年出生,博士,主要从事中尺度气象学研究。E-mail: lina@mail.iap.ac.cn

    通讯作者:

    冉令坤,E-mail: rlk@mail.iap.ac.cn

  • 中图分类号: P445

Analysis of Organization Mechanism of a Rainstorm Based on the Potential Vorticity Wave-Relation Equation in the Western Arid of Southern Xinjiang

Funds: National Key Research and Development Program (Grant 2018YFC1507104), Strategic Pilot Science and Technology Special Program of the Chinese Academy of Sciences (Grant XDA17010105), Basic Scientific Program of the Institute of Atmospheric Physics, Chinese Academy of Sciences Supporting the 14th Five-Year Plan (Grant 7-224151), Key Scientific and Technology Research and Development Program of Jilin Province (Grant 20180201035SF), Regional Key Project of Chinese Academy of Sciences (Grant KFJ-STS-QYZD-2021-01-001), National Natural Science Foundation of China (Grant 41965010)
  • 摘要: 本文采用位涡波作用密度和波作用方程,对一次南疆西部干旱区暴雨的组织化过程和机制进行了诊断研究,对影响暴雨对流系统组织化的关键物理过程进行了分析和讨论。位涡波作用密度耦合了多种影响对流云体演变的大气动热力扰动,能够良好描述对流系统的组织化过程。以此为基础,描述位涡波作用密度变化的波作用方程能够用来研究驱动对流系统组织化发展的物理因素。研究发现,波作用方程诊断得到的多个物理过程与扰动斜压性、扰动风切变和扰动涡度的发展演变有关,表明它们对对流组织化有重要作用,多条东西向的对流线发展为东北—西南向的带状对流系统过程中,包含强对流的维持和南北尺度的增大。对流线在东北向弱对流的发展增强与基本态气流对强对流区的热力输送引起扰动斜压性增强有关。影响对流线中部强对流的维持和南北向发展的关键过程包括:上升、下沉气流引起的热力输送导致对流线内扰动斜压性增强,扰动西风与扰动东风形成气旋性环流引起经向切变环流增强,及扰动经向风将扰动纬向风切变向对流中心区输送引起纬向切变增强、垂直环流增强。该研究表明,对流系统的组织化是大气多种动热力扰动演变和配合的结果,通过波作用演变方程能够比较清晰体现其中的关键过程,且波作用方程为波作用密度倾向,未来可探讨其对对流系统组织化的预报意义。
  • 图  1  (a)南疆地区地形图片,(b)2019年9月9日18时(协调世界时,下同)至9月10日18时24小时降水量(单位:mm,来源为Cmorph资料)分布

    Figure  1.  (a) Picture of the terrain in southern Xinjiang, (b) 24-h accumulated precipitation (units: mm) observed by Cmorph data from 1800 UTC 9 September to 1800 UTC 10 September 2019

    图  2  2019年9月10日00时(a)200 hPa位势高度(黑色实线,单位:dagpm)、风速(填色,单位:m s−1),(b)500 hPa位势高度(黑色实线,单位:gpm)、风速(填色,单位:m s−1),(c)650 hPa相当位温(黑色实线,单位:K)、水汽通量散度辐合(填色,单位:10−9 kg cm−2 s−1 hPa−1),(d)700 hPa风矢量(风向杆,单位:m s−1)、风速(填色,单位:m s−1)。图b、c中的红色矩形区域表示降水区,图d中的绿色箭头表示水汽输送方向

    Figure  2.  (a) Geopotential height (black lines, units: dagpm) and wind speed (shadings, units: m s−1) at 200 hPa, (b) geopotential height (black lines, units: gpm) and wind speed (shadings, units: m s−1) at 500 hPa, (c) equivalent potential temperature (black lines, units: K) and convergence (shadings, units: 10−9 kg cm−2 s−1 hPa−1) of moisture flux divergence at 650 hPa, (d) wind (barbs, units: m s−1) and wind speed (shadings, units: m s−1) at 700 hPa at 0000 UTC 10 September 2019. In Figs. b, c, red rectangles represent precipitation area; in Fig. d, the green arrow represents direction of water vapor transport

    图  3  2019年9月9日18时至9月10日00时(a)Cmorph资料、(b)WRF模式模拟的6小时累积降水量(单位:mm);2019年9月9日23时(c)云顶亮温(单位:°C),(d)Cmorph资料、(e)WRF模式模拟的1 h累积降水量(单位:mm)。蓝色矩形框区表示天山南坡降水区域

    Figure  3.  (a) Cmorph data and (b) WRF simulated 6-h accumulated precipitation (units: mm) during 1800 UTC 9 September to 0000 UTC 10 September 2019; (c) TBB (black body temperature, units: °C), 1-h accumulated precipitation (units: mm) from (d) Cmorph data and (e) WRF simulated at 2300 UTC 9 September 2019. The blue rectangles represent the precipitation area of the southern slope of the Tianshan Mountains

    图  4  2019年9月9日南疆暴雨雷达组合回波(单位:dBZ)分布:(a)18时;(b)19时;(c)20时;(d)21时;(e)22时;(f)23时。实线表示对流线东西走向,虚线表示对流线南北走向

    Figure  4.  Distributions of composite radar reflectivity (units: dBZ) of heavy rain in southern Xinjiang at (a) 1800 UTC, (b) 1900 UTC, (c) 2000 UTC, (d) 2100 UTC, (e) 2200 UTC, (f) 2300 UTC on 9 September 2019. The solid (dashed) lines represent the east–west (south–north) trend of the streamline

    图  5  2019年9月9日(a)21时、(b)22时、(c)23时位涡波作用密度的绝对值垂直积分平均(阴影,单位:10−7 K s−1)与雷达组合回波(等值线,单位:dBZ)的水平分布,图5ac中蓝色直线分别经过76°E、76.5°E、77°E,分别为图6ac剖面所在位置

    Figure  5.  Horizontal distributions of the averaged vertical integrated absolute potential vorticity wave-activity density (shadings, units: 10−7 K s−1) and composite radar reflectivity (isolines, units: dBZ) at (a) 2100 UTC, (b) 2200 UTC, (c) 2300 UTC on 9 September 2019. In Figs. 5ac, the blue lines go through 76°E, 76.5°E, 77°E, corresponding to the locations of the sections in Figs. 6ac

    图  6  2019年9月9日位涡波作用密度垂直分布(阴影,单位:10−8 K s−1 m−1):(a)21时沿76°E(图5a蓝色直线)剖面;(b)22时沿76.5°E(图5b蓝色直线)剖面;(c)23时沿77°E(图5c蓝色直线)剖面。灰色实线为地形高度线(单位:km),绿色柱为1 h累积降水量(单位:mm),黑色等值线为雷达回波(单位:dBZ

    Figure  6.  Vertical distributions of potential vorticity wave-activity density (shadings, units: 10−8 K s−1 m−1) along (a) 76°E (the blue line in Fig. 5a) at 2100 UTC, (b) 76.5°E (the blue line in Fig. 5b) at 2200 UTC, and (c) 77°E (the blue line in Fig. 5c) at 2300 UTC on 9 September 2019. The gray solid line is the terrain (units: km), the green bar represents the 1-h precipitation (units: mm), and the black line denote the radar reflectivity (units: dBZ)

    图  7  2019年9月9日(a)21时、(b)22时、(c)23时位涡波作用方程各强迫项水平平均(单位:10−9 K m s−2)以及各强迫项之和(黑色线)的垂直廓线。红色线:$\nabla \cdot {{\boldsymbol{F}}_{{\rm{A1}}}}$;绿色线:$\nabla \cdot {{\boldsymbol{F}}_{{\rm{A2}}}}$;蓝色线:$\nabla \cdot {{\boldsymbol{F}}_{{\rm{A4}}}}$;紫色线:$\nabla \cdot {{\boldsymbol{F}}_{{\rm{Aex}}}}$$\nabla \cdot {{\boldsymbol{F}}_{{\rm{A3}}}}$较其他项小两个量级,已忽略。不同时刻的水平平均为该时刻四条对流线各自小区域(图5中的红色框区域)平均后的均值

    Figure  7.  Vertical profiles of the horizontal averaged total forcing (black lines, units: 10−9 K m s−2) of potential vorticity wave-activity relation and its components at (a) 2100 UTC, (b) 2200 UTC, and (c) 2300 UTC on 9 September 2019. The red, green, blue, and purple lines represent $\nabla \cdot {{\boldsymbol{F}}_{{\rm{A1}}}}$ (the divergence of the wave-activity density flux by the basic flow), $\nabla \cdot {{\boldsymbol{F}}_{{\rm{A2}}}}$ (the flux divergence of part of first-order perturbation potential vorticity by perturbation flow), $\nabla \cdot {{\boldsymbol{F}}_{{\rm{A4}}}}$ (divergence of the differences between perturbation advection and averaged perturbation advection ), and $\nabla \cdot {{\boldsymbol{F}}_{{\rm{Aex}}}}$ (the exchange between the basic-state potential vorticity and averaged wave-activity density), respectively. $\nabla \cdot {{\boldsymbol{F}}_{{\rm{A3}}}}$ (the divergence of the coupling of ageostrophic perturbation wind and perturbation potential temperature) is ignored due to its small magnitude. The horizontal averaged quantities in certain time is obtained by firstly conducing the average respectively over the four small regions corresponding to the four convective lines (red boxes in Fig. 5) and then doing an average to the four averaged results

    图  8  2019年9月9日(a)21时、(b)22时、(c)23时位涡波作用方程总强迫(阴影,单位:10−9 K s−2)与雷达组合回波(等值线,单位:dBZ)的水平分布。图b中红色虚线表征波作用强迫大于6×10−9 K s−2区域,红色箭头表征波作用强迫中心区

    Figure  8.  Horizontal distributions of the total forcing (shadings, units: 10−9 K s−2) of potential vorticity wave-activity relation and composite radar reflectivity (isolines, units: dBZ) at (a) 2100 UTC, (b) 2200 UTC, and (c) 2300 UTC on 9 September 2019. In Fig. b, regions with the forcing larger than 6×10−9 K s−2 are enclosed by the red dotted lines. The red arrow indicates the center of the forcing

    图  9  2019年9月9日22时(a)0.25~6 km、(b)6~12 km高度平均的位涡波作用方程总强迫(阴影,单位:10−9 K s−2)与雷达组合回波(等值线,单位:dBZ)的水平分布。红色实线为未来1 h(23时)45 dBZ等值线(参考图8c),以表征对流线的变化趋势。图a中,红色虚线区域是对流区位涡波作用方程总强迫大于0的区域

    Figure  9.  Horizontal distributions of the total forcing (shadings, units: 10−9 K s−2) of potential vorticity wave-relation equation averaged over (a) 0.25–6 km and (b) 6–12 km and composite radar reflectivity (isolines, units: dBZ) at 2200 UTC on 9 September 2019. The solid red lines represent the shape of the 45-dBZ contours (refer to Fig. 8c) in the following 1 h (2300 UTC), which characterizes the changing trend of convective lines. In Fig. a, the red dashed line indicates the positive area of the total forcing of potential vorticity wave-relation equation

    图  10  2019年9月9日22时0.25~6 km平均的(a)$\nabla \cdot {{\boldsymbol{F}}_{{\rm{A1}}}}$、(b)$\nabla \cdot {{\boldsymbol{F}}_{{\rm{A2}}}}$、(c)$\nabla \cdot {{\boldsymbol{F}}_{{\rm{A4}}}}$、(d)$\nabla \cdot {{\boldsymbol{F}}_{{\rm{Aex}}}}$与雷达组合回波(等值线,单位:dBZ)的水平分布。红色虚线表征对流区波作用强迫大于0的区域,红色实线为未来1 h(23时)45 dBZ等值线

    Figure  10.  Horizontal distributions of (a) $\nabla \cdot {{\boldsymbol{F}}_{{\rm{A1}}}}$, (b) $\nabla \cdot {{\boldsymbol{F}}_{{\rm{A2}}}}$, (c) $\nabla \cdot {{\boldsymbol{F}}_{{\rm{A4}}}}$, and (d) $\nabla \cdot {{\boldsymbol{F}}_{{\rm{Aex}}}}$ averaged over 0.25–6 km and composite radar reflectivity (isolines, units: dBZ) at 2200 UTC on 9 September 2019. The red dashed lines indicate the positive area of the forcing components, and the solid red lines denote the shape of the 45-dBZ contours in the following 1 h (2300 UTC)

    图  11  2019年9月9日22时沿76.7°E的(a)位涡波作用方程总强迫,(b)$\nabla \cdot {{\boldsymbol{F}}_{{\rm{A1}}}}$,(c)$\nabla \cdot {{\boldsymbol{F}}_{{\rm{A1}}}}$中的分项$ - \partial \left( {\bar u{A_1}} \right)/\partial x $、(d)$- \left[ {\partial \left( { - \bar u\partial {{\theta '}_{\rm{e}}}/\partial x} \right)/\partial x} \right]\left( {\partial v'/\partial z} \right)$的垂直分布,单位:10−8 K s−2 m−1。黑色等值线为雷达回波(单位:dBZ),灰色实线为地形高度线(单位:km),绿色柱为1 h累积降水量(单位:mm),下同

    Figure  11.  Vertical distributions of (units: 10−8 K s−2 m−1) (a) the total forcing of potential vorticity wave-relation equation, (b) $\nabla \cdot {{\boldsymbol{F}}_{{\rm{A1}}}}$, (c) component $ - \partial \left( {\bar u{A_1}} \right)/\partial x $ of $\nabla \cdot {{\boldsymbol{F}}_{{\rm{A1}}}}$, (d) component $- \left[ {\partial \left( { - \bar u\partial {{\theta '}_{\rm{e}}}/\partial x} \right)/\partial x} \right]\left( {\partial v'/\partial z} \right)$ of $\nabla \cdot {{\boldsymbol{F}}_{{\rm{A1}}}}$ along 76.7°E at 2200 UTC on 9 September 2019. The black lines denote the radar reflectivity (units: dBZ), the gray solid lines denote the terrain (units: km), the green bars denote the 1-h precipitation (units: mm), the same below

    图  12  2019年9月9日22时(a)6 km高度扰动广义位温(阴影,单位:K)和环境大气平均流场水平分布(等值线,单位:m s−1),(b)沿76.7°E的扰动经向风速垂直分布(阴影,单位:m s−1

    Figure  12.  (a) Perturbation-generalized potential temperature (shadings, units: K) at 6-km height and basic state wind stream (isolines, units: m s−1) and (b) vertical distribution of perturbation meridional wind speed along 76.7°E at 22 UTC on 9 September 2019

    图  13  2019年9月9日22时沿76.53°E的(a)$\nabla \cdot {{\boldsymbol{F}}_{{\rm{A2}}}}$、(b)$\nabla \cdot {{\boldsymbol{F}}_{{\rm{A2}}}}$中的分项$- \partial \left[ {w'\left( {\partial \bar u/\partial z} \right)\left( {\partial {{\theta '}_{\rm{e}}}/\partial y} \right)} \right]/\partial z$、(c)$- \left( {\partial w'/\partial z} \right)\left( {\partial {{\theta '}_{\rm{e}}}/\partial y} \right)\left( {\partial \bar u/\partial z} \right)$、(d)$- w'\left[ {\partial \left( {\partial {{\theta '}_{\rm{e}}}/\partial y} \right)/\partial z} \right]\left( {\partial \bar u/\partial z} \right)$的垂直分布,单位:10−8 K s−2 m−1

    Figure  13.  Vertical distributions (units: 10−8 K s−2 m−1) of (a) $\nabla \cdot {{\boldsymbol{F}}_{{\rm{A2}}}}$, (b) component $- \partial \left[ {w'\left( {\partial \bar u/\partial z} \right)\left( {\partial {{\theta '}_{\rm{e}}}/\partial y} \right)} \right]/\partial z$, (c) component $- \left( {\partial w'/\partial z} \right)\left( {\partial {{\theta '}_{\rm{e}}}/\partial y} \right)\left( {\partial \bar u/\partial z} \right)$, and (d) component $- w'\left[ {\partial \left( {\partial {{\theta '}_{\rm{e}}}/\partial y} \right)/\partial z} \right]\left( {\partial \bar u/\partial z} \right)$ of $\nabla \cdot {{\boldsymbol{F}}_{{\rm{A2}}}}$along 76.53°E at 2200 UTC on 9 September 2019

    图  14  2019年9月9日22时沿76.48°E的(a)$\nabla \cdot {\boldsymbol{F}}$、(b)$\nabla \cdot {{\boldsymbol{F}}_{{\rm{Aex}}}}$、(c)$\nabla \cdot {{\boldsymbol{F}}_{{\rm{Aex}}}}$中的分项$\partial \left[ {w'\left( {\partial {{\theta '}_{\rm{e}}}/\partial z} \right)\left( {\partial \bar u/\partial z} \right)} \right]/\partial y$和(d)$\left\{ {\partial \left[ {w'\left( {\partial {{\theta '}_{\rm{e}}}/\partial z} \right)} \right]/\partial y} \right\}\left( {\partial \bar u/\partial z} \right)$的垂直分布,单位:10−8 K s−2 m−1

    Figure  14.  Vertical distributions (units: 10−8 K s−2 m−1) of (a) $\nabla \cdot {\boldsymbol{F}}$, (b) $\nabla \cdot {{\boldsymbol{F}}_{{\rm{Aex}}}}$, (c) component $\partial \left[ {w'\left( {\partial {{\theta '}_{\rm{e}}}/\partial z} \right)\left( {\partial \bar u/\partial z} \right)} \right]/\partial y$ and (d) component $\left\{ {\partial \left[ {w'\left( {\partial {{\theta '}_{\rm{e}}}/\partial z} \right)} \right]/\partial y} \right\}\left( {\partial \bar u/\partial z} \right)$ of $\nabla \cdot {{\boldsymbol{F}}_{{\rm{Aex}}}}$ along 76.48°E at 2200 UTC on 9 September 2019

    图  15  2019年9月9日22时4.5 km高度的(a)扰动位温(阴影,单位:K)、扰动风场(箭头,单位:m s−1)以及(b)扰动垂直速度(阴影,单位:m s−1)的水平分布,(c)沿76.48°E的扰动广义位温(阴影,单位:K)和垂直流场(箭头,经向风单位:m s−1,垂直速度单位:10−1 m s−1)垂直分布

    Figure  15.  Horizontal distributions of (a) perturbation-generalized potential temperature (shadings, units: K) and perturbation wind field (arrows, units: m s−1), (b) vertical-perturbation vertical velocity at 4.5-km height, (c) vertical distributions of perturbation-generalized potential temperature (shadings, units: K) and vertical circulation (arrows, meridional wind units: m s−1, vertical velocity units: 10−1 m s−1) along 76.48°E at 2200 UTC on 9 September 2019

    图  16  2019年9月9日22时沿76.38°E的(a)$\nabla \cdot {\boldsymbol{F}}$、(b)$\nabla \cdot {{\boldsymbol{F}}_{{\rm{A4}}}}$、(c)$\nabla \cdot {{\boldsymbol{F}}_{{\rm{A4}}}}$中的分项$- \partial \left[ {v' \cdot \nabla u'\left( {\partial {{\theta '}_{\rm{e}}}/\partial y} \right)} \right]/\partial z$和(d)$- \left( {\partial v'/\partial z} \right)\left( {\partial u'/\partial y} \right)\left( {\partial {{\theta '}_{\rm{e}}}/\partial y} \right) - v'\left[ {\partial \left( {\partial u'/\partial z} \right)/\partial y} \right]\left( {\partial {{\theta '}_{\rm{e}}}/\partial y} \right)$的垂直分布,单位:10−8 K s−2 m−1

    Figure  16.  Vertical distributions (units: 10−8 K s−2 m−1) of (a) $\nabla \cdot {\boldsymbol{F}}$, (b) $\nabla \cdot {{\boldsymbol{F}}_{{\rm{A4}}}}$, (c) component $- \partial \left[ {v' \cdot \nabla u'\left( {\partial {{\theta '}_{\rm{e}}}/\partial y} \right)} \right]/\partial z$, and (d) component $- \left( {\partial v'/\partial z} \right)\left( {\partial u'/\partial y} \right)\left( {\partial {{\theta '}_{\rm{e}}}/\partial y} \right) - v'\left[ {\partial \left( {\partial u'/\partial z} \right)/\partial y} \right]\left( {\partial {{\theta '}_{\rm{e}}}/\partial y} \right)$ of $\nabla \cdot {{\boldsymbol{F}}_{{\rm{A4}}}}$ along 76.38°E at 2200 UTC on 9 September 2019

    图  17  2019年9月9日22时沿75.38°E的(a)扰动纬向风速(阴影,单位:m s−1)、(b)扰动经向风速(阴影,单位:m s−1)、(c)扰动广义位温(阴影,单位:K)和垂直流场(箭头,经向风单位:m s−1,垂直速度单位:10−1 m s−1)垂直分布

    Figure  17.  Vertical distributions of (a) perturbation zonal wind speed (shadings, units: m s−1), (b) perturbation meridional wind speed (shadings, units: m s−1), (c) perturbation-generalized potential temperature (shadings, units: K) and vertical circulation (arrows, meridional wind units: m s−1, vertical velocity units: 10−1 m s−1) and along 76.38°E at 2200 UTC on 9 September 2019

    图  18  根据波作用方程诊断的南疆暴雨组织化概念模型。红色箭头为上升流,蓝色箭头为下沉流,深蓝色箭头框为纬向基本气流,虚线箭头为扰动纬向风,蓝色虚线为低层扰动气流形成的锋面或辐合线

    Figure  18.  Concept model of the organization process diagnosed from the wave-activity relation equation in southern Xinjiang. The red arrow indicates ascending flow, the blue arrow indicates descending flow, the dark blue arrow box is zonal basic flow, the dashed arrow is the perturbation zonal flow, the blue dashed line is the front or convergence line formed by the low-level perturbation flow

  • [1] Bluestein H B, Jain M H. 1985. Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring [J]. J. Atmos. Sci., 42(16): 1711−1732. doi: 10.1175/1520-0469(1985)042<1711:FOMLOP>2.0.CO;2
    [2] 陈明轩, 王迎春, 肖现, 等. 2013. 北京“7.21”暴雨雨团的发生和传播机理 [J]. 气象学报, 71(4): 569−592. doi: 10.11676/qxxb2013.053

    Chen Mingxuan, Wang Yingchun, Xiao Xian, et al. 2013. Initiation and propagation mechanism for the Beijing extreme heavy rainstorm clusters on 21 July 2012 [J]. Acta Meteorologica Sinica (in Chinese), 71(4): 569−592. doi: 10.11676/qxxb2013.053
    [3] Chen Y S, Brunet G, Yau M K. 2003. Spiral bands in a simulated hurricane. Part II: Wave activity diagnostics [J]. J. Atmos. Sci., 60(10): 1239−1256. doi: 10.1175/1520-0469(2003)60<1239:SBIASH>2.0.CO;2
    [4] 成璐, 沈润平, 师春香, 等. 2014. CMORPH和TRMM 3B42降水估计产品的评估检验 [J]. 气象, 40(11): 1372−1379. doi: 10.7519/j.issn.1000-0526.2014.11.010

    Cheng Lu, Shen Runping, Shi Chunxiang, et al. 2014. Evaluation and verification of CMORPH and TRMM 3B42 precipitation estimation products [J]. Meteorological Monthly (in Chinese), 40(11): 1372−1379. doi: 10.7519/j.issn.1000-0526.2014.11.010
    [5] 丁一汇. 2019. 中国暴雨理论的发展历程与重要进展 [J]. 暴雨灾害, 38(5): 395−406. doi: 10.3969/j.issn.1004-9045.2019.05.001

    Ding Yihui. 2019. The major advances and development process of the theory of heavy rainfalls in China [J]. Torrential Rain and Disasters (in Chinese), 38(5): 395−406. doi: 10.3969/j.issn.1004-9045.2019.05.001
    [6] Gao S, Ran L. 2009. Diagnosis of wave activity in a heavy-rainfall event. J. Geophys. Res. , D08119. doi: 10.1029/2008JD010172
    [7] 黄昕, 周玉淑, 冉令坤, 等. 2021. 一次新疆伊犁河谷特大暴雨过程的环境场及不稳定条件分析 [J]. 大气科学, 45(1): 148−164. doi: 10.3878/j.issn.1006-9895.1912.19219

    Huang Xin, Zhou Yushu, Ran Lingkun, et al. 2021. Analysis of the environmental field and unstable conditions on a rainstorm event in the Ili Valley of Xinjiang [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(1): 148−164. doi: 10.3878/j.issn.1006-9895.1912.19219
    [8] 李春虎. 2011. 局地暴雨中的自组织过程 [D]. 南京信息工程大学博士学位论文. Li Chunhu. 2011. Self-organization process in local heavy rain [D]. Ph. D. dissertation (in Chinese), Nanjing University of Information Science and Technology.
    [9] Li N, Gao S T, Ran L K. 2016. A PV-gradient related quantity in moist atmosphere and its application in the diagnosis of heavy precipitation [J]. Atmospheric Research, 167: 285−297. doi: 10.1016/j.atmosres.2015.08.009
    [10] Li N, Ran L K, Jiao B F. 2021. Wave-activity relation containing wave–basic flow interaction based on decomposition of general potential vorticity [J]. Chinese Phys. B, 30(4): 049201. doi: 10.1088/1674-1056/abcf37
    [11] Li N, Jiao B F, Ran L K, et al. 2022. Influence of the upstream terrain on the formation of a cold frontal snowband in Northeast China [J]. Asia-Pacific Journal of Atmospheric Sciences, 58(2): 243−264. doi: 10.1007/s13143-021-00243-4
    [12] 刘晶, 周玉淑, 杨莲梅, 等. 2019. 伊犁河谷一次极端强降水事件水汽特征分析 [J]. 大气科学, 43(5): 959−974. doi: 10.3878/j.issn.1006-9895.1901.18114

    Liu Jing, Zhou Yushu, Yang Lianmei, et al. 2019. A diagnostic study of water vapor during an extreme precipitation event in the Yili River Valley [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(5): 959−974. doi: 10.3878/j.issn.1006-9895.1901.18114
    [13] 刘建勇, 谈哲敏, 张熠. 2012. 梅雨期3类不同形成机制的暴雨 [J]. 气象学报, 70(3): 452−466. doi: 10.11676/qxxb2012.038

    Liu Jianyong, Tan Zhemin, Zhang Yi. 2012. Study of the three types of torrential rains of different formation mechanism during the Meiyu period [J]. Acta Meteorologica Sinica (in Chinese), 70(3): 452−466. doi: 10.11676/qxxb2012.038
    [14] 闵锦忠, 吴乃庚. 2020. 近二十年来暴雨和强对流可预报性研究进展 [J]. 大气科学, 44(5): 1039−1056. doi: 10.3878/j.issn.1006-9895.2003.19186

    Min Jinzhong, Wu Naigeng. 2020. Advances in atmospheric predictability of heavy rain and severe convection [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(5): 1039−1056. doi: 10.3878/j.issn.1006-9895.2003.19186
    [15] Parker M D, Johnson R H. 2000. Organizational modes of midlatitude mesoscale convective systems [J]. Mon. Wea. Rev., 128(10): 3413−3436. doi: 10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2
    [16] Ran L K, Li N. 2014. PV-based wave-activity density and its application to tracing heavy precipitation [J]. Meteor. Atmos. Phys., 123(1): 33−50. doi: 10.1007/s00703-013-0297-x
    [17] Rotunno R, Klemp J B, Weisman M L. 1988. A theory for strong, long-lived squall lines [J]. J. Atmos. Sci., 45(3): 463−485. doi: 10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2
    [18] Schumacher R S, Johnson R H. 2005. Organization and environmental properties of extreme-rain-producing mesoscale convective systems [J]. Mon. Wea. Rev., 133(4): 961−976. doi: 10.1175/MWR2899.1
    [19] Skamarock W C, Klemp J B, Dudhia J, et al. 2008. A description of the advanced research WRF Version 3. [R] NCAR/TN-475+STR, 113 pp
    [20] 盛杰, 郑永光, 沈新勇. 2020. 华北两类产生极端强天气的线状对流系统分布特征与环境条件 [J]. 气象学报, 78(6): 877−898. doi: 10.11676/qxxb2020.069

    Sheng Jie, Zheng Yongguang, Shen Xinyong. 2020. Climatology and environmental conditions of two types of quasi-linear convective systems with extremely intense weather in North China [J]. Acta Meteorologica Sinica (in Chinese), 78(6): 877−898. doi: 10.11676/qxxb2020.069
    [21] 孙建华, 郑淋淋, 赵思雄. 2014. 水汽含量对飑线组织结构和强度影响的数值试验 [J]. 大气科学, 38(4): 742−755. doi: 10.3878/j.issn.1006-9895.2013.13187

    Sun Jianhua, Zheng Linlin, Zhao Sixiong. 2014. Impact of moisture on the organizational mode and intensity of squall lines determined through numerical experiments [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38(4): 742−755. doi: 10.3878/j.issn.1006-9895.2013.13187
    [22] 吴国雄, 蔡雅萍, 唐晓菁. 1995. 湿位涡和倾斜涡度发展 [J]. 气象学报, 53(4): 387−405. doi: 10.11676/qxxb1995.045

    Wu Gaoxiong, Cai Yaping, Tang Xiaojing. 1995. Moist potential vorticity and slantwise vorticity development [J]. Acta Meteorologica Sinica (in Chinese), 53(4): 387−405. doi: 10.11676/qxxb1995.045
    [23] 谢泽明, 周玉淑, 杨莲梅. 2018. 新疆降水研究进展综述 [J]. 暴雨灾害, 37(3): 204−212. doi: 10.3969/j.issn.1004-9045.2018.03.002

    Xie Zeming, Zhou Yushu, Yang Lianmei. 2018. Review of study on precipitation in Xinjiang [J]. Torrential Rain and Disasters (in Chinese), 37(3): 204−212. doi: 10.3969/j.issn.1004-9045.2018.03.002
    [24] 杨莲梅, 张云惠, 秦贺. 2015. 中亚低涡研究若干进展及问题 [J]. 沙漠与绿洲气象, 9(5): 1−8.

    Yang Lianmei, Zhang Yunhui, Qin He. 2015. Some advances and problems of Middle-Asia vortex [J]. Desert and Oasis Meteorology (in Chinese), 9(5): 1−8.
    [25] 张建军, 王咏青, 钟玮. 2016. 飑线组织化过程对环境垂直风切变和水汽的响应 [J]. 大气科学, 40(4): 689−702. doi: 10.3878/j.issn.1006-9895.1505.14337

    Zhang Jianjun, Wang Yongqing, Zhong Wei. 2016. Impact of vertical wind shear and moisture on the organization of squall lines [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(4): 689−702. doi: 10.3878/j.issn.1006-9895.1505.14337
    [26] 张云惠, 李海燕, 蔺喜禄, 等. 2015. 南疆西部持续性暴雨环流背景及天气尺度的动力过程分析 [J]. 气象, 41(7): 816−824. doi: 10.7519/j.issn.1000-0526.2015.07.003

    Zhang Yunhui, Li Haiyan, Lin Xilu, et al. 2015. Analysis of continuous rainstorm circulation background and the dynamic process of synoptic-scale in west of southern Xinjiang [J]. Meteorological Monthly (in Chinese), 41(7): 816−824. doi: 10.7519/j.issn.1000-0526.2015.07.003
    [27] Zheng L L, Sun J H, Zhang X L, et al. 2013. Organizational modes of mesoscale convective systems over central East China [J]. Wea. Forecasting, 28(5): 1081−1098. doi: 10.1175/WAF-D-12-00088.1
    [28] 庄晓翠, 李如琦, 李博渊, 等. 2017. 中亚低涡造成新疆北部区域暴雨成因分析 [J]. 气象, 43(8): 924−935. doi: 10.7519/j.issn.1000-0526.2017.08.003

    Zhuang Xiaocui, Li Ruqi, Li Boyuan, et al. 2017. Analysis on rainstorm caused by central Asian vortex in northern Xinjiang [J]. Meteorological Monthly (in Chinese), 43(8): 924−935. doi: 10.7519/j.issn.1000-0526.2017.08.003
  • 加载中
图(18)
计量
  • 文章访问数:  432
  • HTML全文浏览量:  133
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-17
  • 录用日期:  2022-03-21
  • 网络出版日期:  2022-03-21
  • 刊出日期:  2022-11-24

目录

    /

    返回文章
    返回