Correction of Lidar Ratio and Its Vertical Distribution Characteristics Using Aircraft Observations
-
摘要: 雷达比是激光雷达反演气溶胶光学特性的重要参数和影响因素。利用北京地区2016年一次清洁过程(12月10日)和两次污染过程(11月15~18日和12月16~19日)的微脉冲激光雷达、机载浊度计和黑碳仪以及多种地基观测设备,综合研究基于飞机观测订正雷达比的方法及其分布特征。清洁过程地面PM2.5浓度低于40 μg m−3;污染严重时期的PM2.5均高于150 μg m−3且能见度低于5 km,污染过程1存在高空传输的特征。研究结果表明相较于采用单一的柱平均雷达比,利用本文方法获得的雷达比垂直廓线反演得到的气溶胶消光系数和光学厚度更接近原位跟踪观测,精度均有提升。基于此方法获得的雷达比在污染发展不同时期垂直分布差异较大,主要分布在19~76 sr之间,清洁时期雷达比较小且垂直分布差异不大。污染过程1雷达比随高度波动增加至边界层顶(19~45 sr);污染过程2严重期边界层内雷达比随高度由70 sr降低到20 sr;边界层以上均呈现小幅波动变化。边界层内雷达比垂直分布与气溶胶来源特别是高空气溶胶传输有密切联系,混有沙尘的区域传输显著提升了所在高度的雷达比值。边界层以上雷达比受少量大粒子或者强吸收性的气溶胶粒子的影响波动变化。边界层内消光系数增大时雷达比呈增加趋势;当相对湿度高于40%,边界层内雷达比随相对湿度增加而增大。Abstract: The lidar ratio (LR) is an important parameter and impact factor for the retrieval of aerosol optical properties using micro-pulse lidar. We analyze the vertical LR retrieved by the method of correcting micro-pulse lidar with aircraft observation using multiple-observation equipment during one clean case (December 10, 2016) and two pollution cases (November 15–18, December 16–19, 2016) in Beijing. PM2.5 concentration was lower than 40 μg m−3,while PM2.5 concentration was higher than 150 μg m−3, and visibility was lower than 5 km during the severe-pollution period. The first pollution case was characterized via high-altitude transportation. The vertical extinction coefficient profiles and aerosol optical depth (AOD) obtained by the iterative algorithm using the LR values were closer to the in-situ observation than those obtained by the single column average value. LR obtained from this method primarily varied between 19 and 76 sr in different periods. The results showed a small LR value and insignificant differences in vertical distribution during the cleaning period, and LR increased in height from 19 to 45 sr in the boundary layer during the first pollution case. During the second pollution case, LR presented little variation during the pollution-development period and later decreased in height from 70 to 20 sr at the boundary layer under the severe-pollution period, while there were slight fluctuations above the boundary layer. The vertical distribution of LR along the boundary layer is related to the source of aerosols, especially the regional transportation in the high layer, and regional dust transportation may significantly increase the LR. LR fluctuates due to the influence of large particles or strong absorbing particles above the boundary layer. The results showed that LR increased with the increase in the extinction coefficient at the boundary layer as well as relative humidity (RH) when RH was higher than 40%.
-
Key words:
- Lidar ratio /
- Vertical distribution /
- Extinction coefficient /
- Lidar /
- Aircraft observation
-
图 1 2016年(a–d)11月15~18日和(e−f)12月16~19日(a,e)能见度(黑色实线)、相对湿度(蓝色实线)、(b,f)地面PM2.5浓度、(c,g)地面直接辐射和(d,h)激光雷达标准后向散射信号垂直剖面随时间分布
Figure 1. Temporal variations in (a, e) visibility (black solid line), relative humidity (blue solid line), (b, f) PM2.5 mass concentration, (c, g) solar radiation, and (d, h) normalized relative backscatter (NRB) during (a–d) November 15–18, 2016 and (e−f) December 16–19, 2016
图 2 2016年(a,b)11月15日12:00(北京时,下同)和(c,d)12月10日14:00不同雷达比反演的气溶胶消光系数廓线和光学厚度(左)及其相对于飞机实测的相对偏差(右)。图2a和2c中灰色实心圆点线为飞机观测的消光系数,灰色阴影为飞机观测的±10%,红色空心圆圈线为采用飞机订正激光雷达的雷达比计算的消光系数,其他颜色为不同雷达比反演的消光系数
Figure 2. Profiles of extinction coefficient observed by the aircraft and retrieved by different lidar ratios (LRs) from lidar, aerosol optical depth (AOD), and relative bias for (a, b) at 1200 BJT on November 15, 2016 and (c, d) at 1400 BJT on December 10, 2016. The gray line denotes the extinction coefficient from aircraft measurement and gray shadow for ±10% of the extinction coefficient. The red line denotes LRs retrieved by aircraft and lidar, and the blue, orange, and green lines respectively denote LRs for 50, 30, and 20 sr in Fig. 2a and 2c. The two insets in Fig. 2a and c denote AOD from different LRs, and the measurement is the same as above. The relative bias between lidar and aircraft is shown in Fig. 2b and 2d
5 2016年11月15~18日12:00(左)和12月16~19日14:00(右)HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory model)48小时后向轨迹
5. Backward trajectories of 48 h at 1200 BJT from November 15 to 18 in 2016 (left) and at 1400 BJT from December 16 to 19 in 2016 (right) based on Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT)
表 1 2016年11月15~18日、12月10日和12月16~19日飞机探测时间、地面污染物浓度和气象要素特征Tabble1 Flight schedule and corresponding PM2.5 mass concentration, direct radiation, visibility, surface relative humidity, and planetary boundary layer height
during November 15–18, 2016, December 10, 2016 and December 16–19, 2016 探测时间 地面PM2.5浓度/μg m−3 气象因素 日期 飞行时间 直接辐射/W m−2 能见度/m 相对湿度 边界层高度/m 11月15日 12:00 36 426 30629 19% 1800 14:00 44 337 25722 22% 1700 11月16日 12:00 84 359 10408 40% 1000 14:00 79 273 10365 28% 900 11月17日 12:00 75 219 10033 53% 1200 14:00 84 186 9210 57% 1200 11月18日 12:00 187 98 3197 70% 1100 12月10日 14:00 37 32286 19% 1800 12月16日 14:00 126 302 16276 23% 750 12月17日 14:00 226 315 3422 39% 700 12月18日 14:00 151 224 3026 29% 350 12月19日 14:00 138 242 3548 28% 350 -
[1] Ackermann J. 1998. The extinction-to-backscatter ratio of tropospheric aerosol: A numerical study [J]. J. Atmos. Oceanic Technol., 15(4): 1043−1050. doi:10.1175/1520-0426(1998)015<1043:TETBRO>2.0.CO;2 [2] Ångström A. 1929. On the atmospheric transmission of sun radiation and on dust in the air [J]. Geogr. Ann., 11(2): 156−166. doi: 10.1080/20014422.1929.11880498 [3] 曹贤洁, 张镭, 周碧, 等. 2009. 利用激光雷达观测兰州沙尘气溶胶辐射特性 [J]. 高原气象, 28(5): 1115−1120.Cao Xianjie, Zhang Lei, Zhou Bi, et al. 2009. Lidar measurement of dust aerosol radiative property over Lanzhou [J]. Plateau Meteor. (in Chinese), 28(5): 1115−1120. [4] Carrico C M, Rood M J, Ogren J A. 1998. Aerosol light scattering properties at Cape Grim, Tasmania, during the First Aerosol Characterization Experiment (ACE 1) [J]. J. Geophys. Res., 103(D13): 16565−16574. doi: 10.1029/98JD00685 [5] Che H Z, Zhang X Y, Chen H B, et al. 2009. Instrument calibration and aerosol optical depth validation of the China aerosol remote sensing network [J]. J. Geophys. Res., 114(D3): D03206. doi: 10.1029/2008JD011030 [6] Fernald F G. 1984. Analysis of atmospheric lidar observations: Some comments [J]. Appl. Opt., 23(5): 652−653. doi: 10.1364/AO.23.000652 [7] Ferrare R A, Melfi S H, Whiteman D N, et al. 1998. Raman lidar measurements of aerosol extinction and backscattering: 2. Derivation of aerosol real refractive index, single–scattering albedo, and humidification factor using Raman lidar and aircraft size distribution measurements [J]. J. Geophys. Res., 103(D16): 19673−19689. doi: 10.1029/98JD01647 [8] Haarig M, Ansmann A, Baars H, et al. 2018. Depolarization and lidar ratios at 355, 532, and 1064 nm and microphysical properties of aged tropospheric and stratospheric Canadian wildfire smoke [J]. Atmos. Chem. Phys., 18(16): 11847−11861. doi: 10.5194/acp-18-11847-2018 [9] 贺千山, 毛节泰. 2005. 北京城市大气混合层与气溶胶垂直分布观测研究 [J]. 气象学报, 63(3): 374−384. doi: 10.3321/j.issn:0577-6619.2005.03.013He Qianshan, Mao Jietai. 2005. Observation of urban mixed layer at Beijing using a micro pulse lidar [J]. Acta Meteor. Sinica (in Chinese), 63(3): 374−384. doi: 10.3321/j.issn:0577-6619.2005.03.013 [10] He Q S, Li C C, Mao J T, et al. 2006. A study on the aerosol extinction-to-backscatter ratio with combination of micro-pulse LIDAR and MODIS over Hong Kong [J]. Atmos. Chem. Phys., 6(11): 3243−3256. doi: 10.5194/acp-6-3243-2006 [11] Huang Z W, Huang J P, Bi J R, et al. 2010. Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-U. S. joint dust field experiment [J]. J. Geophys. Res., 115(D7): D00K15. doi: 10.1029/2009JD013273 [12] Kovalev V A. 1993. Lidar measurement of the vertical aerosol extinction profiles with range-dependent backscatter-to-extinction ratios [J]. Appl. Opt., 32(30): 6053−6065. doi: 10.1364/AO.32.006053 [13] 李成才, 刘启汉, 毛节泰, 等. 2004. 利用MODIS卫星和激光雷达遥感资料研究香港地区的一次大气气溶胶污染 [J]. 应用气象学报, 15(6): 641−650. doi: 10.3969/j.issn.1001-7313.2004.06.001Li Chengcai, Lau K H, Mao Jietai, et al. 2004. An aerosol pollution episode in Hong Kong with remote sensing products of MODIS and LIDAR [J]. J. Appl. Meteor. Sci. (in Chinese), 15(6): 641−650. doi: 10.3969/j.issn.1001-7313.2004.06.001 [14] 李霞, 权建农, 王飞, 等. 2018. 激光雷达反演边界层高度方法评估及其在北京的应用 [J]. 大气科学, 42(2): 435−446. Li Xia, Quan Jiannong, Wang Fei, et al. 2018. Evaluation of the method for planetary boundary layer height retrieval by lidar and its application in Beijing [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(2): 435–446. doi: 10.3878/j.issn.1006-9895.1710.17173 [15] 林常青, 杨东伟, 李成才, 等. 2013. 北京地区大气气溶胶的激光雷达观测及反演算法研究 [J]. 北京大学学报(自然科学版), 49(3): 426−434. doi: 10.13209/j.0479-8023.2013.061Lin Changqing, Yang Dongwei, Li Chengcai, et al. 2013. A micro-pulse lidar observation of aerosol in Beijing and retrieval algorithm research [J]. Acta Sci. Nat. Univ. Pekinensis (in Chinese), 49(3): 426−434. doi: 10.13209/j.0479-8023.2013.061 [16] Perrone M R, de Tomasi F, Gobbi G P. 2014. Vertically resolved aerosol properties by multi-wavelength lidar measurements [J]. Atmos. Chem. Phys., 14(3): 1185−1204. doi: 10.5194/acp-14-1185-2014 [17] 邱金桓, 郑斯平, 黄其荣, 等. 2003. 北京地区对流层中上部云和气溶胶的激光雷达探测 [J]. 大气科学, 27(1): 1−7. doi: 10.3878/j.issn.1006-9895.2003.01.01Qiu Jinhuan, Zheng Siping, Huang Qirong, et al. 2003. Lidar measurements of cloud and aerosol in the upper troposphere in Beijing [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 27(1): 1−7. doi: 10.3878/j.issn.1006-9895.2003.01.01 [18] Sasano Y, Browell E V, Ismail S. 1985. Error caused by using a constant extinction/backscattering ratio in the lidar solution [J]. Appl. Opt., 24(22): 3929−3932. doi: 10.1364/AO.24.003929 [19] Shimizu A, Sugimoto N, Matsui I, et al. 2011. Relationship between lidar-derived dust extinction coefficients and mass concentrations in Japan [J]. SOLA, 7A(Special_Edition): 1–4. doi: 10.2151/sola.7A-001 [20] 宋跃辉, 时丽丽, 王玉峰, 等. 2016. 气溶胶激光雷达比的迭代反演 [J]. 中国激光, 43(1): 0113001. doi: 10.3788/CJL201643.0113001Song Yuehui, Shi Lili, Wang Yufeng, et al. 2016. Retrieve of lidar ratio of aerosols by iteration [J]. Chinese J. Lasers (in Chinese), 43(1): 0113001. doi: 10.3788/CJL201643.0113001 [21] Stachlewska I S, Ritter C. 2010. On retrieval of lidar extinction profiles using Two-Stream and Raman techniques [J]. Atmos. Chem. Phys., 10(6): 2813−2824. doi: 10.5194/acp-10-2813-2010 [22] Tian P, Liu D T, Zhao D L, et al. 2020. In situ vertical characteristics of optical properties and heating rates of aerosol over Beijing [J]. Atmos. Chem. Phys., 20(4): 2603−2622. doi: 10.5194/acp-20-2603-2020 [23] 王向川, 饶瑞中. 2005. 大气气溶胶和云雾粒子的激光雷达比 [J]. 中国激光, 32(10): 1321−1324. doi: 10.3321/j.issn:0258-7025.2005.10.005Wang Xiangchuan, Rao Ruizhong. 2005. Lidar ratios for atmospheric aerosol and cloud particles [J]. Chinese J. Lasers (in Chinese), 32(10): 1321−1324. doi: 10.3321/j.issn:0258-7025.2005.10.005 [24] 王玉峰, 高飞, 朱承炫, 等. 2015. 对流层高度大气温度、湿度和气溶胶的拉曼激光雷达系统 [J]. 光学学报, 35(3): 0328004. doi: 10.3788/AOS201535.0328004Wang Yufeng, Gao Fei, Zhu Chengxuan, et al. 2015. Raman lidar for atmospheric temperature, humidity and aerosols up to troposphere height [J]. Acta Opt. Sinica (in Chinese), 35(3): 0328004. doi: 10.3788/AOS201535.0328004 [25] Welton E J, Voss K J, Quinn P K, et al. 2002. Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars [J]. J. Geophys. Res., 107(D19): 8019. doi: 10.1029/2000JD000038 [26] Xie C B, Nishizawa T, Sugimoto N, et al. 2008, Characteristics of aerosol optical properties in pollution and Asian dust episodes over Beijing, China [J]. Appl. Opt., 47(27): 4945–4951. doi: 10.1364/AO.47.004945 [27] 张朝阳, 苏林, 陈良富. 2013. 中国典型地区气溶胶激光雷达比反演与分析 [J]. 中国激光, 40(5): 0513002. doi: 10.3788/CJL201340.0513002Zhang Zhaoyang, Su Lin, Chen Liangfu. 2013. Retrieval and analysis of aerosol lidar ratio at several typical regions in China [J]. Chinese J. Lasers (in Chinese), 40(5): 0513002. doi: 10.3788/CJL201340.0513002 [28] Zhao Y L, Sugimoto N, Murayama T. 2002. Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar [J]. Appl. Opt., 41(15): 2760−2767. doi: 10.1364/AO.41.002760 [29] Zhao G, Zhao C S, Kuang Y, et al. 2017. Impact of aerosol hygroscopic growth on retrieving aerosol extinction coefficient profiles from elastic-backscatter lidar signals [J]. Atmos. Chem. Phys., 17(19): 12133−12143. doi: 10.5194/acp-17-12133-2017 [30] Zhao P S, Ding J, Du X, et al. 2019. High time–resolution measurement of light scattering hygroscopic growth factor in Beijing: A novel method for high relative humidity conditions [J]. Atmos. Environ., 215: 116912. doi: 10.1016/j.atmosenv.2019.116912 -