高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

“21·7”河南暴雨水汽源地追踪和定量贡献分析

崔晓鹏 杨玉婷

崔晓鹏, 杨玉婷. 2022. “21·7”河南暴雨水汽源地追踪和定量贡献分析[J]. 大气科学, 46(6): 1543−1556 doi: 10.3878/j.issn.1006-9895.2203.22016
引用本文: 崔晓鹏, 杨玉婷. 2022. “21·7”河南暴雨水汽源地追踪和定量贡献分析[J]. 大气科学, 46(6): 1543−1556 doi: 10.3878/j.issn.1006-9895.2203.22016
CUI Xiaopeng, YANG Yuting. 2022. Tracking and Quantitative Contribution Analyses of Moisture Sources of Rainstorm in Henan Province in July 2021 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(6): 1543−1556 doi: 10.3878/j.issn.1006-9895.2203.22016
Citation: CUI Xiaopeng, YANG Yuting. 2022. Tracking and Quantitative Contribution Analyses of Moisture Sources of Rainstorm in Henan Province in July 2021 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(6): 1543−1556 doi: 10.3878/j.issn.1006-9895.2203.22016

“21·7”河南暴雨水汽源地追踪和定量贡献分析

doi: 10.3878/j.issn.1006-9895.2203.22016
基金项目: 灾害天气国家重点实验室开放课题2021LASW-A13
详细信息
    作者简介:

    崔晓鹏,男,1973年出生,研究员,主要从事灾害性天气机理和预报方法研究,E-mail: xpcui@mail.iap.ac.cn

  • 中图分类号: P458

Tracking and Quantitative Contribution Analyses of Moisture Sources of Rainstorm in Henan Province in July 2021

Funds: Open Grants of the State Key Laboratory of Severe Weather (Grant 2021LASW-A13)
  • 摘要: 2021年7月19~22日,河南省部分地区出现极端暴雨(简称“21·7”河南暴雨),造成严重城市内涝和人员伤亡。本文借助降水观测资料和再分析数据,分析了此次暴雨过程的大尺度环流形势,并利用拉格朗日轨迹追踪模式FLEXPART及水汽源区定量贡献分析方法,考察了暴雨过程的水汽源地、输送路径和源区水汽定量贡献。结果表明:此次暴雨期间以及暴雨发生前数天,东亚地区500 hPa环流形势极为稳定,西太平洋副热带高压(简称副高)异常偏北,与北侧高压脊连通、位置少动,欧亚大陆高空槽偏西,东亚中高纬环流显著平直,暴雨过程期间,热带气旋“烟花”和“查帕卡”与副高等持续协同影响,建立明显水汽输送通道,提供充足水汽,河南暴雨区维持显著近地面湿区和高可降水量;向前追踪数天发现,暴雨区目标气块主要来自西北太平洋和中国南海等地,且所处大气高度较低,此外,还有少量气块来自日本海附近和欧亚大陆中部(所处高度相对较高);定量贡献分析显示,水汽主要来自河南南侧中国中东部大陆(D)和西北太平洋(F),前者水汽贡献率(52.59%)达后者(25.51%)2倍以上,此外,河南暴雨区(T,3.68%)、中南半岛—中国南海(E,3.32%)和暴雨区北侧亚洲大陆(B,2.28%)也有一定贡献;目标气块在D区域水汽摄取量最大,略高于F区域,但前者沿途损耗率明显低于后者,造成D区域水汽贡献显著高于后者;B区域水汽摄取量略高于E区域,但其沿途损耗和未释放部分占比之和高于后者,导致后者水汽贡献相比略高;此外,T区域也有不可忽视的降水再循环率;延长向前追踪天数后,目标气块轨迹和各源区水汽摄取与贡献率相对变化不大,但所有源区水汽总贡献明显提升,可见,对于类似此次河南极端特大暴雨的强降水过程的水汽来源追踪而言,适当延长追踪天数十分必要。
  • 图  1  2021年7月17~22日河南以及附近区域实况日降水量(单位:mm)分布。左上角数字表示日降水量累积的截止时间,例如,图a中“1800”代表7月17日00时(协调世界时,下同)至18日00时。黑色实线指示河南省及其市界

    Figure  1.  Distributions of observed daily precipitation (units: mm) in the region around Henan from 17 July to 22 July 2021. In the upper left corner of each panel, the number represents the deadline for accumulated daily precipitation. For example, in Fig. a, “1800” represents 0000 UTC 17 July to 0000 UTC 18 July 2021. The black solid line indicates Henan Province and its municipal boundaries

    图  2  10 d(左列,2021年7月12日00时至22日00时)和暴雨时段(右列,2021年7月19日00时至22日00时)平均的(a、b)500 hPa位势高度(黑色实线,单位:dagpm)、850 hPa风场(箭头,单位:m s−1)、200 hPa大于或等于30 m s−1的风矢量(蓝色风向杆,单位:m s−1),(c、d)自地面积分到300 hPa的水汽通量(矢量,单位:kg m−1 s−1)与水汽通量散度(阴影,单位:10−3 kg m−2 s−1),(e、f)近地面2 m高度的比湿(单位:g kg−1),(g、h)整层大气可降水量(单位:kg m−2)。紫色轮廓线表示河南省界

    Figure  2.  Ten days (left column, 0000 UTC 12 July to 0000 UTC 22 July 2021) and the rainstorm period (right column, 0000 UTC 19 July to 0000 UTC 22 July 2021) averaged (a, b) 500-hPa geopotential height (black solid lines, units: dagpm), 850-hPa wind field (arrows, units: m s−1), 200-hPa wind speed greater than or equal to 30 m s−1 (blue barbs, units: m s−1), (c, d) water vapor flux (vectors, units: kg m−1 s−1) and water vapor flux divergence (shadings, units: 10−3 kg m−2 s−1) integrated from the ground to 300 hPa, (e, f) 2-m specific humidity (units: g kg−1), (g, h) the precipitable water (units: kg m−2) in the entire atmosphere. The purple outline indicates the boundary of Henan Province

    图  3  (a)暴雨时段(2021年7月19日00时至22日00时)累积降水量(单位:mm,黑色方框区域表示目标降水区域),(b)地形(阴影,单位:m)、850 hPa流场(矢量箭头,单位:m s−1)。黑色轮廓线表示河南省界

    Figure  3.  (a) Accumulated precipitation (shadings, units: mm; black box indicates the target precipitation area) of the rainstorm period (0000 UTC 19 July to 0000 UTC 22 July 2021) and (b) topography (shadings, units: m) and 850-hPa flow field (arrows, units: m s−1). Black outlines indicate the boundary of Henan Province

    图  4  2021年7月12日03时至22日00时(a)目标气块运动轨迹以及(b)表面水通量(E–P)分布(填色,单位:mm)。图a中,轨迹颜色代表气块距离地面的高度(单位:m);紫色星号“*”表示气块轨迹起点,为了清晰显示,气块轨迹间隔10条绘制;红色方框为目标区域;黑色粗实线为聚类后的轨迹,红色数字代表每类聚类轨迹所占的比例。图b中,黑色方框表示划分的不同水汽源区,A–F分别表示欧亚大陆中部地区(A)、河南暴雨区北侧亚洲大陆区域(B)、黄海—日本海—东北亚大陆区域(C)、河南南侧中国中东部大陆区域(D)、中南半岛—中国南海区域(E)、西北太平洋区域(F),黄色方框表示河南暴雨区(T)

    Figure  4.  (a) Trajectories of the target particles and (b) surface water flux (E–P) distribution (shadings, units: mm) from 0000 UTC 12 July to 0000 UTC 22 July 2021. In Fig. a, the color of the trajectories represents the height (units: m) of particles from the ground; the purple asterisks “*” indicate the starting points of the trajectories; the particles’ trajectories are drawn at ten intervals to clearly display; the red box denotes the target region; the black thick solid lines are the clustered trajectories and the red numbers represent the proportion of each type of clustered trajectories. In Fig. b, the black boxes represent different moisture source regions, where A–F represent the central Eurasian continent (A), the Asian continental region to the north of the Henan heavy rainfall region (B), the Yellow Sea–Sea of Japan–Northeast Asia continental region (C), the central and eastern continental area of China on the south side of Henan (D), the Indo–China Peninsula–South China Sea area (E), and the Northwest Pacific area (F), respectively. The yellow box indicates the heavy rainfall area of Henan (T)

    图  5  2021年7月12日03时至22日00时各源区(a)对目标降水区的水汽贡献率(横坐标大写字母含义同图4,Total为所有考察的区域贡献率之和)和(b)水汽总摄取量占目标区域水汽总释放量的百分比。图b中,绿色、橙色和蓝色直方图分别对应目标区域释放、沿途损耗和到达目标区域但未释放部分,直方图上的数字分别对应各源区三部分水汽占该源区水汽摄取总量的百分比

    Figure  5.  (a) Moisture contribution rate of each source to the target precipitation area (uppercase letters on the abscissa have the same meaning as in Fig. 4, “Total” is the sum of all observed regional contribution rates) and (b) percentage of total moisture uptake of each source to total moisture release in the target area from 0300 UTC 12 July to 0000 UTC 22 July 2021. In Fig. b, the green, orange, and blue histograms correspond to the release in the target area, loss along the way, and the part reaching the target area but not released, respectively, numbers on the histogram are the percentages of the three parts of moisture to the total moisture intake of source region

    图  6  图4,但为延长向前追踪天数(2021年7月10日03时至22日00时)的结果

    Figure  6.  As in Fig. 4, but the results of extending the forward tracking days (0300 UTC 10 July to 0000 UTC 22 July 2021)

    图  7  图5,但为延长向前追踪天数(2021年7月10日03时至22日00时)的结果

    Figure  7.  As in Fig. 5, but the results of extending the forward tracking days (0300 UTC 10 July to 0000 UTC 22 July 2021)

    图  8  “21·7”河南暴雨的大气环流和主要水汽来源概念模型。字母“G”和“D”分别代表500 hPa上的高、低压环流;大和小红色热带气旋符号分别代表“烟花”和“查帕卡”;绿色箭头表示主要水汽输送路径,箭头粗细指示轨迹数目多少(即水汽输送通道大小);绿色“+”代表主要水汽源区,其线段粗细表示水汽贡献的相对大小;紫色轮廓指示河南省

    Figure  8.  Schematic of atmospheric circulation and main moisture sources for the rainstorm in Henan in July 2021. Letters “G” and “D” represent high- and low-pressure circulation at 500 hPa, respectively. Large and small red tropical cyclone symbols represent typhoons “In-Fa” and “Cempaka,” respectively. Green arrows indicate the main water vapor transport paths, and the thickness of the arrows indicates the number of trajectories (that is, the size of the water vapor transport channel). The green “+” represents the main moisture source, and its thickness represents the relative magnitude of the water vapor contribution. The purple outline indicates Henan Province

  • [1] Bonne J L, Masson-Delmotte V, Cattani O, et al. 2014. The isotopic composition of water vapour and precipitation in Ivittuut, southern Greenland [J]. Atmospheric Chemistry and Physics, 14(9): 4419−4439. doi: 10.5194/acp-14-4419-2014
    [2] 陈斌, 徐祥德, 施晓晖. 2011. 拉格朗日方法诊断2007年7月中国东部系列极端降水的水汽输送路径及其可能蒸发源区 [J]. 气象学报, 69(5): 810−818. doi: 10.11676/qxxb2011.071

    Chen Bin, Xu Xiangde, Shi Xiaohui. 2011. Estimating the water vapor transport pathways and associated sources of water vapor for the extreme rainfall event over east of China in July 2007 using the Lagrangian method [J]. Acta Meteorologica Sinica (in Chinese), 69(5): 810−818. doi: 10.11676/qxxb2011.071
    [3] 陈晓晨, 徐影, 姚遥. 2015. 不同升温阈值下中国地区极端气候事件变化预估 [J]. 大气科学, 39(6): 1123−1135. doi: 10.3878/j.issn.1006-9895.1502.14224

    Chen Xiaochen, Xu Ying, Yao Yao. 2015. Changes in climate extremes over China in a 2°C, 3°C, and 4°C warmer world [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(6): 1123−1135. doi: 10.3878/j.issn.1006-9895.1502.14224
    [4] Cheng T F, Lu M Q. 2020. Moisture source–receptor network of the East Asian summer monsoon land regions and the associated atmospheric steerings [J]. J. Climate, 33(21): 9213−9231. doi: 10.1175/JCLI-D-19-0868.1
    [5] 丁一汇, 张建云. 2009. 暴雨洪涝[M]. 北京: 气象出版社, 16–23

    Ding Yihui, Zhang Jianyun. 2009. Heavy Rainfalls and Floods (in Chinese) [M]. Beijing: China Meteorological Press, 16–23.
    [6] 丁一汇, 柳艳菊, 宋亚芳. 2020. 东亚夏季风水汽输送带及其对中国大暴雨与洪涝灾害的影响 [J]. 水科学进展, 31(5): 629−643. doi: 10.14042/j.cnki.32.1309.2020.05.001

    Ding Yihui, Liu Yanju, Song Yafang. 2020. East Asian summer monsoon moisture transport belt and its impact on heavy rainfalls and floods in China [J]. Advances in Water Science (in Chinese), 31(5): 629−643. doi: 10.14042/j.cnki.32.1309.2020.05.001
    [7] Dorling S R, Davies T D, Pierce C E. 1992. Cluster analysis: A technique for estimating the synoptic meteorological controls on air and precipitation chemistry—Method and applications [J]. Atmospheric Environment. Part A. General Topics, 26(14): 2575−2581. doi: 10.1016/0960-1686(92)90110-7
    [8] Eltahir E A B, Bras R L. 1996. Precipitation recycling [J]. Rev. Geophys., 34(3): 367−378. doi: 10.1029/96RG01927
    [9] 傅刚, 刘珊, 李晓东, 等. 2019. “大气河”研究进展回顾 [J]. 中国海洋大学学报(自然科学版), 49(10): 10−17. doi: 10.16441/j.cnki.hdxb.20190251

    Fu Gang, Liu Shan, Li Xiaodong, et al. 2019. Review on “Atmospheric River” research [J]. Periodical of Ocean University of China (in Chinese), 49(10): 10−17. doi: 10.16441/j.cnki.hdxb.20190251
    [10] Gustafsson M, Rayner D, Chen D L. 2010. Extreme rainfall events in southern Sweden: Where does the moisture come from? [J]. Tellus A, 62(5): 605−616. doi: 10.1111/j.1600-0870.2010.00456.x
    [11] Hu Q, Jiang D B, Lang X M, et al. 2018. Moisture sources of the Chinese Loess Plateau during 1979–2009 [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 509: 156–163. doi:10.1016/j.palaeo.2016.12.030
    [12] Huang Y J, Cui X P. 2015a. Moisture sources of an extreme precipitation event in Sichuan, China, based on the Lagrangian method [J]. Atmos. Sci. Lett., 16(2): 177−183. doi: 10.1002/asl2.562
    [13] Huang Y J, Cui X P. 2015b. Moisture sources of torrential rainfall events in the Sichuan Basin of China during summers of 2009–13 [J]. Journal of Hydrometeorology, 16(4): 1906−1917. doi: 10.1175/JHM-D-14-0220.1
    [14] Huang Y J, Cui X P, Li X F. 2016. A three-dimensional WRF-based precipitation equation and its application in the analysis of roles of surface evaporation in a torrential rainfall event [J]. Atmospheric Research, 169: 54−64. doi: 10.1016/j.atmosres.2015.09.026
    [15] Jiang J, Zhou T J, Wang H L, et al. 2020. Tracking moisture sources of precipitation over central Asia: A study based on the water-source-tagging method [J]. J. Climate, 33(23): 10339−10355. doi: 10.1175/JCLI-D-20-0169.1
    [16] 梁卓然, 江志红, 刘征宇, 等. 2011. 基于拉格朗日方法的气流轨迹模式在判定南海夏季风爆发时间中的应用分析 [J]. 热带气象学报, 27(3): 357−364. doi: 10.3969/j.issn.1004.4965.2011.03.008

    Liang Zhuoran, Jiang Zhihong, Liu Zhengyu, et al. 2011. Analysis on application of an airflow trajectory model based on Lagrangian method in determination of the onset date of the South China Sea summer monsoon [J]. Journal of Tropical Meteorology (in Chinese), 27(3): 357−364. doi: 10.3969/j.issn.1004.4965.2011.03.008
    [17] 罗亚丽, 孙继松, 李英, 等. 2020. 中国暴雨的科学与预报: 改革开放40年研究成果 [J]. 气象学报, 78(3): 419−450. doi: 10.11676/qxxb2020.057

    Luo Yali, Sun Jisong, Li Ying, et al. 2020. Science and prediction of heavy rainfall over China: Research progress since the reform and opening-up of the People’s Republic of China [J]. Acta Meteorologica Sinica (in Chinese), 78(3): 419−450. doi: 10.11676/qxxb2020.057
    [18] Munday C, Washington R, Hart N. 2021. African low-level jets and their importance for water vapor transport and rainfall [J]. Geophys. Res. Lett., 48(1): e2020GL090999. doi: 10.1029/2020GL090999
    [19] Myhre G, Alterskjær K, Stjern C W, et al. 2019. Frequency of extreme precipitation increases extensively with event rareness under global warming [J]. Scientific Reports, 9(1): 16063. doi: 10.1038/s41598-019-52277-4
    [20] Nieto R, Gimeno L. 2019. A database of optimal integration times for Lagrangian studies of atmospheric moisture sources and sinks [J]. Scientific Data, 6(1): 59. doi: 10.1038/s41597-019-0068-8
    [21] Numaguti A. 1999. Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using an atmospheric general circulation model [J]. J. Geophys. Res. :Atmos., 104(D2): 1957−1972. doi: 10.1029/1998JD200026
    [22] Pfahl S, Wernli H. 2008. Air parcel trajectory analysis of stable isotopes in water vapor in the eastern Mediterranean [J]. J. Geophys. Res.: Atmos., 113(D20): D20104. doi: 10.1029/2008JD009839
    [23] Saha S, Moorthi S, Wu X R, et al. 2014. The NCEP climate forecast system version 2 [J]. J. Climate, 27(6): 2185−2208. doi: 10.1175/JCLI-D-12-00823.1
    [24] Sodemann H, Schwierz C, Wernli H. 2008. Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence [J]. J. Geophys. Res. :Atmos., 113(D3): D03107. doi: 10.1029/2007JD008503
    [25] Stohl A, James P. 2004. A Lagrangian analysis of the atmospheric branch of the global water cycle. Part I: Method description, validation, and demonstration for the August 2002 flooding in central Europe [J]. Journal of Hydrometeorology, 5(4): 656−678. doi: 10.1175/1525-7541(2004)005<0656:alaota>2.0.co;2
    [26] Stohl A, James P. 2005. A Lagrangian analysis of the atmospheric branch of the global water cycle. Part II: Moisture transports between Earth’s ocean basins and river catchments [J]. Journal of Hydrometeorology, 6(6): 961−984. doi: 10.1175/jhm470.1
    [27] Stohl A, Hittenberger M, Wotawa G. 1998. Validation of the Lagrangian particle dispersion model FLEXPART against large-scale tracer experiment data [J]. Atmos. Environ., 32(24): 4245−4264. doi: 10.1016/s1352-2310(98)00184-8
    [28] Sun B, Wang H J. 2014. Moisture sources of semiarid grassland in China using the Lagrangian particle model FLEXPART [J]. J. Climate, 27(6): 2457−2474. doi: 10.1175/JCLI-D-13-00517.1
    [29] 孙建华, 赵思雄, 傅慎明, 等. 2013. 2012年7月21日北京特大暴雨的多尺度特征 [J]. 大气科学, 37(3): 705−718. doi: 10.3878/j.issn.1006-9895.2013.12202

    Sun Jianhua, Zhao Sixiong, Fu Shenming, et al. 2013. Multi-scale characteristics of record heavy rainfall over Beijing area on July 21, 2012 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(3): 705−718. doi: 10.3878/j.issn.1006-9895.2013.12202
    [30] 陶诗言. 1980. 中国之暴雨[M]. 北京: 科学出版社, 1−225

    Tao Shiyan. 1980. Heavy Rainfalls in China (in Chinese) [M]. Beijing: Science Press, 1−225.
    [31] Trenberth K E. 1998. Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change [J]. Climatic Change, 39(4): 667−694. doi: 10.1023/A:1005319109110
    [32] van der Ent R J, Tuinenburg O A. 2017. The residence time of water in the atmosphere revisited [J]. Hydrol. Earth Syst. Sci., 21(2): 779−790. doi: 10.5194/hess-21-779-2017
    [33] Vázquez M, Nieto R, Liberato M L R, et al. 2020. Atmospheric moisture sources associated with extreme precipitation during the peak precipitation month [J]. Weather and Climate Extremes, 30: 100289. doi: 10.1016/j.wace.2020.100289
    [34] 王美月, 王磊, 李谢辉, 等. 2022. 三江源地区暴雨的水汽输送源地及路径研究 [J]. 高原气象, 41(1): 68−78. doi: 10.7522/j.issn.1000-0534.2020.00097

    Wang Meiyue, Wang Lei, Li Xiehui, et al. 2022. Study on water vapor transport source and path of rainstorm in Sanjiangyuan area [J]. Plateau Meteorology (in Chinese), 41(1): 68−78. doi: 10.7522/j.issn.1000-0534.2020.00097
    [35] Wang N, Zeng X M, Zheng Y Q, et al. 2018. The atmospheric moisture residence time and reference time for moisture tracking over China [J]. Journal of Hydrometeorology, 19(7): 1131−1147. doi: 10.1175/JHM-D-17-0204.1
    [36] Weyhenmeyer C E, Burns S J, Waber H N, et al. 2002. Isotope study of moisture sources, recharge areas, and groundwater flow paths within the eastern Batinah coastal plain, Sultanate of Oman [J]. Water Resour. Res., 38(10): 1184. doi: 10.1029/2000WR000149
    [37] 薛一迪, 崔晓鹏. 2020. “威马逊”(1409)降水水汽来源和源区定量贡献分析 [J]. 大气科学, 44(2): 341−355. doi: 10.3878/j.issn.1006-9895.1903.18245

    Xue Yidi, Cui Xiaopeng. 2020. Moisture sources and quantitative analyses of source contributions of precipitation associated with Rammasun (1409) [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(2): 341−355. doi: 10.3878/j.issn.1006-9895.1903.18245
    [38] Zhang L X, Zhao D, Zhou T J, et al. 2021. Moisture origins and transport processes for the 2020 Yangtze River valley record-breaking Mei-yu rainfall [J]. Adv. Atmos. Sci., 38(12): 2125−2136. doi: 10.1007/s00376-021-1097-8
    [39] Zhao N, Manda A, Guo X, et al. 2021. A Lagrangian view of moisture transport related to the heavy rainfall of July 2020 in Japan: Importance of the moistening over the subtropical regions [J]. Geophys. Res. Lett., 48(5): e2020GL091441. doi: 10.1029/2020GL091441
  • 加载中
图(8)
计量
  • 文章访问数:  210
  • HTML全文浏览量:  65
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-23
  • 录用日期:  2022-05-12
  • 网络出版日期:  2022-05-13
  • 刊出日期:  2022-11-24

目录

    /

    返回文章
    返回