高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新疆塔里木盆地2021年“7·19”暴雨水汽特征的初步分析

张俊兰 李如琦 李娜 李海花 施俊杰

张俊兰, 李如琦, 李娜, 等. 2023. 新疆塔里木盆地2021年“7·19”暴雨水汽特征的初步分析[J]. 大气科学, 46(X): 1−18 doi: 10.3878/j.issn.1006-9895.2204.21153
引用本文: 张俊兰, 李如琦, 李娜, 等. 2023. 新疆塔里木盆地2021年“7·19”暴雨水汽特征的初步分析[J]. 大气科学, 46(X): 1−18 doi: 10.3878/j.issn.1006-9895.2204.21153
ZHANG Junlan, LI Ruqi, LI Na, et al. 2023. Preliminary Analysis of the Water Vapor Characteristics of the “July 19” Heavy Rain in 2021 in the Tarim Basin, Xinjiang [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(X): 1−18 doi: 10.3878/j.issn.1006-9895.2204.21153
Citation: ZHANG Junlan, LI Ruqi, LI Na, et al. 2023. Preliminary Analysis of the Water Vapor Characteristics of the “July 19” Heavy Rain in 2021 in the Tarim Basin, Xinjiang [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(X): 1−18 doi: 10.3878/j.issn.1006-9895.2204.21153

新疆塔里木盆地2021年“7·19”暴雨水汽特征的初步分析

doi: 10.3878/j.issn.1006-9895.2204.21153
基金项目: 第二次青藏高原综合科学考察研究项目2019QZKK0102,国家自然科学基金重点项目42030612
详细信息
    作者简介:

    张俊兰,女,1967年出生,正研级高级工程师,主要从事天气预报研究。 E-mail: zjl_0997@sina.com

  • 中图分类号: P44

Preliminary Analysis of the Water Vapor Characteristics of the “July 19” Heavy Rain in 2021 in the Tarim Basin, Xinjiang

Funds: The Second Tibetan Plateau Scientific Expedition and Research (STEP) program (Grant 2019QZKK0102),National Natural Science Foundation of China (Grant 42030612)
  • 摘要: 新疆塔里木盆地是世界著名干旱区,年均降水量不足100 mm,2021年7月19日前后盆地出现罕见暴雨过程,最大累积雨量和日雨量为107.3 mm和78.5 mm(均达新疆大暴雨量级),通过分析此次暴雨水汽特征得出以下结论:(1)首次提出南亚高压“匀双体”概念,100 hPa南亚高压“西高东低”转“匀双体”过程中,500 hPa伊朗高压与高原反气旋、中亚低压与印度低压以及高原涡共同架构了“两高夹一低”环流形势。(2)揭示了在伊朗高压稳定反气旋环流下,阿拉伯海与孟加拉湾北部洋面的水汽进入盆地的大尺度环流及物理机制。阐明盆地暴雨水汽主源地为地中海及以西洋面、中亚地区、阿拉伯海和孟加拉湾,水汽输送有西方、东转西、西南+南方三条路径与轨迹,指出伊朗高压南侧东风和中亚地区西风在“东转西”水汽输送中具有关键作用,阿拉伯海和孟加拉湾的东风北上后与西风带汇合形成的水汽输送带是此次暴雨发生的重要条件。(3)水汽由西、南、东三个边界输入,东边界水汽收入主要源于低层东风,西和南两个边界水汽收入源于中高层三条路径,“西南+南方”路径水汽输送致使南边界水汽输入贡献明显大于西边界。塔里木盆地暴雨既要重视中亚低压,更要关注能否出现中亚低压与印度低压、高原涡共存并影响的大气环流场。
  • 图  1  2021年7月18日20:00至22日20:00塔里木盆地(a)累计降雨量(单位:mm)分布以及(b)三个暴雨点逐小时雨量(单位:mm)随时间的变化。(a)中白色圆点为三个暴雨点,右侧黑色字体为站号

    Figure  1.  (a) Distribution of cumulative rainfall and (b) time variation of hourly rainfall of three rainstorm spots in the Tarim Basin from 2000 UTC on July 18 to 2000 UTC on July 22, 2021. In (a), the white dots are three rainstorm spots, and the black font on the right is the station numbers

    图  2  2021年7月(a、c)19日20:00和(b、d)22日08:00(a、b)100 hPa和(c、d)500 hPa位势高度(单位:dagpm)叠加风场(单位:m s−1)分布。棕色实线为槽线,“D”为气旋低中心,“G”为反气旋高中心,红色点为阿克苏地区Y8608暴雨点

    Figure  2.  Geopotential height (units: dagpm) superimposed wind field (units: m s−1) of (a, b) 100 hPa and (c, d) 500 hPa at (a, c) 2000 UTC July 19 and (b, d) 0800 UTC July 22, 2021. The solid brown line is the groove line, “D” is the low center of the cyclone, “G” is the high center of the anticyclone, and the red “·” is the Y8608 rainstorm spot in the Aksu area

    图  3  2021年7月15~22日欧亚范围500 hPa主要天气系统变化轨迹,箭头方向代表天气系统移动方向,箭头位置为系统最终位置,轨迹线中空心圆圈依次代表15日08:00、19日20:00和21日20:00,红色圆点为阿克苏地区Y8608暴雨点

    Figure  3.  Change track of major weather systems at 500 hPa in the Eurasian range from July 15 to July 22, 2021. The direction and position of the arrow represent the moving direction and the final position of the weather system, respectively. The hollow circles in the trajectory sequentially represent 0800 UTC on July 15, 2000 UTC on July 19, and 2000 UTC on July 21, and the red dot is the Y8608 rainstorm spot in the Aksu area

    图  4  2021年7月(a)17日08:00、(b)19日08:00、(c)19日20:00和(d)21日20:00 500 hPa高度场(等值线,单位:dagpm)、风场(箭头,单位:m s−1)和正涡度平流(填色,单位:10−8 s−2)分布。“D1”和“D2”分别代表中亚低压和印度低压,玫红带箭头线代表印度低压附近正涡度平流输送,褐色圆点为Y8608暴雨点

    Figure  4.  Distributions of height (the contours, units: dagpm), wind (the arrow, units: m s−1), and positive vorticity advection (the shaded, units: 10−8 s−2) at 500 hPa at (a) 0800 UTC July 17, (b) 0800 UTC July 19, (c) 2000 UTC July 19, and (d) 2000 UTC July 21, 2021. “D1” and “D2” represent the central Asian low pressure and the Indian low pressure, respectively, the rose-red arrow line represents the advective transport of positive vorticity near the Indian low pressure, and the brown dot is the rainstorm point of Y8608

    图  5  2021年新疆塔里木盆地“7·19”暴雨高低空天气系统三维空间结构(蓝色实线为位势高度,棕色实线为槽线,“D”和“G”分别表示位势高度“低中心”和“高中心”,红色带箭头实线为水汽输送路径,玫红色带箭头虚线为西南急流,白色虚线圆圈为暴雨区)

    Figure  5.  Three-dimensional spatial structure of the high and low altitude weather systems of the “July 19” rainstorm in Xinjiang, Tarim Basin, in 2021. The blue solid line is the geopotential height, the brown solid line is the trough line, “D” and “G” indicate the geopotential height “low center” and “high center,” respectively, and the red solid line with an arrow is the water vapor transmission path, the rose-red dotted line with an arrow is the southwest jet, and the white dotted circle is the rainstorm area

    图  6  2021年7月(a)16日08:00、(b)17日14:00、(c)18日14:00和(d)21日08:00地面至300 hPa水汽通量整层积分(填色,单位:10−1 g cm−1 hPa−1 s−1)叠加500 hPa风场(带箭头短线,单位:m s−1)分布。红色带箭头实线为水汽输送路径

    Figure  6.  Water vapor flux of integral layer (shaded, units: 10−1 g cm−1 hPa−1 s−1) superimposed 500-hPa wind field (short lines with an arrow, units: m s−1) from the ground to 300 hPa at (a) 0800 UTC July 16, (b) 1400 UTC July 17, (c) 1400 UTC July 18, and (d) 0800 UTC July 21, 2021. The red solid line with an arrow is the water vapor transmission path.

    图  7  2021年7月16~21日(a、c)600 hPa和(b、d、e、f)500 hPa水汽通量(填色,单位:10−1 g cm−1 hPa−1 s−1)叠加风场(风矢量,单位:m s−1)分布:(a)17日08:00;(b)18日20:00;(c)16日14:00;(d)18日08:00;(e)21日08:00;(f)21日14:00。蓝色带箭头实线为水汽输送路径,“D”为气旋低中心,“G”为反气旋高中心,黑色圆点为阿克苏地区Y8608暴雨点

    Figure  7.  Distributions of water vapor flux (shaded, units: 10−1 g cm−1 hPa−1 s−1) superimposed wind field (wind vecter, units: m s−1) of the 500–600 hPa from July 16 to 21, 2021: (a) 0800 UTC July 17; (b) 2000 UTC July 18; (c) 1400 UTC July 16; (d) 0800 UTC July 18; (e) 0800 UTC July 21; and (f) 1400 UTC July 21. The blue solid line with arrows is the water vapor transport path, “D” is the low center of the cyclone, “G” is the high center of the anticyclone, and the black dots is the Y8608 rainstorm spot in the Aksu area

    图  8  2021年7月18~23日沿(a)Y8608站、(b)Y6130站和Y6252站水汽通量(填色,单位:10−1 g cm−1 hPa−1 s−1)和水汽通量散度(虚线,单位:10−8 g cm−2 hPa−1 s−1)叠加风场(单位:m s−1)时间—高度剖面

    Figure  8.  Time–height vertical section of water vapor flux (shaded, units: 10−1 g cm−1 hPa−1 s−1) and water vapor flux divergence (dotted lines, units: 10−8 g cm−2 hPa−1 s−1) superimposed wind field (units: m s−1)

    图  9  HYSPLIT后向轨迹模式后推暴雨点附近240 h的水汽输送轨迹:(a)西方轨迹(源于地中海及以西),沿(42°N,81°E);(b)东转西轨迹I(蓝线,源于阿拉伯海),沿(39°N,76°E);(c)东转西轨迹II(绿线,源于孟加拉湾),沿(41°N,83°E);(d)东转西轨迹III(绿线和蓝线,源于阿拉伯海和孟加拉湾),沿(37°N,82°E);(e)西南轨迹(蓝线和绿线,源于地中海及以西),沿(42°N,82°E)

    Figure  9.  HYSPLIT backward trajectory model pushes forward the water vapor transport trajectory of the largest and second heaviest rainstorm points for 240 hours (a) western trajectory (from the Mediterranean and its west, along 42°N, 81°E); (b) east to west trajectory I (from Arabian sea, blue line, along 39°N, 76°E); (c) east to west trajectory II (from bay of Bengal, green line, along 41°N, 83°E); (d) east to west trajectory III (from Arabian sea and bay of Bengal, green and blue line, along 37°N, 82°E); (e) southwest trajectory (from the Mediterranean and its west, blue and green line, along 42°N, 82°E).

    图  10  2021年7月16日08:00至22日20:00在(34°~42°N,73°~90°E)长方形内塔里木盆地4个边界水汽收支变化(单位:107 t)

    Figure  10.  Changes in the water vapor budget (units: 107 t) in the (34°–42°N, 73°–90°E) rectangle in four borders of the Tarim Basin from 0800 UTC to 2200 UTC on July 16, 2021

    图  11  2021年7月(a)17日20:00、(b)19日14:00和(c)21日14:00 FY2G卫星红外云图云顶亮温(填色,单位:K)叠加500 hPa风场(单位:m s−1)。白色带箭头实线为云系路径,“G”为伊朗高压中心,“D”为中亚和印度低压中心,带箭头黄虚线为风矢方向,棕色虚线为切变线

    Figure  11.  FY2G satellite infrared cloud image (shaded, units: K) superimposed on a 500 hPa wind field (units: m s−1) at (a) 2000 UTC 17, (b) 1400 UTC 19, and (c) 1400 UTC July 21, 2021. The white solid line with an arrow is the path of the cloud system, “G” is the Iranian high-pressure center, “D” is the central Asian and Indian low-pressure center, the yellow dashed line with an arrow is the wind vector direction, and the brown dashed line is the shear line

  • [1] 郭楠楠, 周玉淑, 邓国. 2019. 中亚低涡背景下阿克苏地区一次强降水天气分析 [J]. 气象学报, 77(4): 686−700. doi: 10.11676/qxxb2019.040

    Guo Nannan, Zhou Yushu, Deng Guo. 2019. Analysis of a severe precipitation process in Aksu area under the background of the central Asian vortex [J]. Acta Meteorologica Sinica (in Chinese), 77(4): 686−700. doi: 10.11676/qxxb2019.040
    [2] 黄艳, 俞小鼎, 陈天宇, 等. 2018. 南疆短时强降水概念模型及环境参数分析 [J]. 气象, 44(8): 1033−1041. doi: 10.7519/j.issn.1000-0526.2018.08.005

    Huang Yan, Yu Xiaoding, Chen Tianyu, et al. 2018. Analysis of conceptual models and ambient parameter of short-time severe rainfall in South Xinjiang [J]. Meteorological Monthly (in Chinese), 44(8): 1033−1041. doi: 10.7519/j.issn.1000-0526.2018.08.005
    [3] 李如琦, 李建刚, 唐冶, 等. 2016. 中亚低涡引发的两次南疆西部暴雨中尺度特征对比分析 [J]. 干旱气象, 34(2): 297−304.

    Li Ruqi, Li Jiangang, Tang Ye, et al. 2016. Comparison analysis on the mesoscale characteristics of two rainstorms processes caused by central Asian vortex in the west of South Xinjiang [J]. Journal of Arid Meteorology (in Chinese), 34(2): 297−304.
    [4] 李如琦, 李建刚, 王江, 等. 2018. 南疆西部暴雨过程的动力热力结构分析 [J]. 干旱区地理, 41(1): 9−16. doi: 10.13826/j.cnki.cn65-1103/x.2018.01.002

    Li Ruqi, Li Jiangang, Wang Jiang, et al. 2018. Dynamic and thermal structure characteristics of the rainstorms in the west of South Xinjiang [J]. Arid Land Geography (in Chinese), 41(1): 9−16. doi: 10.13826/j.cnki.cn65-1103/x.2018.01.002
    [5] 李霞, 汤浩, 杨莲梅. 2011. 1961—2000年塔里木盆地夏季空中水汽的变化 [J]. 沙漠与绿洲气象, 5(2): 6−11. doi: 10.3969/j.issn.1002-0799.2011.02.002

    Li Xia, Tang Hao, Yang Lianmei. 2011. Variation of water vapor over Tarim Basin in summer during 1961–2000 [J]. Desert and Oasis Meteorology (in Chinese), 5(2): 6−11. doi: 10.3969/j.issn.1002-0799.2011.02.002
    [6] 梁梅, 林卉娇, 徐建军, 等. 2020. 1990-2018年北印度洋热带气旋统计特征 [J]. 广东海洋大学学报, 40(4): 51−59. doi: 10.3969/j.issn.1673-9159.2020.04.008

    Liang Mei, Lin Huijiao, Xu Jianjun, et al. 2020. Statistical analysis on the characteristics of tropical cyclone in the northern Indian Ocean from 1990 to 2018 [J]. Journal of Guangdong Ocean University (in Chinese), 40(4): 51−59. doi: 10.3969/j.issn.1673-9159.2020.04.008
    [7] 刘蕊, 杨青. 2010. 新疆大气水汽通量及其净收支的计算和分析 [J]. 中国沙漠, 30(5): 1221−1228.

    Liu Rui, Yang Qing. 2010. Calculation and analysis of water vapor transportation and its net income in Xinjiang [J]. Journal of Desert Research (in Chinese), 30(5): 1221−1228.
    [8] 刘雯, 李建刚, 杨莲梅. 2017. 2016年夏末南疆地区中尺度对流系统(MCS)活动特征 [J]. 沙漠与绿洲气象, 11(4): 9−16. doi: 10.12057/j.issn.1002-0799.2017.04.002

    Liu Wen, Li Jiangang, Yang Lianmei. 2017. Characteristics of the MCS over southern Xinjiang during the late summer of 2016 [J]. Desert and Oasis Meteorology (in Chinese), 11(4): 9−16. doi: 10.12057/j.issn.1002-0799.2017.04.002
    [9] 牟欢, 赵丽, 王旭, 等. 2021. 基于拉格朗日方法的一次南疆西部特大暴雨水汽来源分析 [J]. 冰川冻土, 43(4): 1157−1165. doi: 10.7522/j.issn.1000-0240.2021.0037

    Mou Huan, Zhao Li, Wang Xu, et al. 2021. Water vapor source analysis of a severe torrential rain in the west of southern Xinjiang based on the Lagrangian method [J]. Journal of Glaciology and Geocryology (in Chinese), 43(4): 1157−1165. doi: 10.7522/j.issn.1000-0240.2021.0037
    [10] 努尔比亚·吐尼亚孜, 杨利鸿, 米日古丽·米吉提. 2017. 南疆西部一次突发极端暴雨成因分析 [J]. 沙漠与绿洲气象, 11(6): 75−82. doi: 10.12057/j.issn.1002-0799.2017.06.011

    Nurbiye Tunyaz, Yang Lihong, Mehregul Mejet. 2017. Cause analaysis on a sudden extreme rainstorm in the west of southern Xinjiang [J]. Desert and Oasis Meteorology (in Chinese), 11(6): 75−82. doi: 10.12057/j.issn.1002-0799.2017.06.011
    [11] 青藏高原气象科学研究拉萨会战组. 1981. 夏半年青藏高原500毫巴低涡切变线的研究 [M]. 北京: 科学出版社. Qinghai-Tibet Plateau Meteorological Science Research Lhasa Battle Team. 1981. Study on the 500hPa Shear Line of the Qinghai–Tibet Plateau Vortex in the Summer Half Year (in Chinese) [M]. Beijing: Science Press.
    [12] 热孜瓦古·孜比布拉, 吕新生, 王鹏飞, 等. 2021. 2020年春季南疆西部一次极端暴雨成因分析 [J]. 沙漠与绿洲气象, 15(3): 20−28. doi: 10.12057/j.issn.1002-0799.2021.03.003

    Reziwagu Zibibula, Lyu Xinsheng, Wang Pengfei, et al. 2021. Analysis of an extreme rainstorm in the west of southern Xinjiang in spring 2020 [J]. Desert and Oasis Meteorology (in Chinese), 15(3): 20−28. doi: 10.12057/j.issn.1002-0799.2021.03.003
    [13] 任伟, 任燕, 李兰兰. 2019. 基于HYSPLIT模式的济南机场一次暴雨过程的水汽输送特征分析 [J]. 海洋气象学报, 2019,39(1): 116−122. doi: 10.19513/j.cnki.issn2096-3599.2019.01.012

    Ren Wei, Ren Yan, Li Lanlan. 2019. Analysis of water vapor transport characteristics during a torrential rain at Jinan airport based on the HYSPLIT model [J]. Journal of Marine Meteorology (in Chinese), 2019,39(1): 116−122. doi: 10.19513/j.cnki.issn2096-3599.2019.01.012
    [14] 孙颖姝, 周玉淑, 王咏青. 2019. 一次双高空急流背景下南疆强降水事件的动力过程和水汽源分析 [J]. 大气科学, 43(5): 1041−1054. doi: 10.3878/j.issn.1006-9895.1812.18168

    Sun Yingshu, Zhou Yushu, Wang Yongqing. 2019. Analysis of dynamic process and moisture source on a heavy precipitation event in southern Xinjiang associated with the double upper-level jet [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(5): 1041−1054. doi: 10.3878/j.issn.1006-9895.1812.18168
    [15] 王江, 李如琦, 黄艳, 等. 2015. 2013年南疆西部一次罕见暴雨的成因 [J]. 干旱气象, 33(6): 910−917. doi: 10.13826/j.cnki.cn65-1103/x.2018.01.002

    Wang Jiang, Li Ruqi, Huang Yan, et al. 2015. Cause of a rare rainstorm in the west of southern Xinjiang in 2013 [J]. Journal of Arid Meteorology (in Chinese), 33(6): 910−917. doi: 10.13826/j.cnki.cn65-1103/x.2018.01.002
    [16] 肖开提·多莱特, 汤浩, 李霞, 等. 1997. “96·7”新疆特大暴雨的水汽条件研究 [J]. 新疆气象, 20(1): 8−11.

    Duolaite Xiaokaiti, Tang Hao, Li Xia, et al. 1997. Research on water vaper conditions of “96·7” extreme rainstorm in Xinjiang [J]. Xinjiang Meteorology (in Chinese), 20(1): 8−11.
    [17] 肖开提·多莱特. 2005. 新疆降水量级标准的划分 [J]. 新疆气象, 28(3): 7−8. doi: 10.3969/j.issn.1002-0799.2005.03.003

    Duolaite Xiaokaiti. 2005. Formulation of precipitation intensity standard of Xinjiang [J]. Bimonthly of Xinjiang Meteorology (in Chinese), 28(3): 7−8. doi: 10.3969/j.issn.1002-0799.2005.03.003
    [18] 杨莲梅, 史玉光, 汤浩. 2010. 新疆春季降水异常的环流和水汽特征 [J]. 高原气象, 29(6): 1464−1473.

    Yang Lianmei, Shi Yuguang, Tang Hao. 2010. Characteristics of atmospheric circulation and water vapor for spring precipitation anomaly in Xinjiang [J]. Plateau Meteorology (in Chinese), 29(6): 1464−1473.
    [19] 杨莲梅, 张云惠, 汤浩. 2012. 2007年7月新疆三次暴雨过程的水汽特征分析 [J]. 高原气象, 31(4): 963−973.

    Yang Lianmei, Zhang Yunhui, Tang Hao. 2012. Analyses on water vapor characteristics in three heavy rainstorm processes of Xinjiang in July 2007 [J]. Plateau Meteorology (in Chinese), 31(4): 963−973.
    [20] 杨莲梅, 张云惠, 黄艳, 等. 2020. 新疆短时强降水诊断分析暨预报手册[M]. 北京: 气象出版社, 129–130

    Yang Lianmei, Zhang Yunhui, Huang Yan, et al. 2020. Xinjiang Short-term Heavy Rain Diagnostic Analysis and Forecast Manual (in Chinese) [M]. Beijing: China Meteorological Press, 129–130.
    [21] 杨青, 刘晓阳, 崔彩霞, 等. 2010. 塔里木盆地水汽含量的计算与特征分析 [J]. 地理学报, 65(7): 853−862. doi: 10.11821/xb201007009

    Yang Qing, Liu Xiaoyang, Cui Caixia, et al. 2010. The computation and characteristics analysis of water vapor contents in the Tarim Basin, China [J]. Acta Geographica Sinica (in Chinese), 65(7): 853−862. doi: 10.11821/xb201007009
    [22] 杨霞, 张云惠, 张超, 等. 2020. 南疆西部“5·21”极端大暴雨成因分析 [J]. 沙漠与绿洲气象, 14(1): 21−30. doi: 10.12057/j.issn.1002-0799.2020.01.003

    Yang Xia, Zhang Yunhui, Zhang Chao, et al. 2020. Causation analysis of the 21 May 2018 torrential rain in the west of southern Xinjiang [J]. Desert and Oasis Meteorology (in Chinese), 14(1): 21−30. doi: 10.12057/j.issn.1002-0799.2020.01.003
    [23] 曾勇, 杨莲梅, 张迎新. 2017. 新疆西部一次大暴雨过程水汽输送轨迹模拟 [J]. 沙漠与绿洲气象, 11(3): 47−54. doi: 10.12057/j.issn.1002-0799.2017.03.007

    Zeng Yong, Yang Lianmei, Zhang Yinxin. 2017. Simulation of water vapor transport trajectories of a heavy rain in western Xinjiang [J]. Desert and Oasis Meteorology (in Chinese), 11(3): 47−54. doi: 10.12057/j.issn.1002-0799.2017.03.007
    [24] 曾钰婷, 张宇, 周可, 等. 2020. 青藏高原那曲地区夏季水汽来源及输送特征分析 [J]. 高原气象, 39(3): 467−476. doi: 10.7522/j.issn.1000-0534.2019.00120

    Zeng Yuting, Zhang Yu, Zhou Ke. 2020. Analysis on the source and transport characteristics of moisture in Naqu of the Qinghai–Tibetan in summer [J]. Plateau Meteorology (in Chinese), 39(3): 467−476. doi: 10.7522/j.issn.1000-0534.2019.00120
    [25] 张家宝, 邓子风. 1987a. 新疆降水概论[M]. 北京: 气象出版社, 22–24

    Zhang Jiabao, Deng Zifeng. 1987. Introduction to Xinjiang Precipitation (in Chinese) [M]. Beijing: China Meteorological Press, 22–24.
    [26] 张家宝, 邓子风. 1987b. 新疆降水概论[M]. 北京: 气象出版社, 400pp

    Zhang Jiabao, Deng Zi feng. 1987. Introduction to Xinjiang Precipitation (in Chinese) [M]. Beijing: China Meteorological Press, 400pp.
    [27] 张俊兰, 杨霞, 施俊杰. 2021. 青藏高原天气系统对昆仑山北坡一次罕见暴雨过程影响分析 [J]. 高原气象, 40(5): 1002−1011. doi: 10.7522/j.issn.1000-0534.2020.00111

    Zhang Junlan, Yang Xia, Shi Junjie. 2021. Analysis of the influence of the Qinghai–Xizang Plateau weather system on a rare rainstorm process on the northern slope of Kunlun Mountain [J]. Plateau Meteorology (in Chinese), 40(5): 1002−1011. doi: 10.7522/j.issn.1000-0534.2020.00111
    [28] 张学文, 张家宝. 2006. 新疆气象手册[M]. 北京: 气象出版社, 91–92

    Zhang Xuewen, Zhang Jiabao. 2006. Xinjiang Meteorological Manual (in Chinese) [M]. Beijing: Meteorological Press, 91–92.
    [29] 张云惠, 王勇, 支俊, 等. 2009. 南疆西部一次强降雨的多普勒天气雷达分析 [J]. 沙漠与绿洲气象, 3(6): 17−20. doi: 10.3969/j.issn.1002-0799.2009.06.004

    Zhang Yunhui, Wang Yong, Zhi Jun, et al. 2009. Analysis on the Doppler echo of a strong rain in the western South-Xinjiang [J]. Desert and Oasis Meteorology (in Chinese), 3(6): 17−20. doi: 10.3969/j.issn.1002-0799.2009.06.004
    [30] 张云惠, 陈春艳, 杨莲梅, 等. 2013. 南疆西部一次罕见暴雨过程的成因分析 [J]. 高原气象, 32(1): 191−200. doi: 10.7522/j.issn.1000-0534.2012.00019

    Zhang Yunhui, Chen Chunyan, Yang Lianmei, et al. 2013. Cause analysis on rare rainstorm in west of southern Xinjiang [J]. Plateau Meteorology (in Chinese), 32(1): 191−200. doi: 10.7522/j.issn.1000-0534.2012.00019
    [31] 张云惠, 李海燕, 蔺喜禄, 等. 2015. 南疆西部持续性暴雨环流背景及天气尺度的动力过程分析 [J]. 气象, 41(7): 816−824. doi: 10.7519/j.issn.1000-0526.2015.07.003

    Zhang Yunhui, Li Haiyan, Lin Xilu, et al. 2015. Analysis of continuous rainstorm circulation background and the dynamic process of synoptic–scale in west of southern Xinjiang [J]. Meteorological Monthly (in Chinese), 41(7): 816−824. doi: 10.7519/j.issn.1000-0526.2015.07.003
    [32] 赵克明, 黄艳, 于碧馨. 2017. 2013年南疆西部暴雨天气的水汽特征 [J]. 气象科技, 45(1): 122−130. doi: 10.19517/j.1671-6345.20160026

    Zhao Keming, Huang Yan, Yu Bixin. 2017. Water vapor characteristics of rainstorm weather processes over western South Xingjiang in 2013 [J]. Meteorological Science and Technology (in Chinese), 45(1): 122−130. doi: 10.19517/j.1671-6345.20160026
    [33] 周雪英, 贾健, 刘国强, 等. 2018. 2017年春季南疆中部两次强降水天气环流配置及干冷空气侵入特征对比 [J]. 气象科技, 46(6): 1201−1210. doi: 10.19517/j.1671-6345.20170633

    Zhou Xueying, Jia Jian, Liu Guoqiang, et al. 2018. Comparative analysis of circulation background and dry intrusion of two spring heavy rainfall events in South Xinjiang [J]. Meteorological Science and Technology (in Chinese), 46(6): 1201−1210. doi: 10.19517/j.1671-6345.20170633
    [34] 庄晓翠, 李博渊, 赵江伟, 等. 2022. 天山南坡暖季暴雨过程的水汽来源及输送特征 [J]. 干旱气象, 40(1): 30−40. doi: 10.11755/j.issn.1006-7639(2022)-01-0030

    Zhuang Xiaocui, Li Boyuan, Zhao Jiangwei, et al. 2022. Water vapor source and transport characteristics of rainstorm processes in warm season on southern slope of the Tianshan Mountains [J]. Journal of Arid Meteorology (in Chinese), 40(1): 30−40. doi: 10.11755/j.issn.1006-7639(2022)-01-0030
  • 加载中
图(11)
计量
  • 文章访问数:  169
  • HTML全文浏览量:  20
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-18
  • 录用日期:  2022-08-01
  • 网络出版日期:  2022-08-31

目录

    /

    返回文章
    返回