高级检索
王美蓉, 周顺武, 孙阳, 等. 2022. CMIP6全球气候模式对青藏高原中东部地表感热通量模拟能力评估[J]. 大气科学, 46(5): 1225−1238. doi: 10.3878/j.issn.1006-9895.2204.21169
引用本文: 王美蓉, 周顺武, 孙阳, 等. 2022. CMIP6全球气候模式对青藏高原中东部地表感热通量模拟能力评估[J]. 大气科学, 46(5): 1225−1238. doi: 10.3878/j.issn.1006-9895.2204.21169
WANG Meirong, ZHOU Shunwu, SUN Yang, et al. 2022. Assessment of the Spring Sensible Heat Flux over the Central and Eastern Tibetan Plateau Simulated by CMIP6 Multi-models [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(5): 1225−1238. doi: 10.3878/j.issn.1006-9895.2204.21169
Citation: WANG Meirong, ZHOU Shunwu, SUN Yang, et al. 2022. Assessment of the Spring Sensible Heat Flux over the Central and Eastern Tibetan Plateau Simulated by CMIP6 Multi-models [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(5): 1225−1238. doi: 10.3878/j.issn.1006-9895.2204.21169

CMIP6全球气候模式对青藏高原中东部地表感热通量模拟能力评估

Assessment of the Spring Sensible Heat Flux over the Central and Eastern Tibetan Plateau Simulated by CMIP6 Multi-models

  • 摘要: 利用青藏高原(以下简称高原)气象台站常规观测资料、国家青藏高原科学数据中心的青藏高原地气相互作用过程高分辨率(逐小时)综合观测数据集(2005~2016)、国际耦合模式比较计划第六阶段(CMIP6)的历史模拟试验数据和卫星辐射资料,定量评估了12个全球气候模式对1979~2014年高原中东部地表感热通量的模拟能力,并对其模拟偏差进行了成因分析。结果表明,CMIP6模式可较好地重现高原地表感热通量的年循环和季节平均的空间分布型,但数值较计算感热通量偏低,主要表现为对感热通量大值区严重低估。区域平均而言,12个模式模拟的春季高原中东部感热通量的时间演变序列整体较计算感热通量偏低,其中偏差最大的模式为MIROC6,其多年均值仅为计算值的1/3左右。进一步分析发现多模式模拟的春季高原10 m高度处风速和地气温差分别偏强和偏弱,说明CMIP6模拟的春季高原感热通量偏低可主要归因于地气温差的模拟冷偏差。地气温差的模拟冷偏差在高原中东部地区普遍存在,且地表温度和空气温度均存在明显冷偏差,尤其地表温度偏差更大,这很大程度上可能与CMIP6多模式模拟的春季高原降水偏强有关。

     

    Abstract: On the basis of historical observations at 77 meteorological stations and a long-term dataset of integrated land–atmosphere interaction observations on the Tibetan Plateau (TP) (2005–2016), the historical simulations of the 12 models that participated in CMIP6 (the sixth phase of the coupled model intercomparison project), and GEWEX-SRB satellite radiation products, the authors have quantitatively examined the ability of CMIP6 models to simulate the surface sensible heat flux over the TP during 1979–2014 and analyzed the possible causes of simulation biases. The results show that CMIP6 models can well reproduce the annual cycle and seasonal spatial patterns of the sensible heat over the TP, albeit with lower amplitudes than the calculated sensible heat flux, particularly showing obvious underestimation over the strong, sensible heat regions. The area-weighted long-term spring sensible heat fluxes over the central and eastern TP simulated by the 12 models are generally lower than calculated values, with the minimum sensible heat amplitude in the MIROC6 simulation, which has approximately 1/3 of the climatological amplitude in calculated sensible heat flux. Furthermore, the authors find that the wind speed at 10-m height and the springtime land–air temperature difference simulated by models are larger and smaller than the calculated values, respectively, implying that the lower sensible heat amplitudes simulated by CMIP6 multi-models are mainly due to the cold biases of the land–air temperature difference. Spatially, the cold biases of the land–air temperature difference widely exist over the central and eastern TP, in which, more specifically, the surface and air temperatures show the cold biases but with colder biases in surface temperature. The cold biases mechanistically are likely related to the simulated stronger precipitation over the TP in CMIP6 models.

     

/

返回文章
返回