高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CMIP6全球气候模式对青藏高原中东部地表感热通量模拟能力评估

王美蓉 周顺武 孙阳 王军 马淑俊 余忠水

王美蓉, 周顺武, 孙阳, 等. 2022. CMIP6全球气候模式对青藏高原中东部地表感热通量模拟能力评估[J]. 大气科学, 46(5): 1225−1238 doi: 10.3878/j.issn.1006-9895.2204.21169
引用本文: 王美蓉, 周顺武, 孙阳, 等. 2022. CMIP6全球气候模式对青藏高原中东部地表感热通量模拟能力评估[J]. 大气科学, 46(5): 1225−1238 doi: 10.3878/j.issn.1006-9895.2204.21169
WANG Meirong, ZHOU Shunwu, SUN Yang, et al. 2022. Assessment of the Spring Sensible Heat Flux over the Central and Eastern Tibetan Plateau Simulated by CMIP6 Multi-models [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(5): 1225−1238 doi: 10.3878/j.issn.1006-9895.2204.21169
Citation: WANG Meirong, ZHOU Shunwu, SUN Yang, et al. 2022. Assessment of the Spring Sensible Heat Flux over the Central and Eastern Tibetan Plateau Simulated by CMIP6 Multi-models [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(5): 1225−1238 doi: 10.3878/j.issn.1006-9895.2204.21169

CMIP6全球气候模式对青藏高原中东部地表感热通量模拟能力评估

doi: 10.3878/j.issn.1006-9895.2204.21169
基金项目: 国家自然科学基金项目41807434、41605039,中国气象局气象软科学项目2022ZDIANXM28
详细信息
    作者简介:

    王美蓉,女,1987年出生,讲师,主要从事青藏高原气候动力学、季节内振荡和亚洲季风变率的研究。E-mail: wmr@nuist.edu.cn

  • 中图分类号: P467

Assessment of the Spring Sensible Heat Flux over the Central and Eastern Tibetan Plateau Simulated by CMIP6 Multi-models

Funds: National Natural Science Foundation of China (Grants 41807434, 41605039), Meteorological Soft Science of China Meteorological Administration (Grant 2022ZDIANXM28)
  • 摘要: 利用青藏高原(以下简称高原)气象台站常规观测资料、国家青藏高原科学数据中心的青藏高原地气相互作用过程高分辨率(逐小时)综合观测数据集(2005~2016)、国际耦合模式比较计划第六阶段(CMIP6)的历史模拟试验数据和卫星辐射资料,定量评估了12个全球气候模式对1979~2014年高原中东部地表感热通量的模拟能力,并对其模拟偏差进行了成因分析。结果表明,CMIP6模式可较好地重现高原地表感热通量的年循环和季节平均的空间分布型,但数值较计算感热通量偏低,主要表现为对感热通量大值区严重低估。区域平均而言,12个模式模拟的春季高原中东部感热通量的时间演变序列整体较计算感热通量偏低,其中偏差最大的模式为MIROC6,其多年均值仅为计算值的1/3左右。进一步分析发现多模式模拟的春季高原10 m高度处风速和地气温差分别偏强和偏弱,说明CMIP6模拟的春季高原感热通量偏低可主要归因于地气温差的模拟冷偏差。地气温差的模拟冷偏差在高原中东部地区普遍存在,且地表温度和空气温度均存在明显冷偏差,尤其地表温度偏差更大,这很大程度上可能与CMIP6多模式模拟的春季高原降水偏强有关。
  • 图  1  高原80个常规气象台站(黑色实心点)和6个最新的综合观测台站(红色五角星)地理位置分布。彩色阴影表示地形高度(单位:m),蓝色框区域(27°~39°N,85°~105°E)为下文中CMIP6模拟数据的区域平均范围,红色框内是互相做对比的两测站位置

    Figure  1.  Geographical distributions of the 80 meteorological stations (black solid dots) and the six latest integrated observation stations (red stars) on the Tibetan Plateau (TP). Colored shadings indicate terrain height (units: m), the blue box indicates the regional average range (27°–39°N, 85°–105°E) of the CMIP6 (the sixth phase of the Coupled Model Intercomparison Project) simulations below, and the red box shows the positions of the two stations being compared to each other

    图  2  高原高分辨率综合观测数据集(红线)与Duan2018(黑线)的5个对应测站地表感热通量(单位:W m−2)的逐月时间演变。左下角数字为两条序列的相关系数

    Figure  2.  Temporal evolutions of sensible heating flux (units: W m−2) at the corresponding five stations for the high-resolution integrated observational dataset (red lines) and Duan2018 (black lines). The correlation coefficients of the two sequences are shown in the bottom left corner of the figures

    图  3  1979~2014年气候平均的高原中东部地表感热通量的年循环序列。黑色实线为77个测站平均,即Duan2018,12条虚线分别为12个模式的区域(27°~39°N,85°~105°E)平均,红色实线则为12条虚线的中位数

    Figure  3.  Annual cycle of the climatological mean sensible heating flux over the central and eastern TP during 1979–2014. The black and red solid lines represent the sensible heating flux of the 77-station average (Duan2018) and median of the 12-CMIP6 modes, respectively. The other 12 dashed lines indicate the regional (27°–39°N, 85°–105°E) averaged sensible heating flux of the 12 models

    图  4  1979~2014年平均的高原中东部(a、c)Duan2018和(b、d)多模式模拟的(a、b)春季、(c、d)夏季高原感热通量的空间分布(单位:W m−2

    Figure  4.  Spatial distributions of the (a, b) spring and (c, d) summer mean sensible heating flux (units: W m−2) over the central and eastern TP for the (a, c) Duan2018 and (b, d) CMIP6 multi-models during 1979–2014

    图  5  1979~2014年春季观测、模拟的高原中东部(a)感热通量、(b)10 m风速和(c)地气温差的时间演变序列。黑色实线为Duan2018,红色实线为所有模式序列的中位数,其余曲线分别为12个模式的模拟结果

    Figure  5.  Temporal evolutions of the (a) sensible heating flux, (b) wind speed at 10-m height, and (c) land–air temperature differences for observations (Duan2018) and multi-models during 1979–2014. The black and red solid lines indicate the elements of Duan2018 and the median of the multi-models, respectively, the other 12 dashed lines indicate the regional averaged elements of the 12 models

    图  6  1979~2014年12个模式模拟结果与观测在感热通量(红色柱)、风速(绿色柱)、地气温差(黄色柱)和系数C(灰色柱)上的偏差的相对变化

    Figure  6.  Relative variations in the deviation between the 12-models simulations and observation for sensible heating flux (red bars), wind speed (green bars), land–air temperature difference (yellow bars), and coefficient C (gray bars) during 1979–2014

    图  7  1979~2014年观测(左)和CMIP6模式集合平均(右)的春季高原中东部(a、d)地气温差、(b、e)地表温度和(c、f)气温的空间分布

    Figure  7.  Spatial distributions of the (a, d) land–air temperature difference, (b, e) surface temperature, and (c, f) air temperature over the central and eastern TP for the observation (left) and ensemble mean of CMIP6 models (right) during 1979–2014

    图  8  1979~2014年平均的(a、c)观测和(b、d)CMIP6多模式模拟的春季高原(a、b)地表净短波辐射通量(来自GEWEX-SRB卫星辐射资料,单位:W m−2)和(c、d)降水量距平(单位:mm d−1)的空间分布

    Figure  8.  Spatial distributions of the spring mean (a, b) net shortwave radiation flux (from the GEWEX-SRB dataset, units: W m−2) and (c, d) precipitation anomalies (units: mm d−1) over the central and eastern TP for the (a, c) observations and (b, d) CMIP6 multi-model simulations during 1979–2014

    表  1  本文使用的12个模式的名称、国家、模拟集合数、分辨率和参考文献

    Table  1.   List of 12 models used in this study, including the model names, countries, numbers of ensembles, resolutions, and data references

    模式名称国家模拟集合数分辨率参考文献
    BCC-CSM2-MR中国3160×320Xin et al., 2018
    BCC-ESM1中国364×128Wu et al., 2020
    CESM2美国10192×288Danabasoglu et al., 2020
    CESM2-WACCM美国3192×288Danabasoglu, 2019
    CNRM-CM6-1法国10128×256Voldoire et al., 2019
    CNRM-ESM2-1法国5128×256Séférian et al., 2019
    GISS-E2.1G美国1090×144NASA Goddard Institute for Space Studies (NASA/GISS), 2018b
    GISS-E2.1H美国1090×144NASA Goddard Institute for Space Studies (NASA/GISS), 2018a
    IPSL-CM6A-LR法国31143×144BoucherO2020
    MIROC6日本10128×256Tatebe et al., 2019
    MRI-ESM2.0日本5160×320Yukimoto2019
    UKESM1.0-LL英国6144×192Tang2019
    下载: 导出CSV

    表  2  高原高分辨率综合观测数据集与Duan2018中对应站点的相关信息,包括站点名称,经、纬度及对应测站间的直线距离

    Table  2.   List of the stations in the high-resolution integrated observational dataset and Duan2018, including the station names, latitude, longitude, and the straight-line distance between the two corresponding stations

    综合观测数据集Duan2018
    站点名称纬度(°N)经度(°E)站点名称纬度(°N)经度(°E)两站点直线距离/km
    BJ31.3791.90Nagqu31.2992.0416
    QOMS28.3686.95Dingri28.3887.0510
    SETORS29.7794.73Linzhi29.4094.2065
    NADORS33.3979.70Shiquanhe32.3080.05125
    NAMORS30.7790.98Tangxiong30.2991.0654
    下载: 导出CSV

    表  3  1979~2014年观测、12个模式及12个模式平均计算所得高原中东部区域春季平均感热通量(单位:W m−2)、感热通量年际变率(单位:W m−2)、10 m风速(单位:m s−1)和地气温差(单位:°C)的气候态

    Table  3.   Climatological mean of the spring sensible heating flux (units: W m−2) and its interannual variability (units: W m−2), wind speed (units: m s−1) at 10-m height, and land–air temperature differences (units: °C) obtained from observations, 12-models simulations, mean of 12-models simulations over the central and eastern during 1979–2014

    感热通量/W m−2感热通量年际变率/W m−210 m风速/m s−1地气温差/°C
    观测62.861.902.734.52
    BCC-CSM2-MR32.251.685.660.49
    BCC-ESM135.391.674.640.82
    CESM247.693.223.581.49
    CESM2-WACCM47.771.563.571.53
    CNRM-CM6-143.164.333.460.39
    CNRM-ESM2-146.561.423.460.61
    GISS-E2.1G53.475.233.120.02
    GISS-E2.1H41.203.133.430.14
    IPSL-CM6A-LR37.751.724.671.75
    MIROC621.290.892.790.94
    MRI-ESM2.035.121.495.900.57
    UKESM1.0-LL48.361.092.392.20
    12个模式的中位数41.881.643.530.76
    下载: 导出CSV
  • [1] Boucher O, Servonnat J, Albright A L, et al. 2020. Presentation and evaluation of the IPSL-CM6A-LR climate model [J]. J. Adv. Model. Earth Syst., 12(7): e2019MS002010. doi: 10.1029/2019MS002010
    [2] Chen L X, Reiter E R, Feng Z Q. 1985. The atmospheric heat source over the Tibetan Plateau: May–August 1979 [J]. Mon. Wea. Rev., 113(10): 1771−1790. doi: 10.1175/1520-0493(1985)113<1771:TAHSOT>2.0.CO;2
    [3] Danabasoglu G. 2019. NCAR CESM2-WACCM model output prepared for CMIP6 CMIP [J]. Earth System Grid Federation. doi: 10.22033/ESGF/CMIP6.10024
    [4] Danabasoglu G, Lamarque J F, Bacmeister J, et al. 2020. The Community Earth System Model version 2 (CESM2) [J]. J. Adv. Model. Earth Syst., 12(2): e2019MS001916. doi: 10.1029/2019MS001916
    [5] Ding Y H, Ren G Y, Zhao Z C, et al. 2007. Detection, causes and projection of climate change over China: An overview of recent progress [J]. Adv. Atmos. Sci., 24(6): 954−971. doi: 10.1007/s00376-007-0954-4
    [6] Duan A M, Wu G X. 2008. Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part I: Observations [J]. J. Climate, 21(13): 3149−3164. doi: 10.1175/2007JCLI1912.1
    [7] 段安民, 刘屹岷, 吴国雄. 2003. 4~6月青藏高原热状况与盛夏东亚降水和大气环流的异常 [J]. 中国科学(D辑), 33(10): 997–1004. Duan A M, Liu Y M, Wu G X. 2005. Heating status of the Tibetan Plateau from April to June and rainfall and atmospheric circulation anomaly over East Asia in midsummer [J]. Sci. China Ser. D Earth Sci. , 48(2): 250–257. doi: 10.3969/j.issn.1674-7240.2003.10.011
    [8] Duan A M, Li F, Wang M R, et al. 2011. Persistent weakening trend in the spring sensible heat source over the Tibetan Plateau and its impact on the Asian summer monsoon [J]. J. Climate, 24(21): 5671−5682. doi: 10.1175/JCLI-D-11-00052.1
    [9] Duan A M, Wang M R, Lei Y H, et al. 2013. Trends in summer rainfall over China associated with the Tibetan Plateau sensible heat source during 1980–2008 [J]. J. Climate, 26(1): 261−275. doi: 10.1175/JCLI-D-11-00669.1
    [10] Duan A M, Liu S F, Zhao Y, et al. 2018. Atmospheric heat source/sink dataset over the Tibetan Plateau based on satellite and routine meteorological observations [J]. Big Earth Data, 2(2): 179−189. doi: 10.1080/20964471.2018.1514143
    [11] Flohn H. 1957. Large-scale aspects of the “summer monsoon” in South and East Asia [J]. J. Meteor. Soc. Japan, 35A: 180−186. doi: 10.2151/jmsj1923.35A.0_180
    [12] Gao Y H, Chen F, Jiang Y S. 2020. Evaluation of a convection-permitting modeling of precipitation over the Tibetan Plateau and its influences on the simulation of snow-cover fraction [J]. J. Hydrometeorol., 21(7): 1531−1548. doi: 10.1175/JHM-D-19-0277.1
    [13] 胡芩, 姜大膀, 范广洲. 2014. CMIP5全球气候模式对青藏高原地区气候模拟能力评估 [J]. 大气科学, 38(5): 924−938. doi: 10.3878/j.issn.1006-9895.2013.13197

    Hu Q, Jiang D B, Fan G Z. 2014. Evaluation of CMIP5 models over the Qinghai−Tibetan Plateau [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38(5): 924−938. doi: 10.3878/j.issn.1006-9895.2013.13197
    [14] Ji Z M, Kang S C. 2013. Double-nested dynamical downscaling experiments over the Tibetan Plateau and their projection of climate change under two RCP scenarios [J]. J. Atmos. Sci., 70(4): 1278−1290. doi: 10.1175/JAS-D-12-0155.1
    [15] Jones P W. 1999. First- and second-order conservative remapping schemes for grids in spherical coordinates [J]. Mon. Wea. Rev, 127(9): 2204−2210. doi: 10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2
    [16] Lu J H, Cai M. 2009. Seasonality of polar surface warming amplification in climate simulations [J]. Geophys. Res. Lett., 36(16): L16704. doi: 10.1029/2009GL040133
    [17] 马耀明. 2020. 青藏高原地气相互作用过程高分辨率(逐小时)综合观测数据集(2005~2016) [J]. 国家青藏高原科学数据中心. doi: 10.11888/Meteoro.tpdc.270910

    Ma Y M. 2020. A long-term dataset of integrated land–atmosphere interaction observations on the Tibetan Plateau (2005–2016) [J]. National Tibetan Plateau Data Center. doi: 10.11888/Meteoro.tpdc.270910
    [18] Ma Y M, Hu Z Y, Xie Z P, et al. 2020. A long-term (2005–2016) dataset of hourly integrated land–atmosphere interaction observations on the Tibetan Plateau [J]. Earth Syst. Sci. Data, 12(4): 2937−2957. doi: 10.5194/essd-12-2937-2020
    [19] Monin A S, Obukhov A M. 1954. Basic laws of turbulent mixing in the atmosphere near the ground [J]. Tr. Akad. Nauk. SSSR Geofiz. Inst., 24(151): 163−187.
    [20] NASA Goddard Institute for Space Studies (NASA/GISS). 2018a. NASA-GISS GISS-E2.1H model output prepared for CMIP6 CMIP [EB/OL]. http://cera-www.dkrz.de/WDCC/meta/CMIP6/CMIP6.CMIP.NASA-GISS.GISS-E2-1-H. [2021-05-30]
    [21] NASA Goddard Institute for Space Studies (NASA/GISS). 2018b. NASA-GISS GISS-E2.1G model output prepared for CMIP6 CMIP [EB/OL]. https://doi.org/10.22033/ESGF/CMIP6.1400. [2021-05-30]
    [22] 任余龙, 李毅, 李红, 等. 2021. 地表能量平衡方程在新疆地表温度模拟中的应用 [J]. 中国沙漠, 41(3): 137−146. doi: 10.7522/j.issn.1000-694X.2021.00032

    Ren Y L, Li Y, Li H, et al. 2021. Application of surface energy balance equation in simulation of surface temperature in Xinjiang, China [J]. J. Desert Res., 41(3): 137−146. doi: 10.7522/j.issn.1000-694X.2021.00032
    [23] Séférian R, Nabat P, Michou M, et al. 2019. Evaluation of CNRM earth system model, CNRM-ESM2-1: Role of earth system processes in present-day and future climate [J]. J. Adv. Model. Earth Syst., 11(12): 4182−4227. doi: 10.1029/2019MS001791
    [24] Su F G, Duan X L, Chen D L, et al. 2013. Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau [J]. J. Climate, 26(10): 3187−3208. doi: 10.1175/JCLI-D-12-00321.1
    [25] Tang Y M, Rumbold S, Ellis R, et al. 2019. MOHC UKESM1.0-LL model output prepared for CMIP6 CMIP historical [J]. Earth System Grid Federation. doi: 10.22033/ESGF/CMIP6.6113
    [26] Tatebe H, Ogura T, Nitta T, et al. 2019. Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6 [J]. Geosci. Model Dev., 12(7): 2727−2765. doi: 10.5194/gmd-12-2727-2019
    [27] Voldoire A, Saint-Martin D, Sénési S, et al. 2019. Evaluation of CMIP6 DECK experiments with CNRM-CM6-1 [J]. J. Adv. Model. Earth Syst., 11(7): 2177−2213. doi: 10.1029/2019MS001683
    [28] 王欢, 李栋梁. 2020. 21世纪初青藏高原感热年代际增强对中国东部季风雨带关键区夏季降水年代际转折的影响 [J]. 地球物理学报, 63(2): 412−426. doi: 10.6038/cjg2020M0397

    Wang H, Li D L. 2020. Impacts of decadal variability in sensible heat over the Tibetan Plateau on decadal transition of summer precipitation over dominant regions of monsoon rainfall band in eastern China since the early 2000s [J]. Chinese J. Geophys. (in Chinese), 63(2): 412−426. doi: 10.6038/cjg2020M0397
    [29] 王美蓉, 周顺武, 段安民. 2012. 近30年青藏高原中东部大气热源变化趋势: 观测与再分析资料对比 [J]. 科学通报, 57(2–3): 178–188. Wang M R, Zhou S W, Duan A M. 2012. Trend in the atmospheric heat source over the central and eastern Tibetan Plateau during recent decades: Comparison of observations and reanalysis data [J]. Chinese Sci. Bull. , 57(5): 548–557. doi: 10.1007/s11434-011-4838-8
    [30] Wang M R, Wang J, Chen D L, et al. , 2019. Recent recovery of the boreal spring sensible heating over the Tibetan Plateau will continue in CMIP6 future projections [J]. Environ. Res. Lett. , 14(12): 124066.
    [31] 王淑瑜, 熊喆. 2004. 5个海气耦合模式模拟东亚区域气候能力的初步分析 [J]. 气候与环境研究, 9(2): 240−250. doi: 10.3969/j.issn.1006-9585.2004.02.002

    Wang S Y, Xiong Z. 2004. The preliminary analysis of 5 coupled ocean–atmosphere global climate models simulation of regional climate in Asia [J]. Climatic Environ. Res. (in Chinese), 9(2): 240−250. doi: 10.3969/j.issn.1006-9585.2004.02.002
    [32] Wang Z Q, Duan A M, Wu G X. 2014. Time-lagged impact of spring sensible heat over the Tibetan Plateau on the summer rainfall anomaly in East China: Case studies using the WRF model [J]. Climate Dyn. , 42(11–12): 2885–2898. doi: 10.1007/s00382-013-1800-2
    [33] Wu G X, Guan Y, Liu Y M, et al. 2012. Air–sea interaction and formation of the Asian summer monsoon onset vortex over the bay of Bengal [J]. Climate Dyn. , 38(1–2): 261–279. doi: 10.1007/s00382-010-0978-9
    [34] Wu G X, Duan A M, Liu Y M, et al. 2015. Tibetan Plateau climate dynamics: Recent research progress and outlook [J]. Nat. Sci. Rev., 2(1): 100−116. doi: 10.1093/nsr/nwu045
    [35] 吴国雄, 刘屹岷, 何编, 等. 2018. 青藏高原感热气泵影响亚洲夏季风的机制 [J]. 大气科学, 42(3): 488−504. doi: 10.3878/j.issn.1006-9895.1801.17279

    Wu G X, Liu Y M, He B, et al. 2018. Review of the impact of the Tibetan Plateau sensible heat driven air-pump on the Asian summer monsoon [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(3): 488−504. doi: 10.3878/j.issn.1006-9895.1801.17279
    [36] Wu T W, Zhang F, Zhang J, et al. 2020. Beijing Climate Center Earth System Model version 1 (BCC-ESM1): Model description and evaluation of aerosol simulations [J]. Geosci. Model Dev., 13(3): 977−1005. doi: 10.5194/gmd-13-977-2020
    [37] Wu Y, Liu Y M, Li J D, et al. 2021. Analysis of surface temperature bias over the Tibetan Plateau in the CAS FGOALS-f3-L model [J]. Atmos. Ocean. Sci. Lett., 14(1): 100012. doi: 10.1016/j.aosl.2020.100012
    [38] Xie Z L, Wang B. 2021. Summer heat sources changes over the Tibetan Plateau in CMIP6 models [J]. Environ. Res. Lett., 16(6): 064060. doi: 10.1088/1748-9326/ac0279
    [39] Xin X G, Zhang J, Zhang F, et al. 2018. BCC BCC-CSM2MR model output prepared for CMIP6 CMIP [J]. Earth System Grid Federation. doi: 10.22033/ESGF/CMIP6.1725
    [40] 徐蓉蓉, 梁信忠, 段明铿. 2021. CWRF对青藏高原气温和降水模拟效果的综合评估 [J]. 大气科学学报, 44(1): 104−117. doi: 10.13878/j.cnki.dqkxxb.20201103001

    Xu R R, Liang X Z, Duan M K. 2021. Evaluation of CWRF simulation of temperature and precipitation on the Qinghai−Tibet Plateau [J]. Trans. Atmos. Sci. (in Chinese), 44(1): 104−117. doi: 10.13878/j.cnki.dqkxxb.20201103001
    [41] Xu Y, Xu C H. 2012. Preliminary assessment of simulations of climate changes over China by CMIP5 multi-models [J]. Atmos. Oceanic Sci. Lett., 6(5): 489−494. doi: 10.1080/16742834.2012.11447041
    [42] 阳坤, 郭晓峰, 武炳义. 2010. 青藏高原地表感热通量的近期变化趋势 [J]. 中国科学: 地球科学, 40(7): 923–932. Yang K, Guo X F, Wu B Y. 2011. Recent trends in surface sensible heat flux on the Tibetan Plateau [J]. Sci. China Earth Sci. , 54(1): 19–28. doi: 10.1007/s11430-010-4036-6
    [43] 葉篤正, 羅四維, 朱抱真. 1957. 西藏高原及其附近的流場結構和對流層大氣的熱量平衡 [J]. 氣象學報, 28(2): 108−121. doi: 10.11676/qxxb1957.010

    Yeh T C, Lo S W, Chu P C. 1957. The wind structure and heat balance in the lower troposphere over Tibetan Plateau and its surrounding [J]. Acta Meteor. Sinica (in Chinese), 28(2): 108−121. doi: 10.11676/qxxb1957.010
    [44] Yukimoto S, Kawai H, Koshiro T, et al. 2019. The meteorological research institute earth system model version 2.0, MRI-ESM2.0: Description and basic evaluation of the physical component [J]. J. Meteor. Soc. Japan, 97(5): 931−965. doi: 10.2151/jmsj.2019-051
    [45] 张艳, 钱永甫. 2004. 地表感热的时空分布特征及其与邻近海洋海温异常的关系 [J]. 高原气象, 23(3): 330−338. doi: 10.3321/j.issn:1000-0534.2004.03.006

    Zhang Y, Qian Y F. 2004. Temporal and spatial patterns of surface sensible heat flux and their relationship with the SST anomaly over adjacent oceans [J]. Plateau Meteor. (in Chinese), 23(3): 330−338. doi: 10.3321/j.issn:1000-0534.2004.03.006
    [46] 周天军, 邹立维, 陈晓龙. 2019. 第六次国际耦合模式比较计划(CMIP6)评述 [J]. 气候变化研究进展, 15(5): 445−456. doi: 10.12006/j.issn.1673-1719.2019.193

    Zhou T J, Zou L W, Chen X L. 2019. Commentary on the coupled model intercomparison project phase 6 (CMIP6) [J]. Climate Change Res. (in Chinese), 15(5): 445−456. doi: 10.12006/j.issn.1673-1719.2019.193
    [47] Zhu Y Y, Yang S N. 2020. Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5 [J]. Adv. Climate Change Res., 11(3): 239−251. doi: 10.1016/j.accre.2020.08.001
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  449
  • HTML全文浏览量:  84
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-05
  • 录用日期:  2022-04-07
  • 网络出版日期:  2022-04-08
  • 刊出日期:  2022-09-22

目录

    /

    返回文章
    返回