A Numerical Simulation on the Impacts of the Offshore Typhoons on Water Vapor Flux, Dynamic and Thermal Conditions of the Extreme Rainstorm Event in Henan Province in July 2021
-
摘要: 本文利用WRF模式对近海台风“烟花”及“查帕卡”影响2021年7月19日至21日河南极端暴雨的过程进行数值模拟。控制试验(CTL)对台风路径、强度、大尺度环流形势,以及河南暴雨的强度和空间分布型等均给出合理的模拟,基本再现了本次河南极端暴雨的发展过程。敏感性试验表明,在移除台风“烟花”后,副热带高压系统显著南压并在南侧形成东南风急流,河南地区的南风分量减弱、东风增强,东西方向的水汽输送占主导,有利于降水分布型由CTL试验的南—北向转变为东—西向;另一方面,由于低层东南风急流相较于移除“烟花”前的东风急流偏弱,河南降雨区的局地辐合减弱,水汽通量净流入值较CTL试验降低5.81%,且中纬度冷气团西移减慢,引起局地相当位温梯度减弱,最终导致移除台风“烟花”试验的降雨强度偏弱。移除台风“查帕卡”后,大尺度环流形势几乎未受影响,河南南侧的水汽输送略有减弱,因此强降水分布基本与CTL试验类似,降雨强度略有减小。与台风“烟花”相比,“查帕卡”对河南暴雨的影响较弱。Abstract: This study uses the WRF model to numerically simulate the influence of offshore typhoon In-Fa and typhoon Cempaka on the extreme rainstorm process in Henan on 19–21 July 2021. The control (CTL) experiment reasonably captures the tracks and intensities of the two typhoons, the large-scale circulation pattern, the intensity, and spatial distribution pattern of the rainstorm event in Henan, basically reproducing the extreme rainstorm process in Henan. In addition, the sensitivity experiments indicate that after the removal of typhoon In-Fa, the subtropical high extends southward and forms the southeast wind jet in the south, causing the south (east) wind component to obtain weakened (strengthened) around Henan. The water vapor transport in the zonal direction becomes dominant, which is conducive to the transition of the rainfall distribution from the south–north orientation in CTL to the east–west orientation. On the other hand, given that the southeast wind at the low level is weaker than the easterly jet before the removal of typhoon In-Fa, the local convergence at the Henan rainfall area is weakened, and the net water vapor flux is reduced by 5.81% compared with that in CTL experiment. The slowdown in the westward movement of the mid-latitude cold air causes the reduction of the local equivalent potential temperature gradient. Therefore, the rainfall intensity in the removal of typhoon In-Fa experiment is relatively weaker than that in CTL. After the removal of typhoon Cempaka, the large-scale circulation characteristics are almost unaffected, and the water vapor transport on the south side of Henan is slightly weakened. Therefore, the distribution of heavy rainfall is similar to that in CTL, with a slight decrease in rainfall peak. Compared with typhoon In-Fa, typhoon Cempaka has less effect on the rainstorm event in Henan.
-
Key words:
- Henan rainstorm /
- Typhoon In-Fa /
- Typhoon Cempaka /
- Numerical simulation
-
图 1 三组敏感性试验的初始时刻(2021年7月19日08时,北京时,下同)850 hPa(a)台风移除前、(b、d、f)台风移除后以及(c、e、g)被移除的台风位势高度场(阴影,单位:gpm)和风场(矢量,单位:m s−1):(b、c)NOINFA试验;(d、e)NOCEM试验;(f、g)NO2TCs试验
Figure 1. Geopotential height (shadings, units: gpm) and wind fields (vectors, units: m s−1) at 850 hPa of three sensitivity experiments (a) before, (b, d, f) after the typhoons removal procedure, and (c, e, g) the corresponding typhoons at the initial time [0800 BJT (Beijing time) 19 July 2021]: (b, c) NOINFA experiment; (d, e) NOCEM experiment; (f, g) NO2TC experiment
图 2 2021年7月19日08时至21日20时平均的500 hPa位势高度场(等值线,单位:gpm)和距平场(阴影,单位:gpm)、925 hPa水汽通量距平(矢量,单位:20 g s−1 cm−1 hPa−1)。参考气候态为1981~2010年7月均值;深蓝色边框表示河南省省界,黑色圆点表示郑州,红色和橙色台风标志表示此时段内台风“烟花”和“查帕卡”中心的平均位置,下同
Figure 2. Mean geopotential height (contours, units: gpm), climatological geopotential height anomalies (shadings, units: gpm) at 500 hPa, and 925-hPa moisture flux anomalies (vectors, units: 20 g s−1 cm−1 hPa−1) from 0800 BJT 19 to 2000 BJT 21 July 2021. The reference climate state is the mean in July from 1981 to 2010. The navy border and black dot represent the province boundary of Henan Province and the position of Zhengzhou station. The red and orange typhoon symbols denote the averaged center positions for typhoons In-Fa and Cempaka, respectively, the same below
图 3 台风“烟花”实况(CMA,黑线)和模拟(红线:CTL;蓝线:NOCEM)的(a)路径以及(b)强度(实线:中心最低气压;虚线:近地面最大风速)。图a中曲线上的四位数字的前两位表示日期,后两位表示时刻,如2108表示2021年7月21日08时
Figure 3. (a) Track and (b) intensity of the observed [CMA (China Meteorological Administration), black line] and simulated (red line for CTL experiment and blue line for NOCEM experiment) results for typhoon In-Fa. In Fig. a, the first two numbers in curve represent the date, and the last two numbers represent the hour, for example, 2108 denotes 0800 BJT 21 July 2021. In Fig. b, the minimum sea level pressure (SLP) and maximum wind represent the typhoons intensity plotted by solid and dashed line
图 4 D01区域(a、c)再分析数据和(b、d)CTL试验的850 hPa风场(矢量,单位:m s−1)、比湿场(阴影,单位:g kg−1)和500 hPa位势高度场(等值线,单位:gpm)分布:(a、b)2021年7月20日08时;(c、d)2021年7月20日20时。图b中蓝色矩形框区域表示D02模拟区域
Figure 4. Wind (vectors, units: m s−1), specific humidity (shadings, units: g kg−1) at 850 hPa, and 500-hPa geopotential height (contours, units: gpm) in (a, c) the reanalysis data and (b, d) CTL experimental results over region D01 (Domain 01): (a, b) 0800 BJT 20 July 2021; (c, d) 2000 BJT 20 July 2021. The region of D02 (Domain 02) is represented by the blue rectangle in Fig. b
图 5 2021年7月19日14时至21日08时河南地区(a)实况和(b)CTL试验累计降水量分布,(c)实况(黑色)和CTL试验(红色)河南强降水区区域平均的逐3 h累计降水量时间演变。图a、b中黑色虚线矩形框区域代表强降水区(33°~37°N,111°~115°E),黑色三角形代表郑州站
Figure 5. Accumulated precipitation distribution of (a) the observed and (b) CTL experiment over Henan area, (c) time series of the observed (black bars and line) and CTL experiment (red bars and line) for 3-h accumulated precipitation averaged over the heavy rainfall area of Henan from 1400 BJT 19 July to 0800 BJT 21 July 2021. In Figs. a, b, the black dashed rectangle denotes the heavy rainfall area (33°–37°N, 111°–115°E), black triangles represent the location of Zhengzhou station
图 7 2021年7月20日08时(左)和20时(右)(a、b)CTL试验、(c、d)NOINFA试验和(e、f)NOCEM试验的850 hPa风场(矢量,单位:m s−1)和相当位温场(阴影,单位:K)、500 hPa位势高度场(等值线,单位:gpm)。绿色风矢量表示风速大于9 m s−1;圆点表示郑州站位置
Figure 7. Horizontal distribution of wind fields (vectors, units: m s−1) and equivalent potential temperature (shadings, units: K) at 850 hPa, 500-hPa geopotential height (contours, units: gpm) of the (a, b) CTL, (c, d) NOINFA, and (e, f) NOCEM experiments at 0800 BJT July 2021 (left), 2000 BJT July 2021 (right). The green vectors give the wind speed larger than 9 m s−1; the dots represent Zhengzhou station
图 8 2021年7月20日08时(左)、20时(右)(a、b)CTL试验、(c、d)NOINFA试验和(e、f)NOCEM试验的整层(1000~450 hPa)水汽通量矢量(箭头)和大小(阴影,单位:102 kg m−1 s−1)、河南地区800 hPa水汽辐合(粉色等值线,从−40×10−7 kg m−2 s−1 hPa−1开始,每20×10−7 kg m−2 s−1 hPa−1递增)以及副高位置(5880 gpm黑色等值线)。圆点表示郑州站位置;图a中深蓝色虚线框区域ABCD和AEFG分别为下文研究所指的纬向和经向剖面区域
Figure 8. Horizontal distribution of the deep-layer averaged (1000–450 hPa) water vapor flux vector (arrows) and magnitude (shadings, units: 102 kg m−1 s−1), 800-hPa water vapor flux convergence (pink contours, increase from −40×10−7 kg m−2 s−1 hPa−1 with a spacing of 20×10−7 kg m−2 s−1 hPa−1) in Henan area, and position of subtropical high (5880-gpm black contours) of the (a, b) CTL, (c, d) NOINFA, and (e, f) NOCEM experiments at 0800 BJT July 2021 (left), 2000 BJT July 2021 (right). The dots represent Zhengzhou station. In Fig. a, the navy dashed boxes (ABCD and AEFG) area give the after-mentioned cross sections
图 9 2021年7月20日(a–c)08时、(d–f)20时垂直水汽通量值(阴影, 单位:g s−1 cm−1 hPa−1)的垂直—纬向(对矩形ABCD进行经向平均)分布:(a、d)CTL试验;(b、e)NOINFA试验;(c、f)NOINFA试验与CTL试验的差值场。(g–l)同(a–f),但为对矩形AEFG进行纬向平均后得到的垂直—经向分布。风矢量(单位:m s−1)是水平风场随高度的分布,红色矩形表示河南强降水区(33°~37°N, 111°~115°E)
Figure 9. Vertical–zonal (meridional averaging of rectangle ABCD) distribution of vertical water vapor flux magnitude (shadings, units: g s−1 cm−1 hPa−1) at (a–c) 0800 BJT 20 July and (d–f) 2000 BJT 20 July 2021: (a, d) CTL experiment; (b, e) NOINFA experiment; (c, f) differences between NOINFA experiment and CTL experiment. (g–l) As in (a–f), but for the vertical–meridional (zonal averaging of rectangle AEFG) distributions. The wind vectors (units: m s−1) represent the distribution of horizontal winds with height, and the red rectangles denote the heavy rainfall area (33°–37°N, 111°–115°E) in Henan area
图 10 2021年7月20日(a、b)08时、(c、d)20时垂直水汽通量值(阴影, 单位:g s−1 cm−1 hPa−1)的垂直—纬向(对矩形ABCD进行经向平均)分布:(a、c)NOCEM试验;(b、d)NOCEM试验与CTL试验的差值场。(e–h)同(a–d),但为对矩形AEFG进行纬向平均后得到的垂直—经向分布。风矢量(单位:m s−1)是水平风场随高度的分布,红色矩形表示河南强降水区(33°~37°N, 111°~115°E)
Figure 10. Vertical–zonal (meridional averaging of rectangle ABCD) distribution of vertical water vapor flux magnitude (shadings, units: g s−1 cm−1 hPa−1) at (a, b) 0800 BJT 20 July and (c, d) 2000 BJT 20 July 2021: (a, c) NOCEM experiment; (b, d) differences between NOCEM experiment and CTL experiment. (e–h) As in (a–d), but for the vertical–meridional (zonal averaging of rectangle AEFG) distributions. The wind vectors (units: m s−1) represent the distribution of horizontal winds with height, and the red rectangles denote the heavy rainfall area (33°–37°N, 111°–115°E) in Henan area
图 11 河南强降水区CTL试验、NOINFA试验、NOCEM试验1000~450 hPa来自(a)东面、(b)南面、(c)西面、(d)北面的水汽通量值以及(e)NOINFA试验、NOCEM试验与CTL试验净水汽通量差值垂直积分的时间演变
Figure 11. Time series of 1000–450 hPa vertical integral of water vapor flux magnitude from CTL experiment, NOINFA experiment, NOCEM experiment for Henan area from the (a) east side, (b) south side, (c) west side, (d) north side, and (e) differences of net water vapor flux magnitude between NOINFA (NOCEM) experiment and CTL experiment
图 12 2021年7月19日14时至21日08时河南强降水区(黑色矩形,33°~37°N, 111°~115°E)1000~450 hPa四个方向水汽通量值(单位:107 kg s−1)垂直积分的时间平均。黑色、蓝色和红色箭头分别表示CTL试验、NOINFA试验和NOCEM试验
Figure 12. Time average of 1000–450 hPa vertical integral of four-side water vapor flux magnitude (units: 107 kg s−1) for the heavy rainfall area (33°–37°N, 111°–115°E) in Henan area from 1400 BJT 19 July to 0800 BJT 21 July 2021. Black, blue, and red arrows represent the CTL, NOINFA, and NOCEM experiments
图 13 (a)CTL试验和(b)NOINFA试验850 hPa相当位温(阴影,单位:K)和水平风场(矢量,单位:m s−1)的时间—纬向(对矩形ABCD面进行经向平均)演变。红色矩形表示河南强降水区(33°~37°N, 111°~115°E)
Figure 13. Temporal–zonal (meridional averaging of rectangle ABCD) evolution of equivalent potential temperature (shadings, units: K) and horizontal wind (vectors, units: m s−1) for (a) CTL experiment and (b) NOINFA experiment at 850 hPa. Red rectangles represent the heavy rainfall area (33°–37°N, 111°–115°E) of Henan area
图 14 “21·7”河南极端暴雨事件过程概念模型。“SH”表示西太平洋副热带高压,两个台风标志分别表示台风“烟花”(In-Fa)和台风“查帕卡”(Cempaka),浅蓝色箭头表示水汽通量,蓝色和红色的云团分别代表冷气团和暖气团,深蓝色的向上箭头代表上升运动
Figure 14. Schematic illustration of the “21·7” Henan heavy rainfall event. “SH” presents the western Pacific subtropical high. Two typhoon symbols denote the typhoons In-Fa and Cempaka. Light blue vector presents water vapor flux. Blue and red clouds represent warm and clod air masses, respectively. Dark blue upward-pointed vector denotes upward motion
-
[1] Arakane S, Hsu H H. 2020. A tropical cyclone removal technique based on potential vorticity inversion to better quantify tropical cyclone contribution to the background circulation [J]. Climate Dyn., 54(5–6): 3201–3226. doi:10.1007/s00382-020-05165-x [2] Bosart L F, Carr F H. 1978. A case study of excessive rainfall centered around Wellsville, New York, 20–21 June 1972 [J]. Mon. Wea. Rev., 106(3): 348−362. doi: 10.1175/1520-0493(1978)106<0348:ACSOER>2.0.CO;2 [3] Chen G H. 2013. A numerical study on the effect of an extratropical cyclone on the evolution of a midlatitude front [J]. Adv. Atmos. Sci., 30(5): 1433−1448. doi: 10.1007/s00376-012-2191-8 [4] 陈淑琴, 李英, 范悦敏, 等. 2021. 台风“山竹”(2018)远距离暴雨的成因分析 [J]. 大气科学, 45(3): 573−587.Chen Shuqin, Li Ying, Fan Yuemin, et al. 2021. Analysis of long-distance heavy rainfall caused by typhoon Mangosteen (2018) [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(3): 573–587. doi:10.3878/j.issn.1006-9895.2009.20126 [5] 丁一汇. 1994. 暴雨和中尺度气象学问题 [J]. 气象学报, 52(3): 274−284. doi: 10.11676/qxxb1994.036Ding Yihui. 1994. Some aspects of rainstorm and meso-scale meteorology [J]. Acta Meteorologica Sinica (in Chinese), 52(3): 274−284. doi: 10.11676/qxxb1994.036 [6] 丁一汇. 2015. 论河南“75.8”特大暴雨的研究: 回顾与评述 [J]. 气象学报, 73(3): 411−424. doi: 10.11676/qxxb2015.067Ding Yihui. 2015. On the study of the unprecedented heavy rainfall in Henan Province during 4–8 August 1975: Review and assessment [J]. Acta Meteorologica Sinica (in Chinese), 73(3): 411−424. doi: 10.11676/qxxb2015.067 [7] 丁一汇, 蔡则怡, 李吉顺. 1978. 1975年8月上旬河南特大暴雨的研究 [J]. 大气科学, 2(4): 276−289. doi: 10.3878/j.issn.1006-9895.1978.04.02Ding Yihui, Cai Zeyi, Li Jishun. 1978. A case study on the excessively severe rainstrom in Henan Province, early in August, 1975 [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 2(4): 276−289. doi: 10.3878/j.issn.1006-9895.1978.04.02 [8] 高守亭, 赵思雄, 周晓平, 等. 2003. 次天气尺度及中尺度暴雨系统研究进展 [J]. 大气科学, 27(4): 618−627. doi: 10.3878/j.issn.1006-9895.2003.04.13Gao Shouting, Zhao Sixiong, Zhou Xiaoping, et al. 2003. Progress of research on sub-synoptic scale and mesoscale torrential rain systems [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 27(4): 618−627. doi: 10.3878/j.issn.1006-9895.2003.04.13 [9] Kurihara Y, Bender M A, Ross R J. 1993. An initialization scheme of hurricane models by vortex specification [J]. Mon. Wea. Rev., 121(7): 2030−2045. doi: 10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2 [10] Kurihara Y, Bender M A, Tuleya R E, et al. 1995. Improvements in the GFDL hurricane prediction system [J]. Mon. Wea. Rev., 123(9): 2791−2801. doi: 10.1175/1520-0493(1995)123<2791:IITGHP>2.0.CO;2 [11] 李泽椿, 谌芸, 张芳华, 等. 2015. 由河南“75.8”特大暴雨引发的思考 [J]. 气象与环境科学, 38(3): 1−12. doi: 10.3969/j.issn.1673-7148.2015.03.001Li Zechun, Chen Yun, Zhang Fanghua, et al. 2015. Consideration by “75.8” extreme heavy rainfall event in Henan [J]. Meteorological and Environmental Sciences (in Chinese), 38(3): 1−12. doi: 10.3969/j.issn.1673-7148.2015.03.001 [12] Lonfat M, Rogers R, Marchok T, et al. 2007. A parametric model for predicting hurricane rainfall [J]. Mon. Wea. Rev., 135(9): 3086−3097. doi: 10.1175/MWR3433.1 [13] McFarquhar G M, Jewett B F, Gilmore M S, et al. 2012. Vertical velocity and microphysical distributions related to rapid intensification in a simulation of hurricane Dennis (2005) [J]. J. Atmos. Sci., 69(12): 3515−3534. doi: 10.1175/JAS-D-12-016.1 [14] Nie Y B, Sun J Q. 2022. Moisture sources and transport for extreme precipitation over Henan in July 2021 [J]. Geophys. Res. Lett., 49(4): e2021GL097446. doi: 10.1029/2021GL097446 [15] 冉令坤, 李舒文, 周玉淑, 等. 2021. 2021年河南“7.20”极端暴雨动、热力和水汽特征观测分析 [J]. 大气科学, 45(6): 1366−1383. doi: 10.3878/j.issn.1006-9895.2109.21160Ran Lingkun, Li Shuwen, Zhou Yushu, et al. 2021. Observational analysis of the dynamic, thermal, and water vapor characteristics of the “7.20” extreme rainstorm event in Henan Province, 2021 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(6): 1366−1383. doi: 10.3878/j.issn.1006-9895.2109.21160 [16] 任素玲, 刘屹岷, 吴国雄. 2007. 西太平洋副热带高压和台风相互作用的数值试验研究 [J]. 气象学报, 65(3): 329−340. doi: 10.11676/qxxb2007.032Ren Suling, Liu Yimin, Wu Guoxiong. 2007. Interactions between typhoon and subtropical anticyclone over western Pacific revealed by numerical experiments [J]. Acta Meteorologica Sinica (in Chinese), 65(3): 329−340. doi: 10.11676/qxxb2007.032 [17] Ross R J, Kurihara Y. 1995. A numerical study on influences of Hurricane Gloria (1985) on the environment [J]. Mon. Wea. Rev., 123(2): 332−346. doi: 10.1175/1520-0493(1995)123<0332:ANSOIO>2.0.CO;2 [18] Schumacher R S, Galarneau T J Jr, Bosart L F. 2011. Distant effects of a recurving tropical cyclone on rainfall in a midlatitude convective system: A high-impact predecessor rain event [J]. Mon. Wea. Rev., 139(2): 650−667. doi: 10.1175/2010MWR3453.1 [19] Schumacher R S, Galarneau T J Jr. 2012. Moisture transport into midlatitudes ahead of recurving tropical cyclones and its relevance in two predecessor rain events [J]. Mon. Wea. Rev., 140(6): 1810−1827. doi: 10.1175/MWR-D-11-00307.1 [20] 苏爱芳, 吕晓娜, 崔丽曼, 等. 2021. 郑州“7.20”极端暴雨天气的基本观测分析 [J]. 暴雨灾害, 40(5): 445−454. doi: 10.3969/j.issn.1004-9045.2021.05.001Su Aifang, Lü Xiaona, Cui Liman, et al. 2021. The basic observational analysis of “7.20” extreme rainstorm in Zhengzhou [J]. Torrential Rain and Disasters (in Chinese), 40(5): 445−454. doi: 10.3969/j.issn.1004-9045.2021.05.001 [21] 孙建华, 齐琳琳, 赵思雄. 2006. “9608”号台风登陆北上引发北方特大暴雨的中尺度对流系统研究 [J]. 气象学报, 64(1): 57−71. doi: 10.3321/j.issn:0577-6619.2006.01.006Sun Jianhua, Qi Linlin, Zhao Sixiong. 2006. A study on mesoscale convective systems of the severe heavy rainfall in North China by “9608” typhoon [J]. Acta Meteorologica Sinica (in Chinese), 64(1): 57−71. doi: 10.3321/j.issn:0577-6619.2006.01.006 [22] 孙建华, 张小玲, 卫捷, 等. 2005. 20世纪90年代华北大暴雨过程特征的分析研究 [J]. 气候与环境研究, 10(3): 492−506. doi: 10.3969/j.issn.1006-9585.2005.03.020Sun Jianhua, Zhang Xiaoling, Wei Jie, et al. 2005. A study on severe heavy rainfall in North China during the 1990s [J]. Climatic and Environmental Research (in Chinese), 10(3): 492−506. doi: 10.3969/j.issn.1006-9585.2005.03.020 [23] Sun X M, Barros A P. 2012. The impact of forcing datasets on the high-resolution simulation of tropical storm Ivan (2004) in the southern Appalachians [J]. Mon. Wea. Rev., 140(10): 3300−3326. doi: 10.1175/MWR-D-11-00345.1 [24] Takahashi T, Kawano T. 1998. Numerical sensitivity study of rainband precipitation and evolution [J]. J. Atmos. Sci., 55(1): 57−87. doi: 10.1175/1520-0469(1998)055<0057:NSSORP>2.0.CO;2 [25] 陶诗言. 1980. 中国之暴雨[M]. 北京: 科学出版社, 225Tao Shiyan. 1980. Heavy Rain in China (in Chinese) [M]. Beijing: Science Press, 225. [26] Wang Y Q, Wang Y Q, Fudeyasu H. 2009. The role of typhoon Songda (2004) in producing distantly located heavy rainfall in Japan [J]. Mon. Wea. Rev., 137(11): 3699−3716. doi: 10.1175/2009MWR2933.1 [27] Wen Y R, Xue L, Li Y, et al. 2015. Interaction between typhoon Vicente (1208) and the western Pacific subtropical high during the Beijing extreme rainfall of 21 July 2012 [J]. J. Meteor. Res., 29(2): 293−304. doi: 10.1007/s13351-015-4097-8 [28] 姚秀萍, 于玉斌. 2005. 2003年梅雨期干冷空气的活动及其对梅雨降水的作用 [J]. 大气科学, 29(6): 973−985. doi: 10.3878/j.issn.1006-9895.2005.06.13Yao Xiuping, Yu Yubin. 2005. Activity of dry cold air and its impacts on Meiyu rain during 2003 Meiyu period [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 29(6): 973−985. doi: 10.3878/j.issn.1006-9895.2005.06.13 [29] Zhang S H, Chen Y R X, Luo Y L, et al. 2022. Revealing the circulation pattern most conducive to precipitation extremes in Henan Province of North China [J]. Geophys. Res. Lett., 49(7): e2022GL098034. doi: 10.1029/2022GL098034 [30] 张霞, 杨慧, 王新敏, 等. 2021. “21·7”河南极端强降水特征及环流异常性分析 [J]. 大气科学学报, 44(5): 672−687. doi: 10.13878/j.cnki.dqkxxb.20210907001Zhang Xia, Yang Hui, Wang Xinmin, et al. 2021. Analysis on characteristic and abnormality of atmospheric circulations of the July 2021 extreme precipitation in Henan [J]. Transactions of Atmospheric Sciences (in Chinese), 44(5): 672−687. doi: 10.13878/j.cnki.dqkxxb.20210907001 [31] 赵培娟, 邵宇翔, 张霞. 2019. 相似路径台风“摩羯”“温比亚”登陆后环境场对比分析 [J]. 气象与环境科学, 42(3): 17−28. doi: 10.16765/j.cnki.1673-7148.2019.03.003Zhao Peijuan, Shao Yuxiang, Zhang Xia. 2019. Comparative analysis of the after landed environmental field of the similar track typhoons Yagi and Rumbia [J]. Meteorological and Environmental Sciences (in Chinese), 42(3): 17−28. doi: 10.16765/j.cnki.1673-7148.2019.03.003 [32] 赵思雄, 孙建华. 2013. 近年来灾害天气机理和预测研究的进展 [J]. 大气科学, 37(2): 297−312. doi: 10.3878/j.issn.1006-9895.2012.12317Zhao Sixiong, Sun Jianhua. 2013. Study on mechanism and prediction of disastrous weathers during recent years [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(2): 297−312. doi: 10.3878/j.issn.1006-9895.2012.12317 [33] “58. 7”暴雨研究组 1987. 黄河中游“58.7”大暴雨成因的天气学分析 [J]. 大气科学, 11(1): 100−107. doi: 10.3878/j.issn.1006-9895.1987.01.11Research Group of “58. 7” Heavy Rainfall 1987. A synoptic study of the “58.7” persistent rainstorm over the middle Huanghe (Yellow) River [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 11(1): 100−107. doi: 10.3878/j.issn.1006-9895.1987.01.11 [34] “75. 8”暴雨会战组 1977a. 河南“75.8”特大暴雨成因的初步分析(一) [J]. 气象, 3(7): 3−5. doi: 10.7519/j.issn.1000-0526.1977.07.002“75.8” Rainstorm Battle Group 1977a. Preliminary analysis on the formation of “75.8” torrential rain in Henan (I) [J]. Meteorological Monthly (in Chinese), 3(7): 3−5. doi: 10.7519/j.issn.1000-0526.1977.07.002 [35] “75.8”暴雨会战组, 1977b. 河南“75.8”特大暴雨成因的初步分析(二)[J]. 气象, 3(7): 6–8.“75.8” Rainstorm Battle Group. 1977b. Preliminary analysis on the formation of “75.8” torrential rain in Henan (II) [J]. Meteorological Monthly (in Chinese), 3(7): 6–8. doi:10.7519/j.issn.1000-0526.1977.07.003 -