高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南疆西部干旱区两次极端暴雨过程对比分析

胡素琴 希热娜依·铁里瓦尔地 李娜 冉令坤 常友治

胡素琴, 希热娜依·铁里瓦尔地, 李娜, 等. 2022. 南疆西部干旱区两次极端暴雨过程对比分析[J]. 大气科学, 46(5): 1177−1197 doi: 10.3878/j.issn.1006-9895.2204.22001
引用本文: 胡素琴, 希热娜依·铁里瓦尔地, 李娜, 等. 2022. 南疆西部干旱区两次极端暴雨过程对比分析[J]. 大气科学, 46(5): 1177−1197 doi: 10.3878/j.issn.1006-9895.2204.22001
HU Suqin, Xerinay Tiliwaldi, LI Na, et al. 2022. Comparative Analysis of Two Extreme Rainstormsin the Arid Area of Western South Xinjiang [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(5): 1177−1197 doi: 10.3878/j.issn.1006-9895.2204.22001
Citation: HU Suqin, Xerinay Tiliwaldi, LI Na, et al. 2022. Comparative Analysis of Two Extreme Rainstormsin the Arid Area of Western South Xinjiang [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(5): 1177−1197 doi: 10.3878/j.issn.1006-9895.2204.22001

南疆西部干旱区两次极端暴雨过程对比分析

doi: 10.3878/j.issn.1006-9895.2204.22001
基金项目: 国家重点研发计划项目2018YFC1507104,新疆气象局科技创新发展基金项目MS202222,喀什地区科技计划项目KS2021020,新疆维吾尔自治区自然科学基金项目2020D01A93,科技冬奥专项19975414D
详细信息
    作者简介:

    胡素琴,女,1968年出生,高级工程师,主要从事灾害性天气机理与预报技术研究。E-mail: 1376870722@qq.com

    通讯作者:

    希热娜依·铁里瓦尔地, E-mail: 549882245@qq.com

  • 中图分类号: P458

Comparative Analysis of Two Extreme Rainstormsin the Arid Area of Western South Xinjiang

Funds: National Key Research and Development Program (Grant 2018YFC1507104), Technology Innovation Program of Xinjiang Meteorological Bureau (Grant MS202222), Kashi Science and Technology Program (Grant KS2021020), Xinjiang Natural Science Foundation Program (Grant 2020D01A93), Winter Olympics Technology Projects (Grant 19975414D)
  • 摘要: 利用常规气象观测资料、NCEP再分析资料、ERA5分析场数据等资料,对南疆西部两次极端暴雨过程的环境条件和形成机理进行对比分析,以更深入理解南疆极端降水特征和产生机制。两次过程分别发生在春季和夏季,高层环流存在显著差异,南亚高压分别呈东部型和双体型,但配合中层的“阶梯槽”形势,均为极端降水提供了特殊有利的环流背景。低空700~850 hPa偏东急流是南疆西部极端降水发生的重要天气系统,其不但是暴雨发生地主要水汽通道,还与地形形成强烈辐合,是极端降水重要的触发和水汽集中机制。引入二阶湿位涡对两次暴雨过程的非均匀特征及可能产生机制进行了对比分析。结果表明,二阶湿位涡高值区与降水的发展演变呈现较高一致性,二阶湿位涡主分量包含对流稳定度与绝对涡度垂直梯度的耦合,体现极端降水大气的主要动热力结构特点:发生在2021年6月15~16日的夏季过程,极端降水区主要位于昆仑山沿线,与塔里木盆地南侧强烈的低层气旋性旋转有关,旋转促进水汽快速集中,垂直方向表现为中层负涡度叠加于正涡度之上,垂直涡度梯度显著,同时水汽抬升凝结,中层大气加湿加热,对流稳定度在垂直方向非均匀性增强,两种垂直梯度结构均有助于垂直运动增强,促进极端降水形成;发生在2020年4月17~24日的春季过程,降水主要位于南疆西部喇叭口地形区,“阶梯槽”形势造成的越山干冷气流和塔里木盆地的偏东暖湿气流辐合,形成中层正涡度带,激发上升运动,是极端降水的主要成因。
  • 图  1  (a)2020年4月17日00时(协调世界时,下同)至24日00时暴雨过程累计降水量(单位:mm),(b)2021年6月15日00时至17日00时暴雨过程累计降水量(单位:mm)及其(c、d)暴雨中心逐小时降水量(单位:mm)

    Figure  1.  Accumulated precipitation (units: mm) (a) from 0000 UTC 17 April to 0000 UTC 24 April 2020, (b) from 0000 UTC 15 June to 0000 UTC 17 June 2021, (c, d) hourly precipitation (units: mm) at rainstorm centers

    图  2  2020年4月17日12时(左)、2021年6月15日12时(右)(a、b)200 hPa位势高度(等值线,单位:dagpm)、风速(阴影,单位:m s−1),(c、d)300 hPa位势高度(等值线,单位:dagpm)、相对湿度(阴影)、风矢量(箭头,单位:m s−1),(e、f)500 hPa位势高度(等值线,单位:dagpm)、相对湿度(阴影)、风矢量(箭头,单位:m s−1),(g、h)800 hPa位势高度(等值线,单位:dagpm)、风速(阴影,单位:m s−1

    Figure  2.  (a , b) Geopotential height (isolines, units: dagpm) and wind speed (shadings, units: m s−1) at 200 hPa, (c, d) geopotential height (isolines, units: dagpm), relative humidity (shadings), wind vector (arrows, units: m s−1) at 300 hPa, (e, f) geopotential height (isolines, units: dagpm), relative humidity (shadings), wind vector (arrows, units: m s−1) at 500 hPa, and (g, h) geopotential height (isolines, units: dagpm), wind speed (shadings, units: m s−1) at 800 hPa at 1200 UTC 17 April 2020 (left) and at 1200 UTC 15 June 2021 (right)

    图  3  (a、c)2020年4月17日18时、(b、d)2021年6月15日18时地面至500 hPa(a、b)水汽通量的垂直积分(黑色流线,单位:10−3 g cm−1 s−1)、水汽通量散度的垂直积分(阴影,单位:10−11 g cm−2 s−1),(c、d)大气可降水量(单位:mm)。红色箭头表示水汽输送方向

    Figure  3.  (a, b) Vertical integral of water vapor flux (black flow lines, units: 10−3 g cm−1 s−1) and its divergence (shadings, units: 10−11 g cm−2 s−1) from surface to 500 hPa, (c, d) atmospheric precipitable water (units: mm) at (a, c) 1800 UTC 17 April 2020 and (b, d) 1800 UTC 15 June 2021. The red arrows represent the water vapor transport direction

    图  4  (a)2020年4月17日12时、(b)2021年6月16日06时沿39°N假相当位温θse的垂直剖面(单位:K)。黑色三角形表示暴雨中心

    Figure  4.  Vertical sections (units: K) of pseudo-equivalent temperature θse along 39°N at (a) 1200 UTC 17 April 2020 and (b) 0600 UTC 16 June 2021. The black triangles represent the rainstorm centers

    5  (a–e)“4.17”过程、(f–j)“6.15”过程二阶湿位涡的水平分布(等值线,单位:10−9 K m4 s−2 kg−2)及对应的3 h累积降水量(阴影,单位:mm)

    5.  Horizontal distributions of second-order moist potential vorticity (isolines, units: 10−9 K m4 s−2 kg−2) and 3-h accumulated precipitation (shadings, units: mm) during (a–e) “4.17” process (extreme rainstorm occurred on 17–24 April 2020) and (f–j) “6.15” process (extreme rainstorm occurred on 15–27 June 2021)

    图  5  (续)

    Figure  5.  (Continued)

    图  6  2020年4月17日15时(左)沿着78.5°E(图5a中的虚线)、2021年6月15日15时(右)沿着80°E(图5g中的虚线)(a、b)二阶湿位涡(单位:10−9 K m4 s−2 kg−2)及其主分量(c、d)S1和(e、f)S2(单位:10−13 K m4 s−2 kg−2)的垂直剖面。矩形框表示本文所关注的暴雨区,右侧纵坐标为3 h累计降水量,下同

    Figure  6.  Vertical cross sections of (a, b) second-order moist potential vorticity (isolines, units: 10−9 K m4 s−2 kg−2) and its principal components (c, d) S1 and (e, f) S2 (units: 10−13 K m4 s−2 kg−2) along 78.5°E (dashed line in Fig. 5a) at 1500 UTC 17 April 2020 (left) and along 80°E (dashed line in Fig. 5g) at 1500 UTC 16 June 2021 (right). The rectangles represent rainstorm area, the y-axis represent 3-h accumulated precipitation, the same below

    图  7  2020年4月17日21时(左)沿着76.5°E(图5c中的虚线)、2021年6月16日06时(右)沿着39.5°N(图5i中的虚线)(a、b)二阶湿位涡(单位:10−9 K m4 s−2 kg−2)及其主分量(c、d)S1和(e、f)S2的垂直剖面(单位:10−13 K m4 s−2 kg−2

    Figure  7.  Vertical cross sections of (a, b) second-order moist potential vorticity (isoline, units: 10−9 K m4 s−2 kg−2) and its principal components (c, d) S1 and (e, f) S2 (units: 10−13 K m4 s−2 kg−2) along 76.5°E (dashed line in Fig. 5c) at 2100 UTC 17 April 2020 (left) and along 39.5°N (dashed line in Fig. 5i) at 0600 UTC 16 June 2021 (right)

    8  2020年4月17日15时(左)沿着78.5°E、2021年6月15日15时(右)沿着80°E(a、b)绝对垂直涡度(单位:10−4 s−1)、(c、d)广义位温(单位:K)、(e、f)广义位温垂直梯度(单位:10−3 K m−1)、(g、h)相对湿度及(i、j)比湿(单位:g kg−1)的垂直剖面。黑色箭头为剖面上的风矢量(单位:m s−1

    8.  Vertical cross sections of (a, b) absolute vertical vorticity (units: 10−4 s−1), (c, d) generalized potential temperature (units: K), (e, f) vertical gradient of generalized potential temperature (units: 10−3 K m−1), (g, h) relative humidity, and (i, j) specific humidity (units: g kg−1) along 78.5°E at 1500 UTC 17 April 2020 (left) and along 80°E at 1500 UTC 15 June 2021 (right). The black arrows represent wind vectors on cross sections

    图  8  (续)

    Figure  8.  (Continued)

    图  9  2020年4月17日15时(左)、2021年6月15日15时(右)3 h累积降水量(阴影,单位:mm)以及800 hPa(a、b)绝对垂直涡度(等值线,单位:10−4 s−1)、(c、d)水平风速(等值线,单位:m s−1)、(e、f)位势高度(等值线,单位:dagpm)、(g、h)比湿(等值线,单位:g kg−1)叠加风矢量(箭头,单位:m s−1)的水平分布

    Figure  9.  3-h accumulated precipitation (shadings, units: mm) and (a, b) absolute vertical vorticity (isolines, units: 10−4 s−1), (c, d) wind speed (isolines, units: m s−1), (e, f) geopotential height (isolines, units: dagpm), (g, h) specific humidity (isolines, units: g kg−1) superimposed wind vector (arrows, units: m s−1) at 800 hPa at 1500 UTC 17 April 2020 (left) and at 1500 UTC 15 June 2021 (right)

    图  10  2020年4月17日15时(左)、2021年6月15日15时(右)3 h累积降水量(阴影,单位:mm)以及650 hPa(a、b)位势高度(等值线,单位:dagpm)、(c、d)绝对垂直涡度(等值线,单位:10−4 s−1)、(e、f)比湿(等值线,单位:g kg−1)叠加风矢量(箭头,单位:m s−1)的水平分布

    Figure  10.  3-h accumulated precipitation (shadings, units: mm) and (a, b) geopotential height (isolines, units: dagpm), (c, d) absolute vertical vorticity (isolines, units: 10−4 s−1), (e, f) specific humidity (isolines, units: g kg−1) superimposed wind vector (arrows, units: m s−1) at 650 hPa at 1500 UTC 17 April 2020 (left) and at 1500 UTC 15 June 2021 (right)

    图  11  (a)2020年4月17日15时、(b)2021年6月15日15时3 h累积降水量(阴影,单位:mm)以及500 hPa风场(箭头,单位:m s−1)、位势高度(等值线,单位:dagpm)

    Figure  11.  3-h accumulated precipitation (shadings, units: mm) and wind field (arrows, units: m s−1) and geopotential height (isolines, units: dagpm) at 500 hPa at (a) 1500 UTC 17 April 2020 and (b) 1500 UTC 15 June 2021

    12  2020年4月17日21时沿着76.5°E(左)、2021年6月16日06时沿着39.5°N(右)(a、b)相对湿度、(c、d)绝对垂直涡度(单位:10−4 s−1)、(e、f)广义位温(单位:K)、(g、h)广义位温垂直梯度(单位:10−3 K m−1)及(i、j)比湿(单位:g kg−1)的垂直剖面。图c中I、II、III为三个涡度高值区

    12.  Vertical cross sections of (a, b) relative humidity, (c, d) absolute vertical vorticity (units: 10−4 s−1), (e, f) generalized potential temperature (units: K), (g , h) vertical gradient of generalized potential temperature (units: 10−3 K m−1), (i, j) specific humidity (units: g kg−1) along 76.5°E at 2100 UTC 17 April 2020 (left) and along 39.5°N bell mouth topographic area at 0600 UTC 16 June 2021 (right). In Fig. c, I, II, III represent three high values of vorticities

    图  12  (续)

    Figure  12.  (Continued)

    图  13  2020年4月17日21时(左)、2021年6月16日06时(右)(a、b)3 h累积降水量(等值线,单位:mm)以及700 hPa风矢量(箭头,单位:m s−1)、垂直速度(阴影,单位:10 Pa s−1),(c、d)3 h累积降水量(阴影,单位:mm)、650 hPa位势高度(等值线,单位:dagpm)

    Figure  13.  (a, b) 3-h accumulated precipitation (isolines, units: mm), 700-hPa wind vector (arrows, units: m s−1), 700-hPa vertical velocity (shadings, units: 10 Pa s−1), (c, d) 3-h accumulated precipitation (shadings, units: mm), 650-hPa geopotential height (isolines, units: dagpm) at 2100 UTC 17 April 2020 (left) and 1500 UTC 16 June 2021 (right)

    图  14  南疆西部极端暴雨概念模型:(a)“4.17”过程;(b)“6.15”过程

    Figure  14.  Conceptual models of extreme rainstorm in west of southern Xinjiang: (a) “4.17” process; (b) “6.15” process

    表  1  两次过程短时强降水喀什站探空对流参数

    Table  1.   The sounding convective parameters at Kashi station at different times of two short-time torrential rain processes

    时间K指数/°CSI指数/°CCAPE/J kg−1CIN/J kg−1LI指数/°CWsr0~6 km/m s−1
    2020年4月17日00时251.46 0 0 0.7721.1
    2020年4月17日12时280.7 37.3 0−0.622.6
    2021年6月15日12时32.81.491856 1.07 4.4
    2021年6月16日00时33.70.9457.221.8 0.1311.9
    下载: 导出CSV
  • [1] 常煜, 李秀娟, 陈超, 等. 2016. 内蒙古一次暴雨过程中尺度特征及成因分析 [J]. 高原气象, 35(2): 432−443. doi: 10.7522/j.issn.1000-0534.2014.00155

    Chang Yu, Li Xiujuan, Chen Chao, et al. 2016. Mesoscale characteristics of a rainstorm process in Inner Mongolia and its cause analysis [J]. Plateau Meteorology (in Chinese), 35(2): 432−443. doi: 10.7522/j.issn.1000-0534.2014.00155
    [2] 符娇兰, 马学款, 陈涛, 等. 2017. “16·7”华北极端强降水特征及天气学成因分析 [J]. 气象, 43(5): 528−539. doi: 10.7519/j.issn.1000-0526.2017.05.002

    Fu Jiaolan, Ma Xuekuan, Chen Tao, et al. 2017. Characteristics and synoptic mechanism of the July 2016 extreme precipitation event in North China [J]. Meteor. Mon. (in Chinese), 43(5): 528−539. doi: 10.7519/j.issn.1000-0526.2017.05.002
    [3] 胡皓, 李丽平, 王建鹏, 等. 2018. 2016年陕甘宁地区一次强降水的大气环流特征及水汽输送途径 [J]. 干旱气象, 36(5): 776−781,793. doi: 10.11755/j.issn.1006-7639(2018)-05-0776

    Hu Hao, Li Liping, Wang Jianpeng, et al. 2018. A case study on the heavy rainfall in Shaanxi-Gansu-Ningxia and associated atmospheric circulations and water vapor channels in 2016 [J]. Journal of Arid Meteorology (in Chinese), 36(5): 776−781,793. doi: 10.11755/j.issn.1006-7639(2018)-05-0776
    [4] 胡钰玲, 王遂缠, 王式功, 等. 2015. 2012年初夏西北干旱区罕见区域性大暴雨天气过程分析 [J]. 干旱气象, 33(1): 128−137. doi: 10.11755/j.issn.1006-7639(2015)-01-0128

    Hu Yuling, Wang Suichan, Wang Shigong, et al. 2015. Analysis of a rare regional heavy rainstorm weather process in early summer in northwest arid area in 2012 [J]. Journal of Arid Meteorology (in Chinese), 33(1): 128−137. doi: 10.11755/j.issn.1006-7639(2015)-01-0128
    [5] 黄艳, 刘涛, 张云惠, 等. 2010年盛夏南疆西部一次区域性暴雨天气特征. 干旱气象[J], 2012, 30 (4): 615–622

    Huang Yan, Liu Tao, Zhang Yunhui, et al. 2010. Features of a regional rainstorm in midsummer of 2010 in western Xinjiang [J]. Journal of Arid Meteorology (in Chinese), 30(4): 615–622.
    [6] 江远安, 包斌, 王旭. 2001. 南疆西部大降水天气过程的统计分析 [J]. 新疆气象, 24(5): 19−20. doi: 10.3969/j.issn.1002-0799.2001.05.006

    Jiang Yuanan, Bao Bin, Wang Xu. 2001. Analysis on heavy precipitation weather process in West Nanjiang [J]. Bimonthly of Xinjiang Meteorology (in Chinese), 24(5): 19−20. doi: 10.3969/j.issn.1002-0799.2001.05.006
    [7] 孔祥伟, 杨建才, 李红, 等. 2021. 河西走廊西部干旱区一次极端暴雨天气的水汽特征分析 [J]. 气象, 47(4): 412−423. doi: 10.7519/j.issn.1000-0526.2021.04.003

    Kong Xiangwei, Yang Jiancai, Li Hong, et al. 2021. Analysis on water vapor characteristics of an extreme rainstorm in the arid region of western Hexi corridor [J]. Meteor. Mon. (in Chinese), 47(4): 412−423. doi: 10.7519/j.issn.1000-0526.2021.04.003
    [8] Li Na, Gao Shouting, Ran Lingkun. 2016. A PV-gradient related quantity in moist atmosphere and its application in the diagnosis of heavy precipitation [J]. Atmos. Res., 167, 285–297. doi:10.1016/j.atmosres.2015.08.009
    [9] 李如琦, 李建刚, 唐冶, 等. 2016. 中亚低涡引发的两次南疆西部暴雨中尺度特征对比分析 [J]. 干旱气象, 34(2): 297−304. doi: 10.11755/j.issn.1006-7639(2016)-02-0297

    Li Ruqi, Li Jiangang, Tang Ye, et al. 2016. Comparison analysis on the mesoscale characteristics of two rainstorms processes caused by central Asian vortex in the west of South Xinjiang [J]. Journal of Arid Meteorology (in Chinese), 34(2): 297−304. doi: 10.11755/j.issn.1006-7639(2016)-02-0297
    [10] 林建, 杨贵名. 2014. 近30年中国暴雨时空特征分析 [J]. 气象, 40(7): 816−826. doi: 10.7519/j.issn.1000-0526.2014.07.005

    Lin Jian, Yang Guiming. 2014. Spatio temporal characteristics of rainstorm in China during 1981–2010 [J]. Meteor. Mon. (in Chinese), 40(7): 816−826. doi: 10.7519/j.issn.1000-0526.2014.07.005
    [11] 牛淑贞, 张一平, 梁俊平, 等. 2016. 郑州市两次短时强降水过程的环境条件和中尺度特征对比 [J]. 暴雨灾害, 35(2): 138−147. doi: 10.3969/j.issn.1004-9045.2016.02.006

    Niu Shuzhen, Zhang Yiping, Liang Junping, et al. 2016. Comparative analysis on environmental conditions and mesoscale features of two short-time heavy rainfall events in Zhengzhou [J]. Torrential Rain and Disasters (in Chinese), 35(2): 138−147. doi: 10.3969/j.issn.1004-9045.2016.02.006
    [12] Parker M D, Johnson R H. 2004. Simulated convective lines with leading precipitation. Part I: Governing dynamics [J]. J. Atmos. Sci., 61, 1637–1655.
    [13] 田付友, 杨舒楠, 郑永光, 等. 2021. 北京地区两次极端特大暴雨过程中短时强降水环境条件对比分析 [J]. 暴雨灾害, 40(1): 27−36. doi: 10.3969/j.issn.1004-9045.2021.01.004

    Tian Fuyou, Yang Shu’ nan, Zheng Yongguang, et al. 2021. Comparison of short-duration heavy rainfall environmental conditions during two extreme torrential rainfall events over Beijing area [J]. Torrential Rain and Disasters (in Chinese), 40(1): 27−36. doi: 10.3969/j.issn.1004-9045.2021.01.004
    [14] 杨康权, 张琳, 肖递祥, 等. 2013. 四川盆地西部一次大暴雨过程的中尺度特征分析 [J]. 高原气象, 32(2): 357−367. doi: 10.7522/j.issn.1000-0534.2012.00035

    Yang Kangquan, Zhang Lin, Xiao Dixiang, et al. 2013. Mesoscale analyses on a heavy rainstorm process in western Sichuan Basin [J]. Plateau Meteorology (in Chinese), 32(2): 357−367. doi: 10.7522/j.issn.1000-0534.2012.00035
    [15] 杨莲梅, 张云惠, 黄艳, 等. 2020. 新疆短时强降水诊断分析暨预报手册 [M]. 北京: 气象出版社. Yang Lianmei, Zhang Yunhui, Huang Yan. , et al. 2020. The Short-Time Torrential Rain Diagnostic Analysis and Forecast Guide in Xinjiang (in Chinese) [M]. Beijing: China Meteorological Press.
    [16] 杨霞, 张云惠, 张超, 等. 2020. 南疆西部“5·21”极端大暴雨成因分析 [J]. 沙漠与绿洲气象, 14(1): 21−30. doi: 10.12057/j.issn.1002-0799.2020.01.003

    Yang Xia, Zhang Yunhui, Zhang Chao, et al. 2020. Causation analysis of the 21 May 2018 torrential rain in the west of southern Xinjiang [J]. Desert and Oasis Meteorology (in Chinese), 14(1): 21−30. doi: 10.12057/j.issn.1002-0799.2020.01.003
    [17] 曾勇, 杨莲梅. 2018. 新疆西部一次极端暴雨事件的成因分析 [J]. 高原气象, 37(5): 1220−1232. doi: 10.7522/j.issn.1000-0534.2018.00014

    Zeng Yong, Yang Lianmei. 2018. Analysis on the causes of an extreme rainfall event in the west of Xinjiang [J]. Plateau Meteorology (in Chinese), 37(5): 1220−1232. doi: 10.7522/j.issn.1000-0534.2018.00014
    [18] 张桂莲, 仲夏, 韩经纬, 等. 2018. 内蒙古中西部地区一次极端大暴雨特征分析 [J]. 干旱气象, 36(1): 17−26. doi: 10.11755/j.issn.1006-7639(2018)-01-0017

    Zhang Guilian, Zhong Xia, Han Jingwei, et al. 2018. Analysis on characteristics of an extreme rainstorm event in the Midwest of Inner Mongolia [J]. Journal of Arid Meteorology (in Chinese), 36(1): 17−26. doi: 10.11755/j.issn.1006-7639(2018)-01-0017
    [19] 张家宝. 1986. 新疆短期天气预报指导手册 [M]. 乌鲁木齐: 新疆人民出版社. Zhang Jiabao. 1986. The Short-Term Eather Forecast Guide in Xinjiang (in Chinese) [M]. Ürümqi: Xinjiang People’ s Press.
    [20] 张家宝, 邓子风. 1987. 新疆降水概论 [M]. 北京: 气象出版社. Zhang Jiabao, Deng Zifeng. 1987. Introduction to Recipitation in Xinjiang (in Chinese) [M]. Beijing: China Meteorological Press.
    [21] 张云惠, 陈春艳, 杨莲梅, 等. 2013. 南疆西部一次罕见暴雨过程的成因分析 [J]. 高原气象, 32(1): 191−200. doi: 10.7522/j.issn.1000-0534.2012.00019

    Zhang Yunhui, Chen Chunyan, Yang Lianmei, et al. 2013. Cause analysis on rare rainstorm in west of southern Xinjiang [J]. Plateau Meteorology (in Chinese), 32(1): 191−200. doi: 10.7522/j.issn.1000-0534.2012.00019
    [22] 张云惠, 李海燕, 蔺喜禄, 等. 2015. 南疆西部持续性暴雨环流背景及天气尺度的动力过程分析 [J]. 气象, 41(7): 816−824. doi: 10.7519/j.issn.1000-0526.2015.07.003

    Zhang Yunhui, Li Haiyan, Lin Xilu, et al. 2015. Analysis of continuous rainstorm circulation background and the dynamic process of synoptic-scale in west of southern Xinjiang [J]. Meteorological Monthly (in Chinese), 41(7): 816−824. doi: 10.7519/j.issn.1000-0526.2015.07.003
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  71
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-01
  • 录用日期:  2022-08-24
  • 网络出版日期:  2022-07-30
  • 刊出日期:  2022-09-22

目录

    /

    返回文章
    返回