Simulation and Evaluation of Climate Model CAS-ESM-C for Flow Field Modes in the Tropical Pacific Ocean in January
-
摘要: 利用气候模式CAS-ESM-C从1922年起84年的模拟资料,对1月份热带太平洋上层流场作复EOF分解及小波分析,并与实况以及理论解析解作对比讨论,以考察模式对赤道大洋上层流场的模拟能力,得到主要结论:(1)复EOF分解前3个模态的方差贡献为53.5%、12.9%、9.5%,累积方差贡献为75.9%,累积方差贡献比实况更高。(2)第一、二模态空间场与实况相比总体相像,流场都为赤道所俘获,在俘获区内的流场均以偏纬向流为主;差异在于模拟资料分析的赤道俘获区范围较实况要大,流场的经向流分量及越赤道流也较实况明显。(3)第一、二模态实时间系数序列无线性变化趋势,而实况则有。复EOF模态年际及年代际变化与实况相同或相近;第一、二模态中3~7年的年际变化是厄尔尼诺与南方涛动(ENSO)的反映;第一模态22~23年的年代际变化受北太平洋主要气候模态北太平洋年代际振荡(PDO)对热带太平洋的影响,而第二模态13年的年代际变化是受北太平洋次要气候模态北太平洋环流振荡(NPGO)对热带太平洋的影响;第一、二模态还都有峰值16年的年代际变化,这可能与印尼穿越流有关。(4)模拟资料分析的结果具有理论解析解中流场为赤道所俘获及流场为纬向流的特点,只是解析解中因无风应力强迫,流场呈纯纬向流。(5)第一(二)模态在赤道太平洋东部(中部)有海温动力异常,并可称之为东(中)部型ENSO模态。气候模式CAS-ESM-C对热带太平洋上层流场的模拟表现较佳。
-
关键词:
- 气候模式CAS-ESM-C /
- 复EOF分析 /
- 热带太平洋 /
- 流场异常
Abstract: In this study, complex Empirical Orthogonal Function (CEOF) and wavelet analyses are applied to the 84-year simulation flow fields in January of the climate model CAS-ESM-C from 1922. The simulation results were compared with the actual situation and theoretical analysis solution to examine the simulation ability of the model for the upper equatorial ocean flow field. The main conclusions are as follows: (1) The variance contributions of the first three modes of the CEOF decomposition are 53.5%, 12.9%, and 9.5%, respectively. The cumulative variance contribution was 75.9%, which is higher than the actual situation. (2) The first and second eigenvector patterns are similar to the actual situation. The equator captures the flow fields, and the flow fields in the capture region are dominated by the partial latitudinal flow. The difference is that the equatorial capture area in this study is larger than the actual situation, and the longitudinal flow component, as well as the cross-equatorial flow, are also more obvious than that of the actual situation. (3) There is no linear trend in the real-time coefficient sequence of the first and second modes in this study, but this trend exists in the actual situation. The inter-annual and inter-decadal variations of the CEOF modes are similar to the actual situation. The inter-annual variation of 3–7 years in the first and second modes reflects ENSO (El Niño–Southern Oscillation). The inter-decadal variation of 22–23 years in the first mode is influenced by the North Pacific main climate modal PDO (Pacific Decadal Oscillation). The inter-decadal variation of 13 years in the second mode is influenced by the North Pacific secondary climate modal NPGO (North Pacific Gyre Oscillation). Both modes have an inter-decadal variation of 16 years, which may be related to the cross-flow in Indonesia. (4) The results in this paper show that the flow field is captured by the equator and zonal in the theoretical analytical solution. However, the flow field is pure zonal due to the absence of wind stress in the analytical solution. (5) The first (second) mode has dynamic SSTA (sea surface temperature anomaly) in the eastern (central) equatorial Pacific Ocean, which can be called the eastern (central) ENSO mode. The climate model performs well in simulating the upper flow field of the tropical Pacific Ocean. -
图 1 1922~2005年CAS-ESM-C模式模拟的大洋(a)表层、(b)近表层、(c)次表层、(d)上层底流场复EOF分解第一模态的空间场(单位:m s−1)。水深5.0 m、25.0 m、115.0 m和222.5 m的层次分别作为大洋表层、近表层、次表层和上层底的代表
Figure 1. First eigenvector pattern (units: m s−1) of CEOF (complex EOF) for flow field simulated by the CAS-ESM-C model depth at (a) the surface, (b) near-surface, (c) sub-surface, and (d) upper bottom of ocean from 1922 to 2005. The layers with water depth of 5.0 m, 25.0 m, 115.0 m, and 222.5 m are representative of the surface, near-surface, sub-surface and upper bottom of ocean, respectively
图 4 1922~2005年CAS-ESM-C模式模拟的流场复EOF分解第一模态复时间系数转化后的实时间系数的(a)小波全谱、(b)局地功率谱
Figure 4. (a) Wavelet full spectrum and (b) the local power spectrum of the real-time coefficient converted from complex time coefficient of the first mode for CEOF of flow field simulated by the CAS-ESM-C model from 1922 to 2005
表 1 1922~2005年第一、二模态各深度上的流场最大值
Table 1. Maximum value of the flow field at each depth in the first and second eigenvector patterns from 1922 to 2005
水深/m 流场最大值/cm s−1 第一模态 第二模态 5.0 1 1 55.0 1 1 105.0 1 1 115.0 0.9 1 125.0 0.9 0.9 135.0 0.8 0.8 145.0 0.8 0.7 156.9 0.7 0.6 178.4 0.6 0.5 222.5 0.4 0.4 -
[1] Briegleb B P, Hunke E C, Bitz C M, et al. 2004. The sea ice simulation of the community climate system model, version two [R]. NCAR/TN-455+STR. doi:10.5065/D6CR5RBD [2] Carton J A, Chepurin G, Cao X H, et al. 2000. A simple ocean data assimilation analysis of the global upper ocean 1950–95. Part I: Methodology [J]. J. Phys. Oceanogr., 30(2): 294−309. doi: 10.1175/1520-0485(2000)030<0294:ASODAA>2.0.CO;2 [3] Craig A P, Jacob R, Kauffman B, et al. 2005. CPL6: The new extensible, high performance parallel coupler for the Community Climate System Model [J]. The International Journal of High Performance Computing Applications, 19(3): 309−327. doi: 10.1177/1094342005056117 [4] Dong X, Lin R P, Zhu J, et al. 2016. Evaluation of ocean data assimilation in CAS-ESM-C: Constraining the SST field [J]. Advances in Atmospheric Sciences, 33(7): 795−807. doi: 10.1007/s00376-016-5234-8 [5] Hoffman F, Vertenstein M, Thornton P, et al. 2004. Community land model version 3.0 (CLM3.0) developer’ s guide [R]. ORNL/TM-2004/119. doi:10.2172/885637 [6] Hu H B, Wu Q G, Wu Z P. 2018. Influences of two types of El Niño event on the Northwest Pacific and tropical Indian Ocean SST anomalies [J]. Chinese Journal of Oceanology and Limnology, 36(1): 33−47. doi: 10.1007/s00343-018-6296-5 [7] 黄嘉佑. 2000. 气象统计分析与预报方法[M]. 第二版. 北京: 气象出版社, 135–139Huang Jiayou. 2000. Statistic Analysis and Forecast Methods in Meteorology (in Chinese) [M]. 2nd ed. Beijing: China Meteorological Press, 135–139. [8] 梁晓妮, 俞永强, 刘海龙. 2008. ENSO循环年代际变化及其数值模拟 [J]. 大气科学, 32(6): 1471−1482. doi: 10.3878/j.issn.1006-9895.2008.06.20Liang Xiaoni, Yu Yongqiang, Liu Hailong. 2008. Numerical simulation of decadal modulation of ENSO [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(6): 1471−1482. doi: 10.3878/j.issn.1006-9895.2008.06.20 [9] Liu H L, Lin P F, Yu Y Q, et al. 2012. The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2 [J]. Acta Meteorologica Sinica, 26(3): 318−329. doi: 10.1007/s13351-012-0305-y [10] 卢姁, 包赟, 吕庆平. 2014. 热带太平洋上层洋流异常的复EOF分析 [J]. 海洋预报, 31(2): 56−66. doi: 10.11737/j.issn.1003-0239.2014.02.009Lu Xu, Bao Yun, Lü Qingping. 2014. CEOF analysis for upper current of tropic Pacific Ocean [J]. Marine Forecasts (in Chinese), 31(2): 56−66. doi: 10.11737/j.issn.1003-0239.2014.02.009 [11] 吕庆平, 卢姁, 朱娟, 等. 2015. 冬季北太平洋流场异常主要模态与PDO及NPGO的关系 [J]. 海洋学研究, 33(2): 1−7. doi: 10.3969/j.issn.1001-909X.2015.02.001Lü Qingping, Lu Xu, Zhu Juan, et al. 2015. Relationship between the main modes of circulation anomalies and the PDO, NPGO modes in the North Pacific during winter [J]. Journal of Marine Sciences (in Chinese), 33(2): 1−7. doi: 10.3969/j.issn.1001-909X.2015.02.001 [12] North G R, Bell T L, Cahalan R F, et al. 1982. Sampling errors in the estimation of empirical orthogonal functions [J]. Mon. Wea. Rev., 110(7): 699−706. doi: 10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2 [13] 秦坚肇, 王亚非. 2014. 构建描述两种ENSO类型的新指数 [J]. 气象学报, 72(3): 526−541. doi: 10.11676/qxxb2014.023Qin Jianzhao, Wang Yafei. 2014. Construction of new indices for the two types of ENSO events [J]. Acta Meteorologica Sinica (in Chinese), 72(3): 526−541. doi: 10.11676/qxxb2014.023 [14] Song M R, Liu J P. 2017. The role of diminishing Arctic sea ice in increased winter snowfall over northern high-latitude continents in a warming environment [J]. Acta Oceanologica Sinica, 36(8): 34−41. doi: 10.1007/s13131-017-1021-3 [15] Su T H, Xue F, Sun H C, et al. 2015. The El Niño–Southern Oscillation cycle simulated by the climate system model of Chinese Academy of Sciences [J]. Acta Oceanologica Sinica, 34(1): 55−65. doi: 10.1007/s13131-015-0596-9 [16] 孙泓川, 周广庆, 曾庆存. 2012. IAP第四代大气环流模式的气候系统模式模拟性能评估 [J]. 大气科学, 36(2): 215−233. doi: 10.3878/j.issn.1006-9895.2011.11062Sun Hongchuan, Zhou Guangqing, Zeng Qingcun. 2012. Assessments of the climate system model (CAS-ESM-C) using IAP AGCM4 as its atmospheric component [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36(2): 215−233. doi: 10.3878/j.issn.1006-9895.2011.11062 [17] Tang T, Li W, Sun G. 2016. Impact of two different types of El Niño events on runoff over the conterminous United States [J]. Hydrology and Earth System Sciences, 20(1): 27−37. doi: 10.5194/hess-20-27-2016 [18] Wang D, Wang A H, Xu L L, et al. 2020. The linkage between two types of El Niño events and summer streamflow over the Yellow and Yangtze River basins [J]. Advances in Atmospheric Sciences, 37(2): 160−172. doi: 10.1007/s00376-019-9049-2 [19] Wang Y Z, Jiang J R, He J X. 2017. Coupling methods of global climate models and regional climate models [J]. High Technology Letters, 23(1): 90−95. doi: 10.3772/j.issn.1006-6748.2017.01.013 [20] Xie X N, Zhang H, Liu X D, et al. 2018. Role of microphysical parameterizations with droplet relative dispersion in IAP AGCM 4.1 [J]. Advances in Atmospheric Sciences, 35(2): 248−259. doi: 10.1007/s00376-017-7083-5 [21] 杨海鹏, 陈权亮, 林壬萍, 等. 2019. 同化卫星高度计观测对CAS-ESM-C上层海洋温度模拟的改进 [J]. 成都信息工程大学学报, 34(6): 615−624. doi: 10.16836/j.cnki.jcuit.2019.06.010Yang Haipeng, Chen Quanliang, Lin Renping, et al. 2019. Satellite altimetry data assimilation in CAS-ESM-C: Benefits for improving the simulations of upper ocean temperature [J]. Journal of Chengdu University of Information Technology (in Chinese), 34(6): 615−624. doi: 10.16836/j.cnki.jcuit.2019.06.010 [22] 曾庆存. 1974. 大气红外遥测原理[M]. 北京: 科学出版社, 160–166.Zeng Qingcun. 1974. The Theory of Atmospheric Infrared Remote Sense (in Chinese) [M]. Beijing: Science Press, 160–166. [23] 曾庆存, 周广庆, 浦一芬, 等. 2008. 地球系统动力学模式及模拟研究 [J]. 大气科学, 32(4): 653−690. doi: 10.3878/j.issn.1006-9895.2008.04.01Zeng Qingcun, Zhou Guangqing, Pu Yifen, et al. 2008. Research on the earth system dynamic model and some related numerical simulations [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(4): 653−690. doi: 10.3878/j.issn.1006-9895.2008.04.01 [24] 张东凌, 曾庆存. 2007. 大气环流中ENSO循环的动力统计分析 [J]. 自然科学进展, 17(10): 1401−1409. doi: 10.3321/j.issn:1002-008x.2007.10.010Zhang Dongling, Zeng Qingcun. 2007. Statistic dynamic analysis on ENSO cycle in atmospheric general circulation [J]. Progress in Natural Science (in Chinese), 17(10): 1401−1409. doi: 10.3321/j.issn:1002-008x.2007.10.010 [25] 张东凌, 卢姁. 2017. 冬季热带印度洋上层流场异常模态分析 [J]. 气候与环境研究, 22(4): 463−472. doi: 10.3878/j.issn.1006-9895.2016.15011Zhang Dongling, Lu Xu. 2017. Analysis of abnormal upper circulation over the tropical Indian Ocean in winter [J]. Climatic and Environmental Research (in Chinese), 22(4): 463−472. doi: 10.3878/j.issn.1006-9895.2016.15011 [26] 张东凌, 吕庆平, 张立凤. 2015. 冬季北太平洋海气环流年代际异常的统计动力诊断 [J]. 大气科学, 39(4): 692−704. doi: 10.3878/j.issn.1006-9895.1501.14132Zhang Dongling, Lü Qingping, Zhang Lifeng. 2015. Dynamical statistic analysis of decadal anomalies of air–sea circulation in the North Pacific during winter [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(4): 692−704. doi: 10.3878/j.issn.1006-9895.1501.14132 [27] 张东凌, 卢姁, 张铭. 2018. 春季Wyrtki急流异常及其与亚洲热带夏季风的关系 [J]. 海洋学研究, 36(1): 16−26. doi: 10.3969/j.issn.1001-909X.2018.01.002Zhang Dongling, Lu Xu, Zhang Ming. 2018. Wyrtki jet anomaly in May and its relationship with Asian tropical summer monsoon [J]. Journal of Marine Sciences (in Chinese), 36(1): 16−26. doi: 10.3969/j.issn.1001-909X.2018.01.002 [28] Zhang D L, Zhu J, Lu X, et al. 2019. Wave packet solutions in a bounded equatorial ocean and its interannual and decadal variabilities [J]. Acta Oceanologica Sinica, 38(3): 45−59. doi: 10.1007/s13131-019-1398-2 [29] 张贺. 2009. 大气环流模式IAP AGCM 4.0的设计及其数值模拟 [D]. 中科院大气物理研究所博士学位论文.Zhang He. 2009. Design and numerical simulation of AGCM IAP 4.0 [D]. Ph. D. dissertation (in Chinese), Institute of Atmospheric Physics, Chinese Academy of Sciences. [30] 周广庆, 张云泉, 姜金荣, 等. 2020. 地球系统模式CAS-ESM [J]. 数据与计算发展前沿, 2(1): 38−54. doi: 10.11871/jfdc.issn.2096-742X.2020.01.004Zhou Guangqing, Zhang Yunquan, Jiang Jinrong, et al. 2020. Earth system model: CAS-ESM [J]. Frontiers of Data & Computing (in Chinese), 2(1): 38−54. doi: 10.11871/jfdc.issn.2096-742X.2020.01.004 -