高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

青藏高原东南部墨脱地区弱降水微物理特征的Ka波段云雷达观测研究

张静怡 王改利 郑佳锋 刘黎平 周任然

张静怡, 王改利, 郑佳锋, 等. 2022. 青藏高原东南部墨脱地区弱降水微物理特征的Ka波段云雷达观测研究[J]. 大气科学, 46(5): 1239−1252 doi: 10.3878/j.issn.1006-9895.2205.21185
引用本文: 张静怡, 王改利, 郑佳锋, 等. 2022. 青藏高原东南部墨脱地区弱降水微物理特征的Ka波段云雷达观测研究[J]. 大气科学, 46(5): 1239−1252 doi: 10.3878/j.issn.1006-9895.2205.21185
ZHANG Jingyi, WANG Gaili, ZHENG Jiafeng, et al. 2022. Study of the Microphysical Characteristics of Weak Precipitation in Mêdog, Southeastern Tibetan Plateau Using Ka-Band Cloud Radar [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(5): 1239−1252 doi: 10.3878/j.issn.1006-9895.2205.21185
Citation: ZHANG Jingyi, WANG Gaili, ZHENG Jiafeng, et al. 2022. Study of the Microphysical Characteristics of Weak Precipitation in Mêdog, Southeastern Tibetan Plateau Using Ka-Band Cloud Radar [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(5): 1239−1252 doi: 10.3878/j.issn.1006-9895.2205.21185

青藏高原东南部墨脱地区弱降水微物理特征的Ka波段云雷达观测研究

doi: 10.3878/j.issn.1006-9895.2205.21185
基金项目: 第二次青藏高原综合科学考察研究2019QZKK0105, 国家重点研发计划项目2018YFC1505702,国家自然基金项目项目41775036
详细信息
    作者简介:

    张静怡,女,1995年出生,硕士研究生,主要从事毫米波云雷达相关研究,E-mail: o1005545760@163.com

    通讯作者:

    王改利,E-mail: wanggl@cma.gov.cn

  • 中图分类号: P412

Study of the Microphysical Characteristics of Weak Precipitation in Mêdog, Southeastern Tibetan Plateau Using Ka-Band Cloud Radar

Funds: The Second Tibetan Plateau Scientific Expedition and Research (STEP) program (Grant 2019QZKK0105), National Key R & D Projects (Grant 2018YFC1505702), National Natural Science Foundation of China (Grant 41775036)
  • 摘要: 藏东南地区的墨脱县位于雅鲁藏布江下游的河谷区域,是印度洋水汽进入高原的最主要水汽通道。墨脱作为西藏年平均降水量最多的地区,是青藏高原云降水系统的重要组成部分。本文以2020年墨脱地区的Ka波段云雷达观测数据为基础,首先对云雷达功率谱数据进行预处理,并采用降水现象仪对云雷达观测进行验证。在此基础上,选取了2020年3月6日和8月24日具有层状云降水特性的两次弱降水过程,利用云雷达功率谱数据反演了雨滴谱,探究墨脱地区旱季和雨季弱降水的微物理特征。结果表明:云雷达观测与降水现象仪雨滴谱数据计算的Ka波段云雷达回波强度理论值存在大约12 dB的系统误差,订正之后二者随时间变化一致性较好,云雷达反演的近地面雨滴谱特征与降水现象仪观测接近。墨脱地区零度层高度随季节变化明显,旱季零度层高度较低(例如地面上1.5 km左右),而雨季零度层高度较高(例如地面上4 km左右)。墨脱层状云雨滴谱的宽度较窄,降水粒子直径不超过3 mm。在零度层以上,根据谱偏度和峰度的垂直变化可以推测冰晶粒子直径随高度下降缓慢增长, 但旱季冰晶粒子增长比雨季更为明显。经过零度层后,冰晶粒子转化为雨滴,雨滴在下落过程中由于碰并及蒸发作用造成浓度减小,直径越小的粒子浓度减小越快。在近地面,由于蒸发作用的加强导致随高度降低雨滴浓度明显减小。
  • 图  1  (a)青藏高原地形(彩色阴影,单位:m)、墨脱观测场位置(红色三角形),(b)毫米波云雷达(KaCR)和(c)降水现象仪(DSG5)

    Figure  1.  (a) Topography of the Tibetan Plateau (color shading, units:m) and location of the Mêdog observation site (red triangle), (b) millimeter cloud radar, and (c) precipitation phenomenometer (DSG5)

    图  2  预处理(a)前(b)后不同高度(距地面高度,下同)的功率谱密度数据

    Figure  2.  Power spectra density at different heights (above ground level, the same below) (a) before and (b) after preprocessing

    图  3  2020年8月24日Ka波段云雷达(KaCR)观测510 m高度上回波订正前(BC)后(AC)的反射率因子及降水现象仪计算的Ka波段云雷达的反射率因子理论值(Ka-theorem)时间序列

    Figure  3.  Time series of the reflectivity factor at the height of 510 m before (BC) and after (AC) correction of KaCR and theoretical values of KaCR calculated from the observations using the precipitation phenomenometer (Ka-theorem) on August 24, 2020. BJT: Beijing time

    图  4  2020年8月24日510 m高度云雷达反演雨滴谱与地面降水现象仪(PP)观测雨滴谱比较

    Figure  4.  Comparison of the raindrop size distribution (RSD) from KaCR at the altitude of 510 m with that from the precipitation phenomenometer (PP) observed on August 24, 2020

    图  5  2020年3月6日07:31~08:38云雷达观测的(a)反射率因子、(b)径向速度、(c)速度谱宽和(d)地面降水现象仪雨强

    Figure  5.  KaCR observations of the (a) reflectivity factor, (b) radial velocity, (c) velocity spectral width, and (d) rain rate using the precipitation phenomenometer from 0731 BJT (Beijing time) to 0838 BJT on March 6, 2020

    图  6  2020年3月6日07:31~08:38云雷达反演的(a)谱偏度和(b)谱峰度

    Figure  6.  (a) Spectral skewness and (b) spectral kurtosis retrieved from KaCR from 0731 BJT to 0838 BJT on March 6, 2020

    图  7  2020年3月6日07:31~08:38(a)反射率因子、(b)径向速度、(c)速度谱宽、(d)谱偏度和(e)谱峰度的平均垂直廓线

    Figure  7.  Average vertical profiles of the (a) reflectivity factor, (b) radial velocity, (c) velocity spectral width, (d) spectral skewness, and (e) spectral kurtosis from 0731 BJT to 0838 BJT on March 6, 2020

    图  8  2020年3月6日07:31~08:38降水阶段的平均雨滴谱 [lg N(D)] 分布

    Figure  8.  Average vertical profiles of RSD from 0731 BJT to 0838 BJT on March 6, 2020

    图  9  2020年8月24日04:42~05:32云雷达观测的(a)反射率因子、(b)径向速度、(c)速度谱宽和(d)地面降水现象仪雨强

    Figure  9.  Same as Fig. 5, but for the case of August 24, 2020

    图  10  2020年8月24日04:42~05:32的(a)谱偏度和(b)谱峰度

    Figure  10.  Same as Fig. 6, but for the case of August 24, 2020

    图  11  2020年8月24日04:42~05:32(a)反射率因子、(b)径向速度、(c)速度谱宽、(d)谱偏度、(e)谱峰度的平均垂直廓线

    Figure  11.  Same as Fig. 7, but for the case of August 24, 2020

    图  12  2020年8月24日04:42~05:32降水阶段的平均雨滴谱 [lg N(D)]分布

    Figure  12.  Same as Fig. 8, but for the case of August 24, 2020

    表  1  KaCR降水模式雷达参数

    Table  1.   Parameters of the precipitation model of KaCR

    参数名称参数值
    脉冲宽度0.2 μs
    脉冲重复频率8000 Hz
    相干积累数1
    快速傅里叶变换点数256
    距离分辨率30 m
    时间分辨率2 s
    探测高度18 km
    探测盲区120 m
    Nyquist速度范围17.14 m s−1
    速度分辨率0.134 m s−1
    下载: 导出CSV
  • [1] 陈葆德, 梁萍, 李跃清. 2008. 青藏高原云的研究进展 [J]. 高原山地气象研究, 28(1): 66−71. doi: 10.3969/j.issn.1674-2184.2008.01.012

    Chen Baode, Liang Ping, Li Yueqing. 2008. An overview of research on clouds over the Tibetan Plateau [J]. Plateau and Mountain Meteorology Research (in Chinese), 28(1): 66−71. doi: 10.3969/j.issn.1674-2184.2008.01.012
    [2] 陈萍, 李波. 2018. 藏东南水汽输送特征分析及其影响 [J]. 南方农业, 12(9): 124−125. doi: 10.19415/j.cnki.1673-890x.2018.09.066

    Chen Ping, Li Bo. 2018. Analysis of water vapour transport characteristics and implications in Southeast Tibetan Plateau [J]. South China Agriculture (in Chinese), 12(9): 124−125. doi: 10.19415/j.cnki.1673-890x.2018.09.066
    [3] Foote G B, Du Toit P S. 1969. Terminal velocity of raindrops aloft [J]. J. Appl. Meteor., 8(2): 249−253. doi: 10.1175/1520-0450(1969)008<0249:TVORA>2.0.CO;2
    [4] Gunn R, Kinzer G D. 1949. The terminal velocity of fall for water droplets in stagnant air [J]. J. Atmos. Sci., 6(4): 243−248. doi: 10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2
    [5] 胡明宝. 2012. 风廓线雷达数据处理与应用研究 [D]. 南京信息工程大学博士学位论文. Hu Mingbao. 2012. Research on data processing and application of wind profile [D]. Ph. D. dissertation (in Chinese), Nanjing University of Information Science & Technology.
    [6] 胡朝霞, 雷恒池, 郭学良, 等. 降水性层状云系结构和降水过程的观测个例与模拟研究[J]. 大气科学, 2007, 31(3): 425−439.

    HU Zhaoxia, LEI Hengchi, GUO Xueliang, et al. Studies of the structure of a stratiform cloud and the physical processes of precipitation formation [J]. Chinese Journal of Atmospheric Sciences(in Chinese), 2007, 31(3): 425−439. doi:10.3878/j.issn.1006-9895.2007.03.06
    [7] Kollias P, Clothiaux E E, Miller M A, et al. 2007. Millimeter-wavelength radars: New frontier in atmospheric cloud and precipitation research [J]. Bull. Amer. Meteor. Soc., 88(10): 1608−1624. doi: 10.1175/BAMS-88-10-1608
    [8] Kollias P, Rémillard J, Luke E, et al. 2011a. Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications [J]. J. Geophys. Res., 116(D13): D13201. doi: 10.1029/2010JD015237
    [9] Kollias P, Szyrmer W, Rémillard J, et al. 2011b. Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical modeling of drizzle evolution [J]. J. Geophys. Res., 116(D13): D13203. doi: 10.1029/2010JD015238
    [10] 刘黎平, 仲凌志, 江源, 等. 2009. 毫米波测云雷达系统及其外场试验结果初步分析 [J]. 气象科技, 37(5): 567−571. doi: 10.3969/j.issn.1671-6345.2009.05.011

    Liu Liping, Zhong Lingzhi, Jiang Yuan, et al. 2009. Cloud radar and its field experiments in China [J]. Meteorological Science and Technology (in Chinese), 37(5): 567−571. doi: 10.3969/j.issn.1671-6345.2009.05.011
    [11] 刘黎平, 谢蕾, 崔哲虎. 2014. 毫米波云雷达功率谱密度数据的检验和在弱降水滴谱反演中的应用研究 [J]. 大气科学, 38(2): 223−236. doi: 10.3878/j.issn.1006-9895.2013.12207

    Liu Liping, Xie Lei, Cui Zhehu. 2014. Examination and application of Doppler spectral density data in drop size distribution retrieval in weak precipitation by cloud radar [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38(2): 223−236. doi: 10.3878/j.issn.1006-9895.2013.12207
    [12] 马宁堃, 刘黎平, 郑佳锋. 2019. 利用Ka波段毫米波雷达功率谱反演云降水大气垂直速度和雨滴谱分布研究 [J]. 高原气象, 38(2): 325−339. doi: 10.7522/j.issn.1000-0534.2018.00127

    Ma Ningkun, Liu Liping, Zheng Jiafeng. 2019. Application of Doppler spectral density data in vertical air motions and drop size distribution retrieval in cloud and precipitation by Ka-band millimeter radar [J]. Plateau Meteorology (in Chinese), 38(2): 325−339. doi: 10.7522/j.issn.1000-0534.2018.00127
    [13] Peters G, Fischer B, Münster H, et al. 2005. Profiles of raindrop size distributions as retrieved by microrain radars [J]. J. Appl. Meteor. Climatol., 44(12): 1930−1949. doi: 10.1175/JAM2316.1
    [14] Shupe M D, Kollias P, Poellot M, et al. 2008. On deriving vertical air motions from cloud radar Doppler spectra [J]. Journal of Atmospheric and Oceanic Technology, 25(4): 547−557. doi: 10.1175/2007jtecha1007.1
    [15] 石爱丽. 2005. 层状云降水微物理特征及降水机制研究概述 [J]. 气象科技, 33(2): 104−108. doi: 10.3969/j.issn.1671-6345.2005.02.002

    Shi Aili. 2005. Progress in researches on microphysical characteristics and precipitation mechanisms of stratiform cloud precipitation [J]. Meteorological Science and Technology (in Chinese), 33(2): 104−108. doi: 10.3969/j.issn.1671-6345.2005.02.002
    [16] Tokay A, Bashor P G, Habib E, et al. 2008. Raindrop size distribution measurements in tropical cyclones [J]. Mon. Wea. Rev., 136(5): 1669−1685. doi: 10.1175/2007MWR2122.1
    [17] Wang G L, Zhou R R, Zhaxi S L, et al. 2021. Raindrop size distribution measurements on the Southeast Tibetan Plateau during the STEP project [J]. Atmospheric Research, 249: 105311. doi: 10.1016/j.atmosres.2020.105311
    [18] 旺杰, 德庆央宗, 旦增, 等. 2021. 2012~2018西藏“雨窝”降水特征及其成因分析 [J]. 气象科技, 49(2): 211−217. doi: 10.19517/j.1671-6345.20200119

    Wang Jie, De Qingyangzong, Dan Zeng, et al. 2021. Characteristic and causal analysis of concentrated and frequently occurring intense rainfall in Tibet in 2012–2018 [J]. Meteorological Science and Technology (in Chinese), 49(2): 211−217. doi: 10.19517/j.1671-6345.20200119
    [19] 王扬锋, 雷恒池, 樊鹏, 等. 2007. 一次延安层状云微物理结构特征及降水机制研究 [J]. 高原气象, 26(2): 388−395. doi: 10.3321/j.issn:1000-0534.2007.02.022

    Wang Yangfeng, Lei Hengchi, Fan Peng, et al. 2007. Analyses on microphysical characteristic and precipitation mechanism on stratiform cloud in Yan’an [J]. Plateau Meteorology (in Chinese), 26(2): 388−395. doi: 10.3321/j.issn:1000-0534.2007.02.022
    [20] 温龙, 刘溯, 赵坤, 等. 2015. 两次降水过程的微降雨雷达探测精度分析 [J]. 气象, 41(5): 577−587. doi: 10.7519/j.issn.1000-0526.2015.05.006

    Wen Long, Liu Su, Zhao Kun, et al. 2015. Precision evaluation of micro rain radar observation in two precipitation events [J]. Meteorological Monthly (in Chinese), 41(5): 577−587. doi: 10.7519/j.issn.1000-0526.2015.05.006
    [21] 徐祥德, 陈联寿. 2006. 青藏高原大气科学试验研究进展 [J]. 应用气象学报, 17(6): 756−772. doi: 10.3969/j.issn.1001-7313.2006.06.013

    Xu Xiangde, Chen Lianshou. 2006. Advances of the study on Tibetan Plateau experiment of atmospheric sciences [J]. Journal of Applied Meteorological Science (in Chinese), 17(6): 756−772. doi: 10.3969/j.issn.1001-7313.2006.06.013
    [22] 张培昌, 王振会. 2001. 天气雷达回波衰减订正算法的研究(Ⅰ): 理论分析 [J]. 高原气象, 20(1): 1−5. doi: 10.3321/j.issn:1000-0534.2001.01.001

    Zhang Peichang, Wang Zhenhui. 2001. A study on algorithm to make attenuation correction to radar observations of radar reflectivity factor (Ⅰ): Theoretical analysis [J]. Plateau Meteorology (in Chinese), 20(1): 1−5. doi: 10.3321/j.issn:1000-0534.2001.01.001
    [23] Zhao P, Li Y Q, Guo X L, et al. 2019. The Tibetan Plateau surface-atmosphere coupling system and its weather and climate effects: The third Tibetan Plateau atmospheric science experiment [J]. Journal of Meteorological Research, 33(3): 375−399. doi: 10.1007/s13351-019-8602-3
    [24] 郑佳锋. 2016. Ka波段—多模式毫米波雷达功率谱数椐处理方法及云内大气垂直速度反演研究 [D]. 中国气象科学研究院博士学位论文. Zheng Jiafeng. 2016. Doppler spectral data proccessing methods of Ka-band multi-mode mm-wave radar and air vertical speed retrieval in clouds [D]. Ph. D. dissertation (in Chinese), Chinese Academy of Meteorological Sciences.
    [25] 周长艳, 张虹娇, 赵兴炳, 等. 2012. 近三十多年青藏高原大气科学试验观测布局综述 [J]. 高原山地气象研究, 32(1): 81−87. doi: 10.3969/j.issn.1674-2184.2012.01.014

    Zhou Changyan, Zhang Hongjiao, Zhao Xingbing, et al. 2012. Overview of the observation network of the main Tibetan Plateau experiments of atmospheric sciences in recent decades [J]. Plateau and Mountain Meteorology Research (in Chinese), 32(1): 81−87. doi: 10.3969/j.issn.1674-2184.2012.01.014
    [26] Zhou R R, Wang G L, Zhaxi S L. 2021. Cloud vertical structure measurements from a ground-based cloud radar over the southeastern Tibetan Plateau [J]. Atmospheric Research, 258: 105629. doi: 10.1016/j.atmosres.2021.105629
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  158
  • HTML全文浏览量:  40
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-26
  • 录用日期:  2022-07-11
  • 网络出版日期:  2022-07-13
  • 刊出日期:  2022-09-22

目录

    /

    返回文章
    返回