高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

青藏高原与周边地区近四十年区域夏季地表气温变化趋势的异同及归因分析

吴玉婷 杨崧 胡晓明 王子谦 鲁萌萌 肖子牛

吴玉婷, 杨崧, 胡晓明, 等. 2022. 青藏高原与周边地区近四十年区域夏季地表气温变化趋势的异同及归因分析[J]. 大气科学, 46(5): 1253−1266 doi: 10.3878/j.issn.1006-9895.2205.21197
引用本文: 吴玉婷, 杨崧, 胡晓明, 等. 2022. 青藏高原与周边地区近四十年区域夏季地表气温变化趋势的异同及归因分析[J]. 大气科学, 46(5): 1253−1266 doi: 10.3878/j.issn.1006-9895.2205.21197
WU Yuting, YANG Song, HU Xiaoming, et al. 2022. Difference/Similarity and Attribution of Changes in Regional Summer Surface Air Temperatures over the Tibetan Plateau and Its Surrounding Regions in the Past 40 Years [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(5): 1253−1266 doi: 10.3878/j.issn.1006-9895.2205.21197
Citation: WU Yuting, YANG Song, HU Xiaoming, et al. 2022. Difference/Similarity and Attribution of Changes in Regional Summer Surface Air Temperatures over the Tibetan Plateau and Its Surrounding Regions in the Past 40 Years [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(5): 1253−1266 doi: 10.3878/j.issn.1006-9895.2205.21197

青藏高原与周边地区近四十年区域夏季地表气温变化趋势的异同及归因分析

doi: 10.3878/j.issn.1006-9895.2205.21197
基金项目: 国家自然科学基金委员会项目42088101、41975080,广东省基础与应用基础研究重大项目2020B0301030004,广州市珠江科技新星计划项目201906010054
详细信息
    作者简介:

    吴玉婷,女,1996年出生,博士研究生,主要从事气候变化方面的研究。E-mail: wuyt9@mail2.sysu.edu.cn

    通讯作者:

    杨崧,E-mail: yangsong3@mail.sysu.edu.cn

  • 中图分类号: P423

Difference/Similarity and Attribution of Changes in Regional Summer Surface Air Temperatures over the Tibetan Plateau and Its Surrounding Regions in the Past 40 Years

Funds: National Natural Science Foundation of China (Grants 42088101, 41975080), Guangdong Major Project of Basic and Applied Basic Research (Grant 2020B0301030004), Pearl River S&T Nova Program of Guangzhou (Grant 201906010054)
  • 摘要: 欧亚大陆夏季地表气温在近四十年有显著的升温趋势,本文基于ERA5再分析数据研究了1979~2019年间欧亚大陆不同区域的夏季地表气温的变化特征,并利用气候反馈响应分析方法揭示了各区域变暖原因的异同。作为全球海拔最高的大地形,青藏高原在过去四十年经历了显著的增温过程。青藏高原周边相对低海拔的地区(如北非—南欧地区、蒙古地区、东北亚地区)同样表现出明显的变暖特征,而高原南侧的南亚地区的地表气温却变化不明显。青藏高原夏季积雪融化引起的地表反照率减小使得更多短波辐射到达地表,放大高原地表增暖。北非—南欧地区增暖则主要源于大气气溶胶含量减少造成的入射短波辐射增加。同时,大气温度升高导致的向下长波辐射增强对北非—南欧地区以及蒙古地区的增暖都有显著贡献。此外,东北亚地区云的减少是造成其地表增暖最主要的过程,而南亚地区则是水汽增加和感热通量减少造成的增温与云和气溶胶增加造成的降温相抵消,因而温度变化幅度不大。
  • 图  1  1979~2019年夏季平均地表气温趋势分布 [单位:K (10 a)−1]。黑色打点区域表示填色变量场通过95%的信度检验。绿色实线为1500 m海拔等高线。蓝色虚线框代表的区域分别为我们关注的北非—南欧地区(W)、蒙古地区(N)、东北亚地区(E)、南亚地区(S),下同

    Figure  1.  Trends of JJA-mean (JJA: June, July, August) surface temperature from 1979 to 2019 [units: K (10 a)−1]. The dotted areas denote the trends exceeding the 95% confidence level of statistical significance. The green solid line denotes the 1500-m elevation contour. The blue dashed rectangles denote the different regions, i.e., North Africa and Southern Europe (W), Mongolia (N), Northeast Asia (E), and South Asia (S), the same below

    图  2  各区域夏季平均地表向上长波辐射(黑色实线,单位:W m−2)及其十年滑动平均(紫色虚线,单位:W m−2)与地表气温(红色实线,单位:K)的变化

    Figure  2.  Time series of JJA-mean surface upward longwave radiation (black solid line, units: W m−2), 10-year running average of surface upward longwave radiation (purple dashed line, units: W m−2), and surface temperature (red solid line, units: K) in different regions. TP: Tibetan Plateau

    图  3  各区域夏季平均地表向上长波辐射变化(单位:W m−2)。“CRE”、“Ta”、“Solar”、“WV”、“AL”、“SH”、“Aero”、“CO2”和“LH”分别表示云过程、大气温度、对流层顶太阳入射辐射、大气水汽含量、地表反照率、地表感热通量、气溶胶、二氧化碳含量和地表潜热通量变化对地表向上长波的贡献

    Figure  3.  Changes in JJA-mean surface upward longwave radiation (LR) in different regions (units: W m−2). “CRE,” “Ta,” “Solar,” “WV,” “AL,” “SH,” “Aero,” “CO2,” and “LH” denote the changes in surface upward longwave radiation due to the process of cloud radiative effect, air temperature, incident solar radiation at the top of the atmosphere, water vapor, surface albedo, surface sensible heat flux, aerosol, CO2 concentration, and surface latent heat flux, respectively

    图  4  1979~2019年夏季平均青藏高原地表反照率变化趋势 [单位:(10 a)−1]

    Figure  4.  Trends in JJA mean surface albedo from 1979 to 2019 over the Tibetan Plateau [units: (10 a)−1]

    图  5  (a)1979~2019年夏季地表至300 hPa整层积分的云冰含量与云水含量之和的变化趋势 [单位:kg m−2 (10 a)−1]。(b)1979~2019年夏季地表至300 hPa整层积分的水汽通量 [矢量箭头,单位:kg m−1 s−1 (10 a)−1]及其散度 [填色,单位:10−6 kg m−2 s−1 (10 a)−1] 的变化趋势。黑色打点区域表明填色变量场通过95%的信度检验。图b中矢量箭头场均已通过95%的信度检验

    Figure  5.  (a) Trends in JJA mean column-integrated (surface to 300 hPa) atmospheric cloud liquid and ice water content from 1979 to 2019 [units: kg m−2 (10 a)−1]. (b) Trends in JJA mean column-integrated (surface to 300 hPa) atmospheric water vapor flux [vectors, units: kg m−1 s−1 (10 a)−1] and its divergence [shading, units: 10−6 kg m−2 s−1 (10 a)−1] from 1979 to 2019. The dotted areas denote the shaded fields that exceed the 95% confidence level of statistical significance. Vectors in (b) pass the test of significance at the 95% confidence level

    图  6  1979~2019年夏季(a)地表感热通量和(b)地表潜热通量的变化趋势 [单位:W m−2 (10 a)−1]。黑色打点区域表示填色变量场通过95%的信度检验

    Figure  6.  Trends in JJA mean (a) surface sensible heat flux and (b) surface latent heat flux from 1979 to 2019 [units: W m−2 (10 a)−1]. The dotted areas denote the shaded fields that exceed the 95% confidence level of statistical significance

    图  7  (a)1979~2019年夏季整层大气平均温度的变化趋势 [单位:K (10 a)−1]。(b)1979~2019年夏季500 hPa位势的变化趋势 [填色,单位:m2 s−2 (10 a)−1]与风场 [矢量箭头,单位:m s−1 (10 a)−1]的变化趋势。黑色打点区域表明填色变量场通过95%的信度检验,图b中矢量箭头场均已通过95%的信度检验

    Figure  7.  (a) Trends in JJA mean column-averaged air temperature from 1979 to 2019 [units: K (10 a)−1]. (b) Trends in JJA mean geopotential height [units: m2 s−2 (10 a)−1] and wind field [units: m s−1 (10 a)−1] at 500 hPa from 1979 to 2019. The dotted areas denote the shaded fields that exceed the 95% confidence level of statistical significance. Vectors in (b) pass the test of significance at the 95% confidence level

    图  8  1980~2019年夏季大气气溶胶光学厚度趋势分布 [单位:(10 a)−1]。黑色打点区域表明填色变量场通过95%的信度检验

    Figure  8.  Trends in JJA mean aerosol optical depth from 1980 to 2019 [units: (10 a)−1]. The dotted areas denote the shaded fields that exceed the 95% confidence level of statistical significance

    表  1  各个过程对不同区域的地表气温变化的贡献

    Table  1.   Contribution of different processes to surface temperature change in various regions

    地表气温变化的贡献
    北非—南欧蒙古地区东北亚南亚高原
    升高降低降低
    水汽升高升高
    气溶胶升高升高降低降低
    大气温度升高升高升高
    反照率升高
    感热降低降低降低升高
    潜热降低升高降低
    下载: 导出CSV
  • [1] Barriopedro D, Fischer E M, Luterbacher J, et al. 2011. The hot summer of 2010: Redrawing the temperature record map of Europe [J]. Science, 332(6026): 220−224. doi: 10.1126/science.1201224
    [2] Cai M, Lu J H. 2009. A new framework for isolating individual feedback processes in coupled general circulation climate models. Part II: Method demonstrations and comparisons [J]. Climate Dyn., 32(6): 887−900. doi: 10.1007/s00382-008-0424-4
    [3] Chen B, Chao W C, Liu X. 2003. Enhanced climatic warming in the Tibetan Plateau due to doubling CO2: A model study [J]. Climate Dyn., 20(4): 401−413. doi: 10.1007/s00382-002-0282-4
    [4] Chen W, Lu R Y. 2014. A decadal shift of summer surface air temperature over Northeast Asia around the mid-1990s [J]. Adv. Atmos. Sci., 31(4): 735−742. doi: 10.1007/s00376-013-3154-4
    [5] Cui X, Graf H, Langmann B, et al. 2006. Climate impacts of anthropogenic land use changes on the Tibetan Plateau [J]. Glob. Planet. Change, 54(1–2): 33–56. doi:10.1016/j.gloplacha.2005.07.006
    [6] Dong B W, Sutton R T, Chen W, et al. 2016. Abrupt summer warming and changes in temperature extremes over Northeast Asia since the mid-1990s: Drivers and physical processes [J]. Adv. Atmos. Sci., 33(9): 1005−1023. doi: 10.1007/s00376-016-5247-3
    [7] Dong B W, Sutton R T, Shaffrey L. 2017. Understanding the rapid summer warming and changes in temperature extremes since the mid-1990s over western Europe [J]. Climate Dyn. , 48(5–6): 1537–1554. doi:10.1007/s00382-016-3158-8
    [8] Duan A M, Wu G X. 2006. Change of cloud amount and the climate warming on the Tibetan Plateau [J]. Geophys. Res. Lett., 33(22): L22704. doi: 10.1029/2006GL027946
    [9] Duan A M, Xiao Z X. 2015. Does the climate warming hiatus exist over the Tibetan Plateau? [J]. Sci. Rep., 5(1): 13711. doi: 10.1038/srep13711
    [10] 段安民, 肖志祥, 吴国雄. 2016. 1979~2014年全球变暖背景下青藏高原气候变化特征 [J]. 气候变化研究进展, 12(5): 374−381. doi: 10.12006/J.ISSN.1673-1719.2016.039

    Duan Anmin, Xiao Zhixiang, Wu Guoxiong. 2016. Characteristics of climate change over the Tibetan Plateau under the global warming during 1979–2014 [J]. Climate Change Research (in Chinese), 12(5): 374−381. doi: 10.12006/J.ISSN.1673-1719.2016.039
    [11] Fang B J, Lu M Q. 2020. Heatwave and blocking in the northeastern Asia: Occurrence, variability, and association [J]. J. Geophys. Res., 125(6): e2019JD031627. doi: 10.1029/2019JD031627
    [12] Fu Q, Liou K N. 1992. On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres [J]. J. Atmos. Sci., 49(22): 2139−2156. doi: 10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2
    [13] Fu Q, Liou K N. 1993. Parameterization of the radiative properties of cirrus clouds [J]. J. Atmos. Sci., 50(13): 2008−2025. doi: 10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2
    [14] Gao K L, Duan A M, Chen D L, et al. 2019. Surface energy budget diagnosis reveals possible mechanism for the different warming rate among earth’s three poles in recent decades [J]. Sci. Bull., 64(16): 1140−1143. doi: 10.1016/j.scib.2019.06.023
    [15] Ghatak D, Sinsky E, Miller J. 2014. Role of snow–albedo feedback in higher elevation warming over the Himalayas, Tibetan Plateau and Central Asia [J]. Environ. Res. Lett., 9(11): 114008. doi: 10.1088/1748-9326/9/11/114008
    [16] Gu Y, Liou K N, Jiang J H, et al. 2012. Dust aerosol impact on North Africa climate: A GCM investigation of aerosol–cloud–radiation interactions using a–train satellite data [J]. Atmos. Chem. Phys., 12(4): 1667−1679. doi: 10.5194/acp-12-1667-2012
    [17] Hersbach H, Bell B, Berrisford P, et al. 2020. The ERA5 global reanalysis [J]. Quart. J. Roy. Meteor. Soc., 146(730): 1999−2049. doi: 10.1002/qj.3803
    [18] Hoerling M, Eischeid J, Perlwitz J, et al. 2012. On the increased frequency of Mediterranean drought [J]. J. Climate, 25(6): 2146−2161. doi: 10.1175/JCLI-D-11-00296.1
    [19] Hong X W, Lu R Y, Li S L. 2017. Amplified summer warming in Europe–West Asia and Northeast Asia after the mid-1990s [J]. Environ. Res. Lett., 12(9): 094007. doi: 10.1088/1748-9326/aa7909
    [20] Huang J, Li Y, Fu C, et al. 2017. Dryland climate change: Recent progress and challenges [J]. Rev. Geophys., 55(3): 719−778. doi: 10.1002/2016RG000550
    [21] 简茂球, 罗会邦, 乔云亭. 2004. 青藏高原东部和西太平洋暖池区大气热源与中国夏季降水的关系 [J]. 热带气象学报, 20(4): 355−364. doi: 10.3969/j.issn.1004-4965.2004.04.003

    Jian Maoqiu, Luo Huibang, Qiao Yunting. 2004. On the relationships between the summer rainfall in China and the atmospheric heat sources over the eastern Tibetan Plateau and the western Pacific warm pool [J]. Journal of Tropical Meteorology (in Chinese), 20(4): 355−364. doi: 10.3969/j.issn.1004-4965.2004.04.003
    [22] Jiang Y Q, Yang X Q, Liu X H, et al. 2017. Anthropogenic aerosol effects on East Asian winter monsoon: The role of black carbon–induced Tibetan Plateau warming [J]. J. Geophys. Res. Atmos., 122(11): 5883−5902. doi: 10.1002/2016JD026237
    [23] Jin J M, Lu S H, Li S S, et al. 2010. Impact of land use change on the local climate over the Tibetan Plateau [J]. Adv. Meteor., 2010: 837480. doi: 10.1155/2010/837480
    [24] Kaiser D P, Qian Y. 2002. Decreasing trends in sunshine duration over China for 1954–1998: Indication of increased haze pollution? [J]. Geophys. Res. Lett., 29(21): 2042. doi: 10.1029/2002GL016057
    [25] Kamae Y, Shiogama H, Watanabe M, et al. 2014. Attributing the increase in Northern Hemisphere hot summers since the late 20th century [J]. Geophys. Res. Lett., 41(14): 5192−5199. doi: 10.1002/2014GL061062
    [26] Kang L T, Huang J P, Chen S Y, et al. 2016. Long–term trends of dust events over Tibetan Plateau during 1961–2010 [J]. Atmos. Environ., 125: 188−198. doi: 10.1016/j.atmosenv.2015.10.085
    [27] Lee W, Choi H M, Lee J Y, et al. 2018. Temporal changes in mortality impacts of heat wave and cold spell in Korea and Japan [J]. Environ. Int., 116: 136−146. doi: 10.1016/j.envint.2018.04.017
    [28] Liu Y M, Lu M M, Yang H J, et al. 2020. Land–atmosphere–ocean coupling associated with the Tibetan Plateau and its climate impacts [J]. Natl. Sci. Rev., 7(3): 534−552. doi: 10.1093/nsr/nwaa011
    [29] Lu J H, Cai M. 2009. A new framework for isolating individual feedback processes in coupled general circulation climate models. Part I: Formulation [J]. Climate Dyn., 32(6): 873−885. doi: 10.1007/s00382-008-0425-3
    [30] Lu M M, Yang S, Li Z N, et al. 2018. Possible effect of the Tibetan Plateau on the “upstream” climate over West Asia, North Africa, South Europe and the North Atlantic [J]. Climate Dyn., 51(4): 1485−1498. doi: 10.1007/s00382-017-3966-5
    [31] Lu M M, Huang B H, Li Z N, et al. 2019. Role of Atlantic air–sea interaction in modulating the effect of Tibetan Plateau heating on the upstream climate over Afro–Eurasia–Atlantic regions [J]. Climate Dyn. , 53(1–2): 509–519. doi: 10.1007/s00382-018-4595-3
    [32] Lu M M, Yang S, Wang J B, et al. 2021. Response of regional Asian summer monsoons to the effect of reduced surface albedo in different Tibetan Plateau domains in idealized model experiments [J]. J. Climate, 34(17): 7023−7036. doi: 10.1175/JCLI-D-20-0500.1
    [33] Ma J R, Guan X D, Guo R X, et al. 2017. Mechanism of non–appearance of hiatus in Tibetan Plateau [J]. Sci. Rep., 7(1): 4421. doi: 10.1038/s41598-017-04615-7
    [34] Ma J R, Zhang T H, Guan X D, et al. 2019. The dominant role of snow/ice albedo feedback strengthened by black carbon in the enhanced warming over the Himalayas [J]. J. Climate, 32(18): 5883−5899. doi: 10.1175/JCLI-D-18-0720.1
    [35] 马晓波, 李栋梁. 2003. 青藏高原近代气温变化趋势及突变分析 [J]. 高原气象, 22(5): 507−512. doi: 10.3321/j.issn:1000-0534.2003.05.013

    Ma Xiaobo, Li Dongliang. 2003. Analyses on air temperature and its abrupt change over Qinghai–Xizang Plateau in modern age [J]. Plateau Meteorology (in Chinese), 22(5): 507−512. doi: 10.3321/j.issn:1000-0534.2003.05.013
    [36] Nan S L, Zhao P, Chen J M. 2019. Variability of summertime Tibetan tropospheric temperature and associated precipitation anomalies over the central–eastern Sahel [J]. Climate Dyn. , 52(3–4): 1819–1835. doi: 10.1007/s00382-018-4246-8
    [37] Nan S L, Zhao P, Chen J M, et al. 2021. Links between the thermal condition of the Tibetan Plateau in summer and atmospheric circulation and climate anomalies over the Eurasian continent [J]. Atmos. Res., 247: 105212. doi: 10.1016/j.atmosres.2020.105212
    [38] 彭玉萍, 何金海, 陈隆勋, 等. 2012. 1981~2000年夏季青藏高原大气热源低频振荡特征及其影响 [J]. 热带气象学报, 28(3): 330−338. doi: 10.3969/j.issn.1004-4965.2012.03.005

    Peng Yuping, He Jinhai, Chen Longxun, et al. 2012. A study on the characteristics and effect of the low–frequency oscillation of the atmospheric heat source over the eastern Tibetan Plateau from 1981 to 2000 [J]. Journal of Tropical Meteorology (in Chinese), 28(3): 330−338. doi: 10.3969/j.issn.1004-4965.2012.03.005
    [39] Rangwala I, Miller J R, Xu M. 2009. Warming in the Tibetan Plateau: Possible influences of the changes in surface water vapor [J]. Geophys. Res. Lett., 36(6): L06703. doi: 10.1029/2009GL037245
    [40] Schär C, Vidale P L, Lüthi D, et al. 2004. The role of increasing temperature variability in European summer heatwaves [J]. Nature, 427(6972): 332−336. doi: 10.1038/nature02300
    [41] Shen S S P, Yao R Z, Ngo J, et al. 2015. Characteristics of the Tibetan Plateau snow cover variations based on daily data during 1997–2011 [J]. Theor. Appl. Climatol. , 120(3–4): 445–453. doi:10.1007/s00704-014-1185-0
    [42] Stainforth D A, Chapman S C, Watkins N W. 2013. Mapping climate change in European temperature distributions [J]. Environ. Res. Lett., 8(3): 034031. doi: 10.1088/1748-9326/8/3/034031
    [43] Stott P A, Tett S F B, Jones G S, et al. 2000. External control of 20th century temperature by natural and anthropogenic forcings [J]. Science, 290(5499): 2133−2137. doi: 10.1126/science.290.5499.2133
    [44] Su J Y, Duan A M, Xu H M. 2017. Quantitative analysis of surface warming amplification over the Tibetan Plateau after the late 1990s using surface energy balance equation [J]. Atmos. Sci. Lett., 18(3): 112−117. doi: 10.1002/asl.732
    [45] Sutton R T, Dong B W. 2012. Atlantic Ocean influence on a shift in European climate in the 1990s [J]. Nat. Geosci., 5(11): 788−792. doi: 10.1038/ngeo1595
    [46] Trenberth K E, Fasullo J T. 2012. Climate extremes and climate change: The Russian heat wave and other climate extremes of 2010 [J]. J. Geophys. Res. Atmos., 117(D17): D17103. doi: 10.1029/2012JD018020
    [47] Varga G. 2020. Changing nature of Saharan dust deposition in the Carpathian basin (Central Europe): 40 years of identified North African dust events (1979–2018) [J]. Environ. Int., 139: 105712. doi: 10.1016/j.envint.2020.105712
    [48] Wahren C H A, Walker M D, Bret-Harte M S. 2005. Vegetation responses in Alaskan arctic tundra after 8 years of a summer warming and winter snow manipulation experiment [J]. Global Change Biology, 11(4): 537−552. doi: 10.1111/j.1365-2486.2005.00927.x
    [49] Wang D, Zhang F, Yang S T, et al. 2020. Exploring the spatial-temporal characteristics of the aerosol optical depth (AOD) in Central Asia based on the moderate resolution imaging spectroradiometer (MODIS) [J]. Environ. Monit. Assess., 192(6): 383. doi: 10.1007/s10661-020-08299-x
    [50] 王青霞, 吕世华, 鲍艳, 等. 2014. 青藏高原不同时间尺度植被变化特征及其与气候因子的关系分析 [J]. 高原气象, 33(2): 301−312. doi: 10.7522/j.issn.1000-0534.2014.00002

    Wang Qingxia, Lü Shihua, Bao Yan, et al. 2014. Characteristics of vegetation change and its relationship with climate factors in different time–scales on Qinghai–Xizang Plateau [J]. Plateau Meteorology (in Chinese), 33(2): 301−312. doi: 10.7522/j.issn.1000-0534.2014.00002
    [51] Wu G X, Liu Y M, Zhang Q, et al. 2007. The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate [J]. J. Hydrometeor., 8(4): 770−789. doi: 10.1175/JHM609.1
    [52] Wu G X, Duan A M, Liu Y M, et al. 2015. Tibetan Plateau climate dynamics: Recent research progress and outlook [J]. Natl. Sci. Rev., 2(1): 100−116. doi: 10.1093/nsr/nwu045
    [53] Wu Y T, Yang S, Hu X M, et al. 2020. Process-based attribution of long–term surface warming over the Tibetan Plateau [J]. Int. J. Climatol., 40(15): 6410−6422. doi: 10.1002/joc.6589
    [54] Xu W F, Ma L J, Ma M N, et al. 2017. Spatial-temporal variability of snow cover and depth in the Qinghai–Tibetan Plateau [J]. J. Climate, 30(4): 1521−1533. doi: 10.1175/JCLI-D-15-0732.1
    [55] Yan Y P, You Q L, Wu F Y, et al. 2020. Surface mean temperature from the observational stations and multiple reanalyses over the Tibetan Plateau [J]. Climate Dyn., 55(9–10): 2405–2419. doi:10.1007/s00382-020-05386-0
    [56] 杨倩, 陈权亮, 陈朝平, 等. 2020. 全球变暖背景下青藏高原中东部地区温度变化特征 [J]. 成都信息工程大学学报, 35(3): 352−358. doi: 10.16836/j.cnki.jcuit.2020.03.017

    Yang Qian, Chen Quanliang, Chen Chaoping, et al. 2020. Spatial-temporal changes of temperature over the central and eastern part of Tibetan Plateau from 1960 to 2016 [J]. Journal of Chengdu University of Information Technology (in Chinese), 35(3): 352−358. doi: 10.16836/j.cnki.jcuit.2020.03.017
    [57] Yang Y, Ren R C. 2017. On the contrasting decadal changes of diurnal surface temperature range between the Tibetan Plateau and southeastern China during the 1980s–2000s [J]. Adv. Atmos. Sci., 34(2): 181−198. doi: 10.1007/s00376-016-6077-z
    [58] You Q L, Min J Z, Kang S C. 2016. Rapid warming in the Tibetan Plateau from observations and CMIP5 models in recent decades [J]. Int. J. Climatol., 36(6): 2660−2670. doi: 10.1002/joc.4520
    [59] 游庆龙, 康世昌, 李剑东, 等. 2021. 青藏高原气候变化若干前沿科学问题 [J]. 冰川冻土, 43(3): 885−901. doi: 10.7522/j.issn.1000-0240.2021.0029

    You Qinglong, Kang Shichang, Li Jiandong, et al. 2021. Several research frontiers of climate change over the Tibetan Plateau [J]. Journal of Glaciology and Geocryology (in Chinese), 43(3): 885−901. doi: 10.7522/j.issn.1000-0240.2021.0029
    [60] Zheng Y F, Liu J J, Wu R J, et al. 2008. Seasonal statistical characteristics of aerosol optical properties at a site near a dust region in China [J]. J. Geophys. Res. Atmos., 113(D16): D16205. doi: 10.1029/2007JD009384
    [61] Zhong L, Ma Y M, Xue Y K, et al. 2019. Climate change trends and impacts on vegetation greening over the Tibetan Plateau [J]. J. Geophys. Res. Atmos., 124(14): 7540−7552. doi: 10.1029/2019JD030481
    [62] Zhou Y F, Wu Z W. 2016. Possible impacts of mega-El Niño/southern Oscillation and Atlantic multidecadal oscillation on Eurasian heatwave frequency variability [J]. Quart. J. Roy. Meteor. Soc., 142(697): 1647−1661. doi: 10.1002/qj.2759
    [63] Zhu J, Xia X G, Che H Z, et al. 2019. Spatiotemporal variation of aerosol and potential long–range transport impact over the Tibetan Plateau, China [J]. Atmos. Chem. Phys., 19(23): 14637−14656. doi: 10.5194/acp-19-14637-2019
    [64] Zhu L H, Huang G, Fan G Z, et al. 2017. Evolution of surface sensible heat over the Tibetan Plateau under the recent global warming hiatus [J]. Adv. Atmos. Sci., 34(10): 1249−1262. doi: 10.1007/s00376-017-6298-9
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  19
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-26
  • 录用日期:  2022-06-15
  • 网络出版日期:  2022-07-13
  • 刊出日期:  2022-09-22

目录

    /

    返回文章
    返回