Observational Analysis of the Causes for the Heavy Rainfall Case in Mianning on 26 June 2020
-
摘要: 利用多源观测数据,结合ERA5再分析资料,从环流背景、水汽条件、局地探空特征、对流系统演变以及地形影响等方面,分析了“6.26”冕宁暴雨的可能成因。结果表明:(1)暴雨期间,500 hPa环流形势相对稳定,伴随中纬度槽东移和副热带高压西进,二者间西南气流显著增强,影响四川地区;盆地低涡北部非地转风风向随时间顺时针变化,使夜间向低涡中心辐合的气流增强,促进低涡发生、发展;盆地低涡西部的偏北气流和攀西高原的西南气流同时增强,使局地环流发生变化,改变降水区低层动力和水汽条件,决定降水起止。(2)冕宁暴雨过程分为两个阶段:前期,受地形和冷池出流抬升影响,以及叠加其上的中层辐合的接力抬升作用,西南暖湿气流冲破对流抑制,在灵山寺西南侧山前形成强对流单体,强对流单体随引导气流向东北移动到灵山寺站,带来强降水;后期,受山前地形阻挡和山后源自盆地的冷空气的共同作用下,西南暖湿气流辐合上升运动的强度和伸展高度同时增加,灵山寺站附近不断有质心(回波强度超过50 dBZ)高度较低的强回波单体生消,降水强度显著增强。Abstract: An heavy rainfall event occurred in Mianning on 26 June 2020, inducing mountain torrents (MTs). Here, using various observational data and ERA5 reanalysis data, the causes for the event is studied from aspects of atmospheric circulation, moister conditions, local stratified characters, evolution of convective systems, and orographic effect. The results indicated that: (1) The 500-hPa situation changed little during the rainstorm. The southwesterly wind accelerated due to the tiny westward West Pacific subtropical high and the eastward mid-latitude tough and affected Sichuan Province. The forming and developing of a basin vortex (BV) can be explained well by the clockwise aspect change of ageostrophic wind at the northern part of BV. The convergence of the western BV’s northerly wind and the Panxi Plateau’s southwesterly wind changed the local dynamic and moister condition of rainfall region and determined the occurrence and development of the rainstorm. (2) The rainstorm process can be divided into two stages: In the first stage, the southwesterly wind can break the convective inhibition via the orographic lift, cold pool lift, and convergence at the mid-level troposphere. The deep convection formed on the southwest side and moved to the LSS (Lingshansi station) with heavy rain. In the second stage, the southwesterly flow was uplifted higher by the orographic and cold air associated with the Sichuan basin than the first stage. The strong convective cells occurred incessantly near LSS with the maximum reflectivity of >50 dBZ closed the melting level and caused high rainfall intensity.
-
Key words:
- Mianning rainstorm /
- Basin vortex /
- Local circulation evolution /
- Orographic effect
-
图 1 2020年6月26日18时(北京时,下同)至27日02时(a)四川省、(b)冕宁暴雨区内区域自动站累积降水量(彩色圆点,单位:mm)分布,(c)山洪灾害发生区域内4个累积降水量大于100 mm自动站的小时降水量时间演变。图a、b中,阴影表示地形高度。图a中海拔高度分辨率为0.03°,星号代表西昌雷达所在位置。图b中海拔高度分辨率为0.015°,黑色虚线方框区域表示冕宁暴雨中心区,英文字母表征信息为CG River(曹古河)、AN River(安宁河),LSS(灵山寺站)、ZSZ(中所镇站)、HA(惠安乡站)、YX(越西站),红色五角星、红色倒三角和红色正三角符号分别表示冕宁高速路口、大马乌村和大堡子村等山洪灾害出灾点的大致位置
Figure 1. Distribution of the accumulated precipitation (color dots, units: mm) based on rain gauge observations in (a) Sichuan, (b) Mianning rainstorm region, (c) time series of the hourly rainfall at the four stations (accumulated precipitation more than 100 mm) from 1800 BJT (Beijing time) 26 to 0200 BJT 27 June 2020. In Figs. a and b, the topography is represented by gray shadings. In Fig. a, the spatial resolution of the topography data is 0.03°, the location of the Xichang radar is labeled by the star. In Fig. b, the spatial resolution of the topography data is 0.015°, the black dashed rectangular area denotes the center of the Mainning rainstorm region; letters representation information: Caogu River (CG River), Anning River (AN River), Lingshansi (LSS), Zhongsuozhen (ZSZ), Huian (HA), and Yuexi (YX); the red star, red inverted triangle, and red triangle represent high-speed exit of Mianning, Damawu village, and Dapuzi village, respectively
图 2 2020年6月26日(a)08时、(b)20时500 hPa位势高度场(蓝色等值线,单位:gpm)和700 hPa风场(红色、黑色矢量分别代表≥8 m s−1和<8 m s−1的风矢量)。黑色粗等值线代表2000 m地形线(地形分辨率:0.75°)。图a中蓝色虚线方框为攀西高原的大致范围,图b中红、蓝色方框分别表示冕宁暴雨中心区、盆地低涡中心
Figure 2. 500-hPa geopotential height (blue lines, units: gpm) and 700-hPa wind (red and black vectors represent wind speeds of ≥8 m s−1 and <8 m s−1, respectively) at (a) 0800 BJT, (b) 2000 BJT 26 June 2020. The bold black lines indicate the altitude of 2000 m (the spatial resolution of the topography data is 0.75°). In Fig. a, the blue dashed rectangular represents the Panxi Plateau. In Fig. b, the red (blue) rectangular represents the center of the Maining rainstorm region (the center of the basin vortex)
图 3 2020年6月26日08时至27日07时图2b蓝色方框区域(29°~30°N,104°~107°E)850 hPa平均垂直涡度(蓝色虚线,单位:10−5 s−1)、图2b红色方框区域(28.25°~28.75°N,102°~102.75°E)700 hPa平均水平散度(红色点线,单位:10−5 s−1)及四川区域站点最大小时降水量(绿色实线,单位:mm h−1)
Figure 3. Regional average of 850-hPa vertical vorticity (blue dashed line, units: 10−5 s−1) in the blue rectangular region (29°–30°N, 104°–107°E) in Fig. 2b, average of 700-hPa horizontal divergence (red dotted line, units: 10−5 s−1) in the red rectangular region (28.25°–28.75°N, 102°–102.75°E) in Fig. 2b, and the regional maximum hourly rainfall (green solid line, units: mm h−1) based on Sichuan rain gauge observations from 0800 BJT 26 to 0700 BJT 27 June 2020
图 4 2020年6月(a)26日08时、(b)26日14时、(c)26日20时、(d)27日02时700 hPa水汽通量(矢量,单位:g cm−2 s−1)和水汽通量散度(阴影,单位:10−5 g cm−2 s−1 hPa−1)分布。黑色方框指示冕宁暴雨区;深灰色区域为700 hPa以上的高原区域
Figure 4. Distributions of 700-hPa water vapor flux (vectors, units: g cm−2 s−1) and its divergence (shadings, units: 10−5 g cm−2 s−1 hPa−1) at (a) 0800 BJT, (b) 1400 BJT, (c) 2000 BJT 26 June and (d) 0200 BJT 27 June 2020. The black rectangular area represents the Mianning rainstorm region, and the gray shading indicates the plateau area above 700 hPa
图 5 2020年6月26日08时至27日07时图2b蓝色方框区域(29°~30°N,104°~107°E)平均850 hPa(a)实际风、(b)地转风及(c)非地转风的相对涡度水平平流项B1、地转涡度平流项B2、涡度垂直输送项C、扭转项D、水平辐合辐散项E、总相对涡度局地变化Total(B1+B2+C+D+E)
Figure 5. Regional average of horizontal advection term of relative vorticity (B1) and geographic vorticity (B2), vertical advection term of relative vorticity (C), tilting term (D), horizontal divergence term (E), total local relative vorticity change (Total, B1+B2+C+D+E) for (a) real wind, (b) geographic wind, (c) ageographic wind at 850-hPa in the blue rectangular region (29°–30°N, 104°–107°E) in Fig. 2b from 0800 BJT 26 to 0700 BJT 27 June 2020
图 6 2020年6月(a)26日08时、(b)26日11时、(c)26日14时、(d)26日17时、(e)26日20时、(f)26日23时、(g)27日02时、(h)27日05时850 hPa水平地转风(蓝色矢量,单位:m s−1)和非地转风(红色矢量,单位:m s−1)。大的红色箭头代表非地转风的大致方向
Figure 6. Geographic wind (blue vectors, units: m s−1) and ageographic wind (red vectors, units: m s−1) at 850 hPa at (a) 0800 BJT, (b) 1100 BJT, (c) 1400 BJT, (d) 1700 BJT, (e) 2000 BJT, (f) 2300 BJT 26 June, (g) 0200 BJT, (h) 0500 BJT 27 June 2020. The big red arrows represent the general aspects of ageographic wind
图 7 2020年6月26日08时(红色)、20时(蓝色)西昌探空站的T–logp图(左)和相关环境参数(右),红(蓝)色实线表示露点温度,红(蓝)色虚线表示温度
Figure 7. T–logp diagrams (left) and environmental indexes (right) obtained by the Xichang sounding station at 0800 BJT (red) and 2000 BJT (blue) 26 June 2020, red (blue) solid line represent dew point temperature, red (blue) dashed line represent temperature
图 8 2020年6月26日19:10至27日02:00(a)沿着28.56°N的经度—时间和(b)沿着102.26°E的纬度—时间组合反射率分布(单位:dBZ)。黑色粗虚线代表对流单体的传播方向
Figure 8. (a) Longitude–time cross section of composite radar reflectivity (units: dBZ) along latitude 28.56°N, (b) latitude–time cross section of composite radar reflectivity (units: dBZ) along longitude 102.26°E from 1910 BJT 26 June to 0200 BJT 27 June 2020. The bold dashed lines indicate the directions of peak reflectivity propagation
图 9 2020年6月26日西昌站雷达组合反射率分布(单位:dBZ):(a)19:33;(b)20:02;(c)20:31;(d)21:00;(e)21:28;(f)22:03;(g)22:43;(h)23:24;(i)23:47。虚线指示图10中剖面所处位置,白色三角代表中所镇(ZSZ),蓝色三角代表灵山寺(LSS)
Figure 9. Composite radar reflectivity (units: dBZ) detected at Xichang station at (a) 1933 BJT, (b) 2002 BJT, (c) 2031 BJT, (d) 2100 BJT, (e) 2128 BJT, (f) 2203 BJT, (g) 2243 BJT, (h) 2324 BJT, and (i) 2347 BJT 26 June 2020. The dashed lines denote the positions of the vertical cross sections in Fig. 10, the white (blue) triangles denote the gauge stations of ZSZ (LSS)
图 10 2020年6月(a)26日21时沿图9c、(b)27日00时沿图9i中虚线的垂直剖面。上图,彩色阴影代表假相当位温(单位:K),黑色等值线为散度(实线表示正值,虚线表示负值,单位:10−5 s−1),彩色等值线为>18 dBZ的雷达回波。中图,彩色阴影为垂直速度(单位:Pa s−1)。上、中图中,绿色虚线为0°C层位置,黑色阴影代表地形高度(单位:km)。下图,蓝色直方图代表站点观测到的小时降水量在剖面所在位置上的插值(单位:mm h−1)。图a的雷达回波时间为26日20:31,图b的雷达回波时间为26日23:47
Figure 10. Vertical cross sections along the dashed line (a) in Fig. 9c at 2100 BJT June 26, (b) in Fig. 9i at 0000 BJT 27 June 2020. In top figures, color shadings, black solid contours, and color contours represent pseudo-equivalent potential temperature (units: K), divergence (solid line represent positive value, dashed line represent negative value, units: 10−5 s−1), and radar reflectivity more than 18 dBZ, respectively. In middle figures, color shadings represent vertical velocity (units: Pa s−1). In top and middle figures, the green dashed lines represent the melting level, the black shadings represent terrain (units: km). In bottom figures, blue bars represent the interpolation (units: mm h−1) of hourly precipitation observed at the site on the location of the cross sections. In Fig. a, radar echo time is 2031 BJT 26 June 2020; in Fig. b, radar echo time is 2347 BJT 26 June 2020
-
[1] Amburn S A, Wolf P L. 1997. VIL density as a hail indicator [J]. Wea. Forecasting, 12(3): 473−478. doi: 10.1175/1520-0434(1997)012<0473:VDAAHI>2.0.CO;2 [2] 鲍名, 黄荣辉. 2006. 近40年我国暴雨的年代际变化特征 [J]. 大气科学, 30(6): 1057−1067. doi: 10.3878/j.issn.1006-9895.2006.06.01Bao Ming, Huang Ronghui. 2006. Characteristics of the interdecadal variations of heavy rain over China in the last 40 years [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30(6): 1057−1067. doi: 10.3878/j.issn.1006-9895.2006.06.01 [3] Bao X H, Zhang F Q, Sun J H. 2011. Diurnal variations of warm-season precipitation east of the Tibetan Plateau over China [J]. Mon. Wea. Rev., 139(9): 2790−2810. doi: 10.1175/MWR-D-11-00006.1 [4] Blackadar A K. 1957. Boundary layer wind maxima and their significance for the growth of nocturnal inversions [J]. Bull. Amer. Meteor. Soc., 38(5): 283−290. doi: 10.1175/1520-0477-38.5.283 [5] Chen H M, Li J, Yu R C. 2018. Warm season nocturnal rainfall over the eastern periphery of the Tibetan Plateau and its relationship with rainfall events in adjacent regions [J]. International Journal of Climatology, 38(13): 4786−4801. doi: 10.1002/joc.5696 [6] 崔鹏, 陈晓清, 张建强, 等. 2013. “4·20”芦山7.0级地震次生山地灾害活动特征与趋势 [J]. 山地学报, 31(3): 257−265. doi: 10.3969/j.issn.1008-2786.2013.03.001Cui Peng, Chen Xiaoqing, Zhang Jianqiang, et al. 2013. Activities and tendency of mountain hazards induced by the Ms7.0 Lushan earthquake, April 20, 2013 [J]. Journal of Mountain Science (in Chinese), 31(3): 257−265. doi: 10.3969/j.issn.1008-2786.2013.03.001 [7] 邓波, 顾清源, 罗菊芳. 2007. 攀西地区“7.7”暴雨雷达回波演变特征剖析 [J]. 气象, 33(9): 64−68. doi: 10.7519/j.issn.1000-0526.2007.09.010Deng Bo, Gu Qingyuan, Luo Jufang. 2007. Anatomy of the evolution of radar echo at “7.7” heavy rain in the western Panzhihua [J]. Meteorological Monthly (in Chinese), 33(9): 64−68. doi: 10.7519/j.issn.1000-0526.2007.09.010 [8] 杜梅, 李国平, 李山山. 2020. 高原横切变线与高原低涡关系的初步研究 [J]. 大气科学, 44(2): 269−281. Du Mei, Li Guoping, Li Shanshan. 2020. A preliminary study of the relationship between the plateau transverse shear line and plateau vortex [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(2): 269–281. doi:10.3878/j.issn.1006-9895.1906.18191 [9] Du Y, Rotunno R. 2014. A simple analytical model of the nocturnal low-level jet over the Great Plains of the United States [J]. J. Atmos. Sci., 71(10): 3674−3683. doi: 10.1175/JAS-D-14-0060.1 [10] Fu S M, Mai Z, Sun J H, et al. 2019. Impacts of convective activity over the Tibetan Plateau on plateau vortex, southwest vortex, and downstream precipitation [J]. J. Atmos. Sci., 76(12): 3803−3830. doi: 10.1175/JAS-D-18-0331.1 [11] 顾小祥, 李国平. 2019. 云微物理方案对一次高原切变线暴雨过程数值模拟的影响 [J]. 云南大学学报(自然科学版), 41(3): 526−536. doi: 10.7540/j.ynu.20180441Gu Xiaoxiang, Li Guoping. 2019. Impact of cloud microphysical schemes on numerical simulation of a plateau shear line rainstorm event [J]. Journal of Yunnan University (Natural Sciences Edition) (in Chinese), 41(3): 526−536. doi: 10.7540/j.ynu.20180441 [12] 何光碧. 2006. 高原东侧陡峭地形对一次盆地中尺度涡旋及暴雨的数值试验 [J]. 高原气象, 25(3): 430−441. doi: 10.3321/j.issn:1000-0534.2006.03.011He Guangbi. 2006. Simulation of impact of steep terrain on east side of Qinghai–Xizang Plateau on mesoscale vortex and rain storm over the basin [J]. Plateau Meteorology (in Chinese), 25(3): 430−441. doi: 10.3321/j.issn:1000-0534.2006.03.011 [13] Holton J R. 1967. The diurnal boundary layer wind oscillation above sloping terrain [J]. Tellus A, 19(2): 199−205. doi: 10.3402/tellusa.v19i2.9766 [14] Hu X L, Yuan W H, Yu R C, et al. 2020. The evolution process of warm season intense regional rainfall events in Yaan [J]. Climate Dyn. , 54(7–8): 3245–3258. doi:10.1007/s00382-020-05168-8 [15] Huang Y J, Cui X P. 2015a. Dominant cloud microphysical processes of a torrential rainfall event in Sichuan, China [J]. Adv. Atmos. Sci., 32(3): 389−400. doi: 10.1007/s00376-014-4066-7 [16] Huang Y J, Cui X P. 2015b. Moisture sources of an extreme precipitation event in Sichuan, China, based on the Lagrangian method [J]. Atmospheric Science Letters, 16(2): 177−183. doi: 10.1002/asl2.562 [17] Huang Y J, Cui X P. 2015c. Moisture sources of torrential rainfall events in the Sichuan basin of China during summers of 2009–13 [J]. Journal of Hydrometeorology, 16(4): 1906−1917. doi: 10.1175/JHM-D-14-0220.1 [18] Huang Y J, Cui X P, Li X F. 2016. A three-dimensional WRF-based precipitation equation and its application in the analysis of roles of surface evaporation in a torrential rainfall event [J]. Atmospheric Research, 169: 54−64. doi: 10.1016/j.atmosres.2015.09.026 [19] Jing Z, Tang C, Ming C, et al. 2015. Field observations of the disastrous 11 July 2013 debris flows in Qipan Gully, Wenchuan Area, southwestern China [J]. Eng. Geol. Soc. Territ., 2: 531−535. doi: 10.1007/978-3-319-09057-3_88 [20] 兰恒星, 周成虎, 高星, 等. 2013. 四川雅安芦山地震灾区次生地质灾害评估及对策建议 [J]. 地理科学进展, 32(4): 499−504. doi: 10.11820/dlkxjz.2013.04.001Lan Hengxing, Zhou Chenghu, Gao Xing, et al. 2013. Secondary geological hazard assessment and hazard mitigation countermeasures in Lushan, Ya’ an Earthquake, Sichuan Province [J]. Progress in Geography (in Chinese), 32(4): 499−504. doi: 10.11820/dlkxjz.2013.04.001 [21] Lenderink G, van Meijgaard E. 2008. Increase in hourly precipitation extremes beyond expectations from temperature changes [J]. Nature Geoscience, 1(8): 511−514. doi: 10.1038/ngeo262 [22] Li H Q, Cui X P, Zhang D L. 2017. On the initiation of an isolated heavy-rain-producing storm near the central urban area of Beijing metropolitan region [J]. Mon. Wea. Rev., 145(1): 181−197. doi: 10.1175/MWR-D-16-0115.1 [23] 李琴, 崔晓鹏, 曹洁. 2014. 四川地区一次暴雨过程的观测分析与数值模拟 [J]. 大气科学, 38(6): 1095−1108. doi: 10.3878/j.issn.1006-9895.1401.13255Li Qin, Cui Xiaopeng, Cao Jie. 2014. Observational analysis and numerical simulation of a heavy rainfall event in Sichuan Province [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38(6): 1095−1108. doi: 10.3878/j.issn.1006-9895.1401.13255 [24] 李山山, 王晓芳, 万蓉, 等. 2020. 青藏高原东坡不同海拔区域的雨滴谱特征 [J]. 高原气象, 39(5): 899–911. Li Shanshan, Wang Xiaofang, Wan Rong, et al. 2020. The characteristics of raindrop spectrum in different altitude region on the eastern slope of Qinghai–Xizang Plateau [J]. Plateau Meteorology (in Chinese), 39(5): 899–891. doi:10.7522/j.issn.1000-0534.2019.00086 [25] 李永军. 2020. 攀西地区南部一次MCC引发暴雨过程的分析 [J]. 高原山地气象研究, 40(2): 43−48. doi: 10.3969/j.issn.1674-2184·2020.02.007Li Yongjun. 2020. The analysis of a rainstorm induced by MCC in south Panxi area [J]. Plateau and Mountain Meteorology Research (in Chinese), 40(2): 43−48. doi: 10.3969/j.issn.1674-2184·2020.02.007 [26] 林建, 杨贵名. 2014. 近30年中国暴雨时空特征分析 [J]. 气象, 40(7): 816−826. doi: 10.7519/j.issn.1000-0526.2014.07.005Lin Jian, Yang Guiming. 2014. Spatio-temporal characteristics of rainstorm in China during 1981–2010 [J]. Meteorological Monthly (in Chinese), 40(7): 816−826. doi: 10.7519/j.issn.1000-0526.2014.07.005 [27] 刘超, 聂锐华, 刘兴年, 等. 2020. 山区暴雨山洪水沙灾害预报预警关键技术研究构想与成果展望 [J]. 工程科学与技术, 52(6): 1−8. doi: 10.15961/j.jsuese.202000859Liu Chao, Nie Ruihua, Liu Xingnian, et al. 2020. Research conception and achievement prospect of key technologies for forecast and early warning of flash flood and sediment disasters in mountainous rainstorm [J]. Advanced Engineering Sciences (in Chinese), 52(6): 1−8. doi: 10.15961/j.jsuese.202000859 [28] 卢萍, 李跃清. 2021. 增强副热带高压对西南涡影响的数值试验 [J]. 大气科学, 45(4): 851−862. doi: 10.3878/j.issn.1006-9895.2008.20161Lu Ping, Li Yueqing. 2021. Simulation of effect of subtropical high enhancement on southwest vortex [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(4): 851−862. doi: 10.3878/j.issn.1006-9895.2008.20161 [29] Luo Y L, Wu M W, Ren F M, et al. 2016. Synoptic situations of extreme hourly precipitation over China [J]. J. Climate, 29(24): 8703−8719. doi: 10.1175/JCLI-D-16-0057.1 [30] Mai Z, Fu S M, Sun J H, et al. 2021. Key statistical characteristics of the mesoscale convective systems generated over the Tibetan Plateau and their relationship to precipitation and southwest vortices [J]. International Journal of Climatology, 41(S1): E875−E896. doi: 10.1002/joc.6735 [31] Pan H, Chen G X. 2019. Diurnal variations of precipitation over North China regulated by the mountain-plains solenoid and boundary-layer inertial oscillation [J]. Adv. Atmos. Sci., 36(8): 863−884. doi: 10.1007/s00376-019-8238-3 [32] Parish T R, Oolman L D. 2010. On the role of sloping terrain in the forcing of the Great Plains low-level jet [J]. J. Atmos. Sci., 67(8): 2690−2699. doi: 10.1175/2010JAS3368 [33] Paul S, Ghosh S, Mathew M, et al. 2018. Increased spatial variability and intensification of extreme monsoon rainfall due to urbanization [J]. Scientific Reports, 8: 3918. doi: 10.1038/s41598-018-22322-9 [34] Pendergrass A G, Knutti R. 2018. The uneven nature of daily precipitation and its change [J]. Geophys. Res. Lett., 45(21): 11980−11988. doi: 10.1029/2018GL080298 [35] 宋雯雯, 李国平, 龙柯吉, 等. 2018a. 两类动力因子对四川盆地一次低涡暴雨的应用研究 [J]. 高原气象, 37(5): 1289−1303. doi: 10.7522/j.issn.1000-0534.2018.00015Song Wenwen, Li Guoping, Long Keji, et al. 2018a. Application research of two types of dynamical factors in a vortex rainstorm in Sichuan basin [J]. Plateau Meteorology (in Chinese), 37(5): 1289−1303. doi: 10.7522/j.issn.1000-0534.2018.00015 [36] 宋雯雯, 李国平, 王皓. 2018b. 四川盆地一次强降水过程水汽特征 [J]. 气象科技, 46(1): 129−138. doi: 10.19517/j.1671-6345.2016063Song Wenwen, Li Guoping, Wang Hao. 2018b. Cooperative analysis of a heavy precipitation process in Sichuan basin by using WRF model and ground-based GPS water vapor data [J]. Meteorological Science and Technology (in Chinese), 46(1): 129−138. doi: 10.19517/j.1671-6345.2016063 [37] 孙建华, 李娟, 沈新勇, 等. 2015. 2013年7月四川盆地一次特大暴雨的中尺度系统演变特征 [J]. 气象, 41(5): 533−543. doi: 10.7519/j.issn.1000-0526.2015.05.002Sun Jianhua, Li Juan, Shen Xinyong, et al. 2015. Mesoscale system study of extreme rainfall over Sichuan basin in July 2013 [J]. Meteorological Monthly (in Chinese), 41(5): 533−543. doi: 10.7519/j.issn.1000-0526.2015.05.002 [38] Tang C, Zhu J, Li W L, et al. 2009. Rainfall-triggered debris flows following the Wenchuan earthquake [J]. Bulletin of Engineering Geology and the Environment, 68(2): 187−194. doi: 10.1007/s10064-009-0201-6 [39] 肖递祥, 毛家勋, 李庆. 2010. “09.7”四川攀西暴雨的MCS特征及其成因分析 [J]. 暴雨灾害, 29(1): 54−58,80. doi: 10.3969/j.issn.1004-9045.2010.01.009Xiao Dixiang, Miao Jiaxun, Li Qing. 2010. Analysis on MCS characteristics and its causes of rainstorm in the Panxi region of Sichuan Province in July 2009 [J]. Torrential Rain and Disasters (in Chinese), 29(1): 54−58,80. doi: 10.3969/j.issn.1004-9045.2010.01.009 [40] 谢娜, 王咏青, 施娟, 等. 2011. 城区下垫面特征对成都地区一次暴雨过程影响的数值模拟 [J]. 高原气象, 30(6): 1472−1480.Xie Na, Wang Yongqing, Shi Juan, et al. 2011. Numerical simulation of city underlying surface effect on a rainstorm process in Chengdu [J]. Plateau Meteorology (in Chinese), 30(6): 1472−1480. [41] 岳俊, 李国平. 2016. 应用拉格朗日方法研究四川盆地暴雨的水汽来源 [J]. 热带气象学报, 32(2): 256−264. doi: 10.16032/j.issn.1004-4965.2016.02.012Yue Jun, Li Guoping. 2016. Study on the moisture source of rainstorms in Sichuan basin by the Lagrangian method [J]. Journal of Tropical Meteorology (in Chinese), 32(2): 256−264. doi: 10.16032/j.issn.1004-4965.2016.02.012 [42] 张芳丽, 李国平, 罗潇. 2020. 四川盆地东北部一次突发性暴雨事件的影响系统分析 [J]. 高原气象, 39(2): 321−332. doi: 10.7522/j.issn.1000-0534.2019.00080Zhang Fangli, Li Guoping, Luo Xiao. 2020. Some influence factors of a sudden rainstorm event in northeast Sichuan basin of China [J]. Plateau Meteorology (in Chinese), 39(2): 321−332. doi: 10.7522/j.issn.1000-0534.2019.00080 [43] 张元春, 李娟, 孙建华. 2019. 青藏高原热力对四川盆地西部一次持续性暴雨影响的数值模拟 [J]. 气候与环境研究, 24(1): 37−49. doi: 10.3878/j.issn.1006-9585.2018.17166Zhang Yuanchun, Li Juan, Sun Jianhua. 2019. Numerical simulation of impacts of the Tibetan Plateau heating on a persistent heavy rainfall in western Sichuan basin [J]. Climatic and Environmental Research (in Chinese), 24(1): 37−49. doi: 10.3878/j.issn.1006-9585.2018.17166 [44] Zhang Y H, Xue M, Zhu K F, et al. 2019. What is the main cause of diurnal variation and nocturnal peak of summer precipitation in Sichuan basin, China? The key role of boundary layer low–level jet inertial oscillations [J]. J. Geophys. Res.: Atmos., 124(5): 2643−2664. doi: 10.1029/2018JD029834 [45] 赵文, 张强, 赵建华. 2016. 陇东南地区强降水过程与雷达VIL产品的定量关系研究 [J]. 高原气象, 35(2): 528−537. doi: 10.7522/j.issn.1000-0534.2015.00056Zhao Wen, Zhang Qiang, Zhao Jianhua. 2016. Study on the quantitative relationship between the heavy precipitation process and VIL product of radar in Southeast Gansu region [J]. Plateau Meteorology (in Chinese), 35(2): 528−537. doi: 10.7522/j.issn.1000-0534.2015.00056 [46] 赵玉春, 许小峰, 崔春光. 2012. 川西高原东坡地形对流暴雨的研究 [J]. 气候与环境研究, 17(5): 607−616. doi: 10.3878/j.issn.1006-9585.2011.11056Zhao Yuchun, Xu Xiaofeng, Cui Chunguang. 2012. A study of convective rainstorms along the east slope of western Sichuan Plateau [J]. Climatic and Environmental Research (in Chinese), 17(5): 607−616. doi: 10.3878/j.issn.1006-9585.2011.11056 [47] Zhong L Z, Mu R, Zhang D L, et al. 2015. An observational analysis of warm–sector rainfall characteristics associated with the 21 July 2012 Beijing extreme rainfall event [J]. J. Geophys. Res., 120(8): 3274−3291. doi: 10.1002/2014JD022686 -