高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2020/2021年冬季大范围低温寒潮过程中一种典型的平流层—对流层耦合演变模态

虞越越 李亚飞 任荣彩 崔正飞

虞越越, 李亚飞, 任荣彩, 等. 2022. 2020/2021年冬季大范围低温寒潮过程中一种典型的平流层—对流层耦合演变模态[J]. 大气科学, 46(6): 1484−1504 doi: 10.3878/j.issn.1006-9895.2206.21250
引用本文: 虞越越, 李亚飞, 任荣彩, 等. 2022. 2020/2021年冬季大范围低温寒潮过程中一种典型的平流层—对流层耦合演变模态[J]. 大气科学, 46(6): 1484−1504 doi: 10.3878/j.issn.1006-9895.2206.21250
YU Yueyue, LI Yafei, REN Rongcai, et al. 2022. A Typical Evolution Mode of Stratosphere–Troposphere Coupling during the Cold Air Outbreak Events in 2020/2021 Winter [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(6): 1484−1504 doi: 10.3878/j.issn.1006-9895.2206.21250
Citation: YU Yueyue, LI Yafei, REN Rongcai, et al. 2022. A Typical Evolution Mode of Stratosphere–Troposphere Coupling during the Cold Air Outbreak Events in 2020/2021 Winter [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(6): 1484−1504 doi: 10.3878/j.issn.1006-9895.2206.21250

2020/2021年冬季大范围低温寒潮过程中一种典型的平流层—对流层耦合演变模态

doi: 10.3878/j.issn.1006-9895.2206.21250
基金项目: 国家自然科学基金项目 42075052、42088101,国家重点研发计划项目 2019YFC1510201,江苏省自然科学基金项目BK20211288
详细信息
    作者简介:

    虞越越,女,1987 年出生,博士,主要从事寒潮低温的机理和预报、平流层—对流层相互作用研究。E-mail: yuyy@nuist.edu.cn

    通讯作者:

    李亚飞, E-mail: liyafei@lasg.iap.ac.cn

  • 中图分类号: P466

A Typical Evolution Mode of Stratosphere–Troposphere Coupling during the Cold Air Outbreak Events in 2020/2021 Winter

Funds: National Natural Science Foundation of China (Grants 42075052, 42088101), National Key Research and Development Program (Grant 2019YFC1510201), Natural Science Foundation of Jiangsu Province (Grant BK20211288)
  • 摘要: 平流层爆发性增温(SSW)超前于对流层环流异常,是延长冬季寒潮低温预报时效的重要途径之一。然而强SSW事件前后地面温度响应的区域和时间存在不确定性,其中涉及的平流层—对流层耦合过程和机理也不十分清楚。本文采用1979~2021年ERA5再分析数据集,研究了2020/2021年冬季“偏心型”强SSW事件前后中高纬度地区地面温度异常的演变特征,并分析了其与等熵大气经向质量环流平流层—对流层分支的耦合演变模态的动力联系。结果表明,伴随此次强SSW事件,亚洲和北美中纬度地区的寒潮低温事件分别在绕极西风反转为东风之前和再次恢复为西风之后发生。SSW前后大气经向质量环流的平流层向极地暖支与对流层高层向极暖支、低层向赤道冷支之间呈现出三个阶段的耦合演变模态: 同位相“加强—加强”、反位相“加强—减弱”以及反位相“减弱—加强”。加强的质量环流对流层向赤道冷支是SSW前后寒潮低温事件的主要原因,而加强的向极地平流层暖支是SSW发生及其伴随的北极涛动负位相持续加强的主要原因。大气经向质量环流不同的垂直耦合模态取决于行星波槽脊在对流层顶和对流层中低层两个关键等熵面上的西倾角异常。西倾角异常表征大气波动的斜压性,主要通过影响关键等熵面以上向极地的净质量输送和其下向赤道的净质量输送进行调控。尤其在SSW发生后的极涡恢复期,对流层顶处异常偏弱的斜压性会加强对流层向极地暖支,进而加强向赤道冷支,有利于寒潮低温的发生。本次SSW事件前后大气经向质量环流三支的耦合演变模态,与历年平流层北半球环状模(NAM)负事件中极区平流层温度异常信号下传滞后的平流层—对流层耦合演变类型相一致,其在波动尺度方面也存在共同特征,即SSW事件或NAM负事件前期对流层一波加强且上传,后期对流层二波加强但较难上传。
  • 图  1  (a)2020/2021年冬季10 hPa 60°N纬向平均纬向风(单位:m s−1) 和60°N~90°N平均温度(单位:K)时间序列 [伴随平流层爆发性增温(Stratospheric Sudden Warming, SSW)爆发的绕极西风转为东风时段由紫色阴影标出;二者相关系数标于右上角];(b)2020年12月26日、(c) 2021年1月5日、(d) 2021年1月15日10 hPa位势高度(等值线,单位:dagpm)及其距平(填色,单位:dagpm)

    Figure  1.  (a) Time series of the average zonal wind at 60°N (units: m s−1) and temperature averaged over 60°N–90°N (units: K) at 10 hPa during 2020/2021 winter (the purple shaded box indicates the period when the subpolar westerly became easterly; the correlation is shown in the top-right) and the geopotential height (contours, units: dagpm) and its anomaly (shadings, units: dagpm) at 10 hPa on (b) December 26, 2020, (c) January 5, 2021, and (d) January 15, 2021

    图  2  (a)60°N平均纬向风(单位:m s−1)、 60°N~90°N极区平均的(b)位势高度(单位:gpm)和(c)温度(单位:K)的原始场(等值线)和距平场(填色),以及(d)60°~90°N积分的等熵大气质量距平(填色,单位:1014 kg)和各层向上积分的质量距平(等值线,单位:1014 kg)的时间—高度剖面。黑色粗横实线表征最接近于对应纬度冬季气候平均对流层顶气压的等压面(150 hPa)及等熵面(315 K);(c)和(d)中的演变廓线分别为 300 hPa以下平均的极区温度距平以及280 K以下冷空气的总质量距平(紫色阴影同图1d,黑色竖虚线为基于对流层温度及空气质量距平的时间分段)

    Figure  2.  The time–height cross sections of the total field (contours) and the anomaly field (shadings) of (a) 60°N zonal average zonal wind (units: m s−1), 60°N–90°N mean (b) geopotential height (units: gpm) and (c) temperature (units: K), and (d) the isentropic mass anomaly (shadings, units: 1014 kg) and the accumulated mass anomaly (contours, units: 1014 kg) above each isentropic level integrated over 60°N–90°N. Black thick horizontal lines indicate the pressure levels and isentropic level that are closest to the winter mean tropopause level in the corresponding latitudes; the time series of the polar mean temperature anomaly (TA) averaged over isobaric levels below 300 hPa and the cold air mass anomaly (MA) below 280 K are superimposed in (c)–(d) (the purple shaded box is the same as that in Fig. 1d and the black vertical dashed lines indicate periods divided based on the tropospheric temperature evolution)

    图  3  2020/2021年SSW事件各阶段平均的20°N~90°N地面2 m温度距平(填色,单位:°C,紫色等值线为0°C线)和低于280 K的冷空气质量距平(等值线,单位:1012 kg,蓝/红色表示正/负距平)的水平分布:(a) 12月21至1月14日、 (b) 1月15至2月9日、(c) 2月10至2月28日

    Figure  3.  Horizontal distribution of the 2-m temperature anomaly (shadings, units: °C, purple isoline is the 0°C line) and cold air mass anomaly vertically integrated below 280 K (contours, units: 1012 kg, blue/red contours indicate positive/negative values) averaged over each period of the SSW event in 2020/2021 winter: (a) December 21–January 14; (b) January 15–February 9; (c) February 10–February 28

    图  4  2020/2021年冬季(a)北半球大陆地区、(b)欧洲、(c)亚洲和(d)北美经度范围内的中纬度冷、暖面积指数(CM、WM)和高纬度冷、暖面积指数(CH、WH)的时间序列。指数均做了5天滑动平均处理。 黑色横虚线为相应各指数的气候平均值;黑色竖虚线同图2c;紫色阴影同图1a

    Figure  4.  Time series of the 5-day running mean midlatitude cold- and warm-area index (CM and WM) and high-latitude cold- and warm-area index (CH and WH) within the longitude range of (a) Northern Hemisphere continent, (b) Europe, (c) Asia, and (d) North America in 2020/2021 winter. Black dashed horizontal lines indicate the climatological mean values of corresponding indices; black dashed vertical lines are as in Fig. 2c and the purple box is as in Fig. 1a

    图  5  (a)冬季(12~2月)气候平均各纬度圈积分的经向大气质量通量(MF,单位: 109 kg s−1)以及2020/2021年冬季大气经向质量环流的(b)平流层向极地暖支(WB_ST,400 K以上)、(c)对流层向极地暖支(WB_TR,280~315 K)、(d)对流层向赤道冷支(CB,280 K以下) 内的60°N MF距平(柱状,单位:109 kg s−1)和中纬度、高纬度地区等熵大气质量距平(MM和HM,曲线,单位:1015 kg)时间序列。图(b)–(d)中的黑色竖虚线同图2c,紫色阴影同图1a,指数均做了5天滑动平均处理,图 (b)/(d) 中的红/蓝色“+”表示WB_ST/CB异常偏强,“–”表示WB_ST/CB异常偏弱

    Figure  5.  (a) The winter (December–February) climatological mean zonally integrated meridional mass flux (MF, units: 109 kg s−1) at each latitude and isentrope; the time series of the 5-day running mean 60°N MF anomaly (bars, units: 109 kg s−1) and the isentropic mass anomaly (MM and HM, curves, units: 1015 kg) within (b) the stratospheric poleward warm air branch (WB_ST, above 400 K) and (c) the tropospheric poleward warm air branch (WB_TR, 280~315 K), (d) the tropospheric equatorward cold air branch (CB, below 280 K) of the isentropic meridional mass circulation in 2020/2021 winter. The purple box in panels (b)–(d) represents the easterly period with SSW, and the 5-day running mean has been applied to all indices. In panels (b) and (d), red/blue “+” indicates that WB_ST/ CB is anomalously strong, while “−” indicates that the WB_ST/CB is anomalously weak

    图  6  2020/2021年冬季(a)高纬度、(b)中纬度地区各层质量距平(单位:1016 kg)以及(c,d)整层气柱内的总质量距平(曲线,单位:1015 kg)和北极涛动(AO)指数(柱状)的5天滑动平均时间序列。对流层冷支内的质量距平往往与对流层暖支内的质量距平变化相反,故绘制的是反号后的量值

    Figure  6.  The time series of the 5-day running mean mass anomaly in (a) high latitudes, (b) midlatitudes, integrated within three branches of atmospheric meridional mass circulation (units: 1016 kg), and the total column mass anomaly in (c) high latitudes and (d) midlatitudes (curve, units: 1015 kg) in 2020/2021 winter. The Arctic Oscillation index is overlaid in panels (c)–(d). The mass anomaly in tropospheric CB is often opposite to that in WB_TR; hence, the sign of the former has been reversed

    图  7  斜压不稳定波动对应的位势高度、位势温度以及经向风场及其引起大气经向质量输送机制。此处为由低层等熵面θe、中层等熵面θm以及高层等熵面θu组成的两层模型。其中(a)为经度-纬度剖面,(b) 为与其对应的经度-垂直剖面,经向准地转风Vg符号在图中标出,斜直虚线分隔槽与脊

    Figure  7.  Schematic diagram of the geopotential height, potential temperature, and meridional wind field corresponding to the baroclinically amplifying waves, driving an isentropic meridional mass transport. This is a two-layer model composed of low-, mid-, and high-level isentropic surfaces. Panel (a) shows the longitude–latitude cross-section, and (b) shows the corresponding longitude–vertical cross section. The quasi–geostrophic meridional wind is marked, and the oblique straight dotted line separates the trough and the ridge

    图  8  (a)60°N波动西倾角距平 [等值线,单位:(°)] 和(b)波动振幅距平(等值线,单位:km)的气压—时间剖面及其(c,d)关键层的时间序列。图(a,b)中等值线为5天滑动平均场,填色为31天滑动平均;图(c)中红色/蓝色“+”表示与平流层暖支/对流层冷支相关的150 hPa/700 hPa波动西倾角异常偏大,“−”表示波动西倾角异常偏小

    Figure  8.  The pressure–time diagram of the 5-day running mean of (a) 60°N wave westward tilt angle anomaly [contours, units: (°)], (b) wave amplitude anomaly (contours, units: km), and their 31-day running means (shadings), and (c, d) the time series of their daily values at key isobaric levels. Red/blue “+” in panel (c) indicates that the wave westward tilt at 150/700 hPa related to WB_ST/CB is anomalously large, while “−” indicates that the westward tilt is anomalously small

    图  9  60°N准地转纬向平均位涡(PV)梯度距平(等值线,单位: 103 s-1)的气压—时间剖面。等值线为5天滑动平均场,填色为31天滑动平均场;正值/负值表示该层环流条件有/不利于波动的上传

    Figure  9.  Pressure–time cross section of the 5-day running mean fields of 60°N quasi–geostrophic zonal mean potential vorticity (PV) gradient anomaly (contours, units: 103 s−1) and its 31-day running means (shadings). The positive values correspond to the circulation condition, making it easier for the waves to propagate upward, while the negative values tend to be favorable to the wave reflection and/or absorption

    图  10  2020/2021年冬季SSW事件前后三个阶段内波动西倾角以及大气经向质量环流三支强度异常、极区等熵大气质量与温度异常垂直结构的概念图。[WT、MF'、(dM/dt)'、M'、T'分别表示60°N波动西倾角、60°N经向质量通量距平、极区等熵质量距平的日倾向变化、极区等熵质量距平、极区温度距平;第一列组图中实线表示本次事件时段西倾角度,虚线表示冬季气候态西倾角,“$\otimes $”/“$\odot $”符号表示西倾角驱动的向极地/赤道质量输送距平; 第二列组图中向右箭头表示异常向极地质量输送,向左箭头表示异常向赤道质量输送; 第三至五列组图中“+”/“–”表示正/负距平;针对极区等熵质量与温度的三个阶段(右侧)相比于针对60°N大气经向质量环流与波动特征的三个阶段(左侧)存在一定的滞后,这是因为大气经向质量环流异常即刻引起的是质量与温度的日倾向变化,超前于质量与温度本身]

    Figure  10.  The conceptual diagram of the variations in the westward tilt angle of waves, the anomalies of the intensity of the three branches of atmospheric meridional mass circulation, and the vertical structure of polar isentropic atmospheric mass and temperature anomalies at three stages around the SSW event in 2020/2021 winter [WT, MF', (DM/DT)', M', and T' respectively represent the wave westward tilt angle at 60°N, the meridional mass flux anomaly at 60°N, a daily tendency of polar isentropic mass anomaly, polar isentropic mass anomaly and polar temperature anomaly; in the first columns, the solid line represents the westward tilt angle during each period, while the dotted line represents the climatological winter mean westward tilt angle, and symbol “$\otimes $”/“$\odot $” indicates the poleward/equatorward mass transport anomaly driven by the anomalous westward tilt angle; the right/left arrow in the second column indicates a stronger poleward/equatorward mass transport; “+”/“−” in the third–fifth columns indicates the positive/negative anomaly values; notably, the timing of the three stages (right side) of the isentropic mass and the temperature anomalies in the polar region remain behind that of the three stages (left side) of the meridional mass circulation and the wave properties at 60°N because the anomalous meridional mass circulation immediately generates the daily tendency of mass and temperature anomalies, ahead of the individual mass and temperature anomalies]

    图  11  2020/2021年冬季(a)平流层向极地暖支、(b)对流层向赤道冷支内60°N的经向质量通量距平(柱状)及其1波分量(实线)、2波分量(虚线)的时间序列(单位:109 kg s-1)。(c)–(d)同(a)–(b),但为1979–2011年冬季极区平流层温度下传滞后的平流层—对流层耦合类型的NAM负位相个例峰值超前/滞后合成。距平均做了5天滑动平均处理

    Figure  11.  The time series of the 5-day running mean 60°N MF anomalies (bars, units: 109 kg s-1) and their wavenumber-1 (solid line) and wavenumber-2 (dashed line) components within (a) WB_ST and (b) CB in 2020/2021 winter. Panels (c)–(d) are the same as (a)–(b) but reflect the lead/lag composite mean MF anomaly from 40 days before to 40 days after the peak dates of the negative Northern Annular Mode events of the stratosphere–troposphere coupling type with a clear lag in the downward propagation of the polar stratospheric temperature anomaly to the lower troposphere in the 1979–2011 winters

    表  1  极区平流层温度下传滞后的平流层—对流层耦合类型(ST_EOF1+&WBCB_EOF$n $–, $n $=1~4)的北半球环状模(NAM)负位相事件

    Table  1.   Information of negative Northern Annular Mode (NAM) events belonging to the stratosphere–troposphere coupling type characterized by a downward propagation of polar temperature anomalies from the stratospheric levels (ST_EOF1+&WBCB_EOF$n $–, $n $=1–4)

    序号峰值日类型ST_EOF1+&( )
    11979-11-21WBCB_EOF 2–
    21980-03-15WBCB_EOF 4–
    31981-02-19WBCB_EOF 3–, WBCB_EOF 4–
    81984-03-09WBCB_EOF 2–
    101985-04-01WBCB_EOF 3–
    121987-02-03WBCB_EOF 2–, WBCB_EOF 4–
    131987-11-14WBCB_EOF 2–
    141988-03-25WBCB_EOF 1–, WBCB_EOF 2–
    151989-03-06WBCB_EOF 4–
    161991-02-05WBCB_EOF 3–
    181992-04-04WBCB_EOF 1–, WBCB_EOF 4–
    231996-12-04WBCB_EOF 1–
    292001-02-17WBCB_EOF 1–, WBCB_EOF 4–
    302002-01-07WBCB_EOF 1–, WBCB_EOF 2–
    332004-01-06WBCB_EOF 1–, WBCB_EOF 3–, WBCB_EOF 4–
    352006-01-24WBCB_EOF 4–
    372009-02-06WBCB_EOF 1–
    382009-11-22WBCB_EOF 3–, WBCB_EOF 4–
    392010-02-10WBCB_EOF 2–
    下载: 导出CSV
  • [1] Ambaum M H P, Hoskins B J. 2002. The NAO troposphere–stratosphere connection [J]. J. Climate, 15(14): 1969−1978. doi: 10.1175/1520-0442(2002)015<1969:TNTSC>2.0.CO;2
    [2] Baldwin M P, Dunkerton T J. 1999. Propagation of the Arctic Oscillation from the stratosphere to the troposphere [J]. J. Geophys. Res., 104(D24): 30937−30946. doi: 10.1029/1999JD900445
    [3] Baldwin M P, Dunkerton T J. 2001. Stratospheric harbingers of anomalous weather regimes [J]. Science, 294(5542): 581−584. doi: 10.1126/science.1063315
    [4] Balling Jr R C, Lawson M P. 1982. Twentieth century changes in winter climatic regions [J]. Climatic Change, 4(1): 57−69. doi: 10.1007/BF02423313
    [5] Black R X. 2002. Stratospheric forcing of surface climate in the Arctic Oscillation [J]. J. Climate, 15(3): 268−277. doi: 10.1175/1520-0442(2002)015<0268:SFOSCI>2.0.CO;2
    [6] Cai M. 2003. Potential vorticity intrusion index and climate variability of surface temperature [J]. Geophys. Res. Lett., 30(3): 1119. doi: 10.1029/2002GL015926
    [7] Cai M, Ren R C. 2006. 40–70 day meridional propagation of global circulation anomalies [J]. Geophys. Res. Lett., 33(6): L06818. doi: 10.1029/2005GL025024
    [8] Cai M, Ren R C. 2007. Meridional and downward propagation of atmospheric circulation anomalies. Part I: Northern Hemisphere cold season variability [J]. J. Atmos. Sci., 64(6): 1880−1901. doi: 10.1175/JAS3922.1
    [9] Cai M, Shin C S. 2014. A total flow perspective of atmospheric mass and angular momentum circulations: Boreal winter mean state [J]. J. Atmos. Sci., 71(6): 2244−2263. doi: 10.1175/JAS-D-13-0175.1
    [10] Cai M, Yu Y Y, Deng Y, et al. 2016. Feeling the pulse of the stratosphere: An emerging opportunity for predicting continental-scale cold–air outbreaks 1 month in advance [J]. Bull. Amer. Meteor. Soc., 97(8): 1475−1489. doi: 10.1175/BAMS-D-14-00287.1
    [11] Castanheira J M, Barriopedro D. 2010. Dynamical connection between tropospheric blockings and stratospheric polar vortex [J]. Geophys. Res. Lett., 37(13): L13809. doi: 10.1029/2010GL043819
    [12] Charlton A J, Polvani L M. 2007. A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks [J]. J. Climate, 20(3): 449−469. doi: 10.1175/JCLI3996.1
    [13] Charney J G, Drazin P G. 1961. Propagation of planetary-scale disturbances from the lower into the upper atmosphere [J]. J. Geophys. Res., 66(1): 83−109. doi: 10.1029/JZ066i001p00083
    [14] Chen Q L, Xu L Y, Cai H K. 2015. Impact of stratospheric sudden warming on East Asian winter monsoons [J]. Adv. Meteor., 2015: 640912. doi: 10.1155/2015/640912
    [15] 陈文, 康丽华. 2006. 北极涛动与东亚冬季气候在年际尺度上的联系: 准定常行星波的作用 [J]. 大气科学, 30(5): 863−870. doi: 10.3878/j.issn.1006-9895.2006.05.15

    Chen W, Kang L H. 2006. Linkage between the arctic oscillation and winter climate over East Asia on the interannual timescale: Roles of quasi-stationary planetary waves [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30(5): 863−870. doi: 10.3878/j.issn.1006-9895.2006.05.15
    [16] 陈文, 魏科. 2009. 大气准定常行星波异常传播及其在平流层影响东亚冬季气候中的作用 [J]. 地球科学进展, 24(3): 272−285. doi: 10.3321/j.issn:1001-8166.2009.03.006

    Chen W, Wei K. 2009. Anomalous propagation of the quasi-stationary planetary waves in the atmosphere and its roles in the impact of the stratosphere on the East Asian winter climate [J]. Advances in Earth Science (in Chinese), 24(3): 272−285. doi: 10.3321/j.issn:1001-8166.2009.03.006
    [17] 陈文, 魏科, 王林, 等. 2013. 东亚冬季风气候变异和机理以及平流层过程的影响 [J]. 大气科学, 37(2): 425−438. doi: 10.3878/j.issn.1006-9895.2012.12309

    Chen W, Wei K, Wang L, et al. 2013. Climate variability and mechanisms of the East Asian winter monsoon and the impact from the stratosphere [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(2): 425−438. doi: 10.3878/j.issn.1006-9895.2012.12309
    [18] Craig R A, Hering W S. 1959. The stratospheric warming of January–February 1957 [J]. J. Meteor., 16(2): 91−107. doi: 10.1175/1520-0469(1959)016<0091:TSWOJF>2.0.CO;2
    [19] Dai G K, Li C X, Han Z, et al. 2022. The nature and predictability of the East Asian extreme cold events of 2020/21 [J]. Adv. Atmos. Sci., 39(4): 566−575. doi: 10.1007/s00376-021-1057-3
    [20] 邓淑梅, 陈月娟. 2006. 平流层爆发性增温的时空分布特征 [J]. 中国科学技术大学学报, 36(4): 445−452. doi: 10.3969/j.issn.0253-2778.2006.04.020

    Deng S M, Chen Y J. 2006. The spatial and temporal distribution of the stratospheric sudden warming [J]. Journal of University of Science and Technology of China (in Chinese), 36(4): 445−452. doi: 10.3969/j.issn.0253-2778.2006.04.020
    [21] Finger F G, Teweles S. 1964. The mid-winter 1963 stratospheric warming and circulation change [J]. J. Appl. Meteor. Climatol., 3(1): 1−15. doi: 10.1175/1520-0450(1964)003<0001:TMWSWA>2.0.CO;2
    [22] 顾雷, 魏科, 黄荣辉. 2008. 2008年1月我国严重低温雨雪冰冻灾害与东亚季风系统异常的关系 [J]. 气候与环境研究, 13(4): 405−418. doi: 10.3878/j.issn.1006-9585.2008.04.06

    Gu L, Wei K, Huang R H. 2008. Severe disaster of blizzard, freezing rain and low temperature in January 2008 in China and its association with the anomalies of East Asian monsoon system [J]. Climatic and Environmental Research (in Chinese), 13(4): 405−418. doi: 10.3878/j.issn.1006-9585.2008.04.06
    [23] Hartley D E, Villarin J T, Black R X, et al. 1998. A new perspective on the dynamical link between the stratosphere and troposphere [J]. Nature, 391(6666): 471−474. doi: 10.1038/35112
    [24] Hartmann D L. 2000. The key role of lower-level meridional shear in baroclinic wave life cycles [J]. J. Atmos. Sci., 57(3): 389−401. doi: 10.1175/1520-0469(2000)057<0389:TKROLL>2.0.CO;2
    [25] Haynes P. 2005. Stratospheric dynamics [J]. Annu. Rev. Fluid Mech., 37: 263−293. doi: 10.1146/annurev.fluid.37.061903.175710
    [26] 胡永云. 2006. 关于平流层异常影响对流层天气系统的研究进展 [J]. 地球科学进展, 21(7): 713−720. doi: 10.3321/j.issn:1001-8166.2006.07.009

    Hu Y Y. 2006. On the influence of stratospheric anomalies on tropospheric weather systems [J]. Advances in Earth Science (in Chinese), 21(7): 713−720. doi: 10.3321/j.issn:1001-8166.2006.07.009
    [27] Huang J L, Tian W S, Gray L J, et al. 2018. Preconditioning of Arctic stratospheric polar vortex shift events [J]. J. Climate, 31(14): 5417−5436. doi: 10.1175/JCLI-D-17-0695.1.doi:10.1175/JCLI-D-17-0695.1
    [28] 黄荣辉, 陈文, 魏科, 等. 2018. 平流层大气动力学及其与对流层大气相互作用的研究: 进展与问题 [J]. 大气科学, 42(3): 463−487. doi: 10.3878/j.issn.1006-9895.1802.17250

    Huang R H, Chen W, Wei K, et al. 2018. Atmospheric dynamics in the stratosphere and its interaction with tropospheric processes: Progress and problems [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(3): 463−487. doi: 10.3878/j.issn.1006-9895.1802.17250
    [29] Iwasaki T, Mochizuki Y. 2012. Mass-weighted isentropic zonal mean equatorward flow in the Northern Hemispheric winter [J]. SOLA, 8: 115−118. doi: 10.2151/sola.2012-029
    [30] Iwasaki T, Shoji T, Kanno Y, et al. 2014. Isentropic analysis of polar cold airmass streams in the Northern Hemispheric winter [J]. J. Atmos. Sci., 71(6): 2230−2243. doi: 10.1175/JAS-D-13-058.1
    [31] Johnson D R. 1989. The forcing and maintenance of global monsoonal circulations: An isentropic analysis [J]. Adv. Geophys., 31: 43−316. doi: 10.1016/S0065-2687(08)60053-9
    [32] Kidston J, Scaife A A, Hardiman S C, et al. 2015. Stratospheric influence on tropospheric jet streams, storm tracks and surface weather [J]. Nat. Geosci., 8(6): 433−440. doi: 10.1038/ngeo2424
    [33] Kolstad E W, Breiteig T, Scaife A A. 2010. The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere [J]. Quart. J. Roy. Meteor. Soc., 136(649): 886−893. doi: 10.1002/qj.620
    [34] Kuroda Y, Kodera K. 1999. Role of planetary waves in the stratosphere–troposphere coupled variability in the northern hemisphere winter [J]. Geophys. Res. Lett., 26(15): 2375−2378. doi: 10.1029/1999GL900507
    [35] Kuttippurath J, Nikulin G. 2012. A comparative study of the major sudden stratospheric warmings in the Arctic winters 2003/2004–2009/2010 [J]. Atmos. Chem. Phys., 12(17): 8115−8129. doi: 10.5194/acp-12-8115-2012
    [36] Lee S H. 2021. The January 2021 sudden stratospheric warming [J]. Weather, 76(4): 135−136. doi: 10.1002/wea.3966
    [37] Lehtonen I, Karpechko A Y. 2016. Observed and modeled tropospheric cold anomalies associated with sudden stratospheric warmings [J]. J. Geophys. Res. Atmos., 121(4): 1591−1610. doi: 10.1002/2015JD023860
    [38] 李琳, 李崇银, 谭言科, 等. 2010. 平流层爆发性增温对中国天气气候的影响及其在ENSO影响中的作用 [J]. 地球物理学报, 53(7): 1529−1542. doi: 10.3969/j.issn.0001-5733.2010.07.004

    Li L, Li C Y, Tan Y K, et al. 2010. Stratospheric sudden warming impacts on the weather/climate in China and its role in the influences of ENSO [J]. Chinese Journal of Geophysics (in Chinese), 53(7): 1529−1542. doi: 10.3969/j.issn.0001-5733.2010.07.004
    [39] Liberato M L R, Castanheira J M, de la Torre L, et al. 2007. Wave energy associated with the variability of the stratospheric polar vortex [J]. J. Atmos. Sci., 64(7): 2683−2694. doi: 10.1175/JAS3978.1
    [40] Limpasuvan V, Hartmann D L. 2000. Wave–maintained Annular Modes of climate variability [J]. J. Climate, 13(24): 4414−4429. doi: 10.1175/1520-0442(2000)013<4414:WMAMOC>2.0.CO;2
    [41] Limpasuvan V, Thompson D W J, Hartmann D L. 2004. The life cycle of the Northern Hemisphere sudden stratospheric warmings [J]. J. Climate, 17(13): 2584−2596. doi: 10.1175/1520-0442(2004)017<2584:TLCOTN>2.0.CO;2
    [42] Limpasuvan V, Hartmann D L, Thompson D W J, et al. 2005. Stratosphere-troposphere evolution during polar vortex intensification [J]. J. Geophys. Res. Atmos., 110(D24): D24101. doi: 10.1029/2005JD006302
    [43] Liu Q, Chen G X. 2021. Zonal shift in the cold airmass stream of the East Asian winter monsoon [J]. Environ. Res. Lett., 16(12): 124028. doi: 10.1088/1748-9326/ac36f5
    [44] Liu Q, Chen G X, Wang L, et al. 2021. Southward cold airmass flux associated with the East Asian winter monsoon: Diversity and impacts [J]. J. Climate, 34(8): 3239−3254. doi: 10.1175/JCLI-D-20-0319.1
    [45] 陆春晖, 丁一汇. 2013. 平流层爆发性增温对阻塞高压的响应及其对对流层反馈的观测 [J]. 科学通报, 58(8): 653–663. Lu C H, Ding Y H. 2013. Observational responses of stratospheric sudden warming to blocking highs and its feedbacks on the troposphere [J]. Chinese Science Bulletin, 58(12): 1374–1384. doi:10.1360/csb2013-58-8-653
    [46] Lu Y J, Tian W S, Zhang J K, et al. 2021. The impact of the stratospheric polar vortex shift on the arctic oscillation [J]. J. Climate, 34(10): 4129−4143. doi: 10.1175/JCLI-D-20-0536.1
    [47] Martius O, Polvani L M, Davies H C. 2009. Blocking precursors to stratospheric sudden warming events [J]. Geophys. Res. Lett., 36(14): L14806. doi: 10.1029/2009GL038776
    [48] Matsuno T. 1970. Vertical propagation of stationary planetary waves in the winter Northern Hemisphere [J]. J. Atmos. Sci., 27(6): 871−883. doi: 10.1175/1520-0469(1970)027<0871:VPOSPW>2.0.CO;2
    [49] Mitchell D M, Gray L J, Anstey J, et al. 2013. The influence of stratospheric vortex displacements and splits on surface climate [J]. J. Climate, 26(8): 2668−2682. doi: 10.1175/JCLI-D-12-00030.1
    [50] Moritz R E, Bitz C M, Steig E J. 2002. Dynamics of recent climate change in the Arctic [J]. Science, 297(5586): 1497−1502. doi: 10.1126/science.1076522
    [51] Pauluis O, Czaja A, Korty R. 2008. The global atmospheric circulation on moist isentropes [J]. Science, 321(5892): 1075−1078. doi: 10.1126/science.1159649
    [52] Pauluis O, Czaja A, Korty R. 2010. The global atmospheric circulation in moist isentropic coordinates [J]. J. Climate, 23(11): 3077−3093. doi: 10.1175/2009JCLI2789.1
    [53] Pauluis O, Shaw T, Laliberté F. 2011. A Statistical generalization of the transformed Eulerian–Mean circulation for an arbitrary vertical coordinate system [J]. J. Atmos. Sci., 68(8): 1766−1783. doi: 10.1175/2011JAS3711.1
    [54] Perlwitz J, Harnik N. 2003. Observational evidence of a stratospheric influence on the troposphere by planetary wave reflection [J]. J. Climate, 16(18): 3011−3026. doi: 10.1175/1520-0442(2003)016<3011:OEOASI>2.0.CO;2
    [55] Polvani L M, Waugh D W. 2004. Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes [J]. J. Climate, 17(18): 3548−3554. doi: 10.1175/1520-0442(2004)017<3548:UWAFAA>2.0.CO;2
    [56] Ren R C, Cai M. 2006. Polar vortex oscillation viewed in an isentropic potential vorticity coordinate [J]. Adv. Atmos. Sci., 23(6): 884−900. doi: 10.1007/s00376-006-0884-6
    [57] Ren R C, Cai M. 2007. Meridional and vertical out-of-phase relationships of temperature anomalies associated with the Northern Annular Mode variability [J]. Geophys. Res. Lett., 34(7): L07704. doi: 10.1029/2006GL028729
    [58] Ren R C, Cai M. 2008. Meridional and downward propagation of atmospheric circulation anomalies. Part II: Southern Hemisphere cold season variability [J]. J. Atmos. Sci., 65(7): 2343−2359. doi: 10.1175/2007JAS2594.1
    [59] Shindell D T, Miller R L, Schmidt G A, et al. 1999. Simulation of recent northern winter climate trends by greenhouse–gas forcing [J]. Nature, 399(6735): 452−455. doi: 10.1038/20905
    [60] Thompson D W J, Wallace J M. 1998. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields [J]. Geophys. Res. Lett., 25(9): 1297−1300. doi: 10.1029/98GL00950
    [61] Thompson D W J, Wallace J M. 2001. Regional climate impacts of the Northern Hemisphere annular mode [J]. Science, 293(5527): 85−89. doi: 10.1126/science.1058958
    [62] Thompson D W J, Baldwin M P, Wallace J M. 2002. Stratospheric connection to Northern Hemisphere wintertime weather: Implications for prediction [J]. J. Climate, 15(12): 1421−1428. doi: 10.1175/1520-0442(2002)015<1421:SCTNHW>2.0.CO;2
    [63] 向纯怡, 何金海, 任荣彩. 2009. 2007/2008年冬季平流层环流异常及平流层—对流层耦合特征 [J]. 地球科学进展, 24(3): 338−348. doi: 10.3321/j.issn:1001-8166.2009.03.012

    Xiang C Y, He J H, Ren R C. 2009. Stratospheric oscillation and stratosphere–troposphere coupling in 2007/2008 winter [J]. Advances in Earth Science (in Chinese), 24(3): 338−348. doi: 10.3321/j.issn:1001-8166.2009.03.012
    [64] 杨光, 李崇银, 李琳. 2012. 平流层爆发性增温及其影响研究进展 [J]. 气象科学, 32(6): 694−708. doi: 10.3969/2012jms.0148

    Yang G, Li C Y, Li L. 2012. Advance in research on stratospheric sudden warming and its influences [J]. Journal of the Meteorological Sciences (in Chinese), 32(6): 694−708. doi: 10.3969/2012jms.0148
    [65] Yu Y Y, Ren R C. 2019. Understanding the variation of stratosphere–troposphere coupling during stratospheric northern annular mode events from a mass circulation perspective [J]. Climate Dyn., 53(9): 5141−5164. doi: 10.1007/s00382-019-04675-7
    [66] Yu Y Y, Ren R C, Hu J G, et al. 2014. A mass budget analysis on the interannual variability of the polar surface pressure in the winter season [J]. J. Atmos. Sci., 71(9): 3539−3553. doi: 10.1175/JAS-D-13-0365.1
    [67] Yu Y Y, Cai M, Ren R C, et al. 2015a. Relationship between warm airmass transport into the upper polar atmosphere and cold air outbreaks in winter [J]. J. Atmos. Sci., 72(1): 349−368. doi: 10.1175/JAS-D-14-0111.1
    [68] Yu Y Y, Ren R C, Cai M. 2015b. Dynamic linkage between cold air outbreaks and intensity variations of the meridional mass circulation [J]. J. Atmos. Sci., 72(8): 3214−3232. doi: 10.1175/JAS-D-14-0390.1
    [69] Yu Y Y, Ren R C, Cai M. 2015c. Comparison of the mass circulation and AO indices as indicators of cold air outbreaks in northern winter [J]. Geophys. Res. Lett., 42(7): 2442−2448. doi: 10.1002/2015GL063676
    [70] Yu Y Y, Cai M, Ren R C. 2018a. A stochastic model with a low-frequency amplification feedback for the stratospheric northern annular mode [J]. Climate Dyn., 50(9): 3757−3773. doi: 10.1007/s00382-017-3843-2
    [71] Yu Y Y, Cai M, Ren R C, et al. 2018b. A closer look at the relationships between meridional mass circulation pulses in the stratosphere and cold air outbreak patterns in Northern Hemispheric winter [J]. Climate Dyn., 51(7): 3125−3143. doi: 10.1007/s00382-018-4069-7
    [72] Yu Y Y, Cai M, Shi C H, et al. 2018c. On the linkage among strong stratospheric mass circulation, stratospheric sudden warming, and cold weather events [J]. Mon. Wea. Rev., 146(9): 2717−2739. doi: 10.1175/MWR-D-18-0110.1
    [73] Yu Y Y, Li Y F, Ren R C, et al. 2022. An isentropic mass circulation view on the extreme cold events in the 2020/21 winter [J]. Adv. Atmos. Sci., 39(4): 643−657. doi: 10.1007/s00376-021-1289-2
    [74] Zhang Q, Shin C S, van den Dool H, et al. 2013. CFSv2 prediction skill of stratospheric temperature anomalies [J]. Climate Dyn., 41(7): 2231−2249. doi: 10.1007/s00382-013-1907-5
    [75] Zhang X D, Fu Y F, Overland J E, et al. 2022. Extreme cold events from East Asia to North America in winter 2020/21: Comparisons, causes, and future implications [J]. Adv. Atmos. Sci., 39(4): 553−565. doi: 10.1007/s00376-021-1229-1
    [76] Zhang Y J, Yin Z C, Wang H J, et al. 2021. 2020/21 record-breaking cold waves in East of China Enhanced by the warm Arctic−Cold Siberia’ pattern [J]. Environ. Res. Lett., 16(9): 094040. doi: 10.1088/1748-9326/ac1f46
    [77] Zhang Y X, Si D, Ding Y H, et al. 2022. Influence of major stratospheric sudden warming on the unprecedented cold wave in East Asia in January 2021 [J]. Adv. Atmos. Sci., 39(4): 576−590. doi: 10.1007/s00376-022-1318-9
    [78] Zhou X, Chen Q L, Wang Z L, et al. 2020. Longer duration of the weak stratospheric vortex during extreme El Niño events linked to spring Eurasian coldness [J]. J. Geophys. Res. Atmos., 125(16): e2019JD032331. doi: 10.1029/2019JD032331
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  148
  • HTML全文浏览量:  30
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-02
  • 录用日期:  2022-07-11
  • 网络出版日期:  2022-02-28
  • 刊出日期:  2022-11-24

目录

    /

    返回文章
    返回