Characteristics of Moist Potential Vorticity over the Middle and Lower Reaches of the Yangtze River during the Meiyu Season and Its Relationship with the Tibetan Plateau
-
摘要: 本文基于欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts, 简称ECMWF)提供的ERA-Interim再分析数据集和FGOALS-f3-L海气耦合模式,分析了1980~2017年梅雨期长江中下游地区对流层大气湿位涡(MPV)的分布特征及其与青藏高原的联系。研究发现,梅雨期湿等熵面在长江中下游地区呈自下而上向北倾斜的分布特征,湿位涡正压项(MPV1)和斜压项(MPV2)的大值带均沿倾斜的湿等熵面分布在梅雨区上空,且随雨带的北移而北移。对流层中层MPV1和MPV2大值带均分布在梅雨雨带的北侧,而对流层低层MPV2负值带与梅雨雨带近乎重合。这主要是由于入梅前后MPV2的分布结构满足倾斜涡度发展的必要条件,有利于暖湿空气沿湿等熵面上滑,从而导致暖湿空气的垂直涡度显著增强,造成梅雨降水。进一步分析发现MPV2负值带西起青藏高原向东经过江淮地区一直延伸到西北太平洋地区。数值试验结果表明青藏高原大地形条件对MPV2负值带的形成有重要影响,当去掉高原地形时,长江中下游地区的MPV2负值带显著减弱甚至消失。Abstract: The ERA-Interim reanalysis data provided by the European Center for Medium-Range Weather Forecasts and the FGOALS-f3-L coupled model were used to analyze the characteristics of the moist potential vorticity (MPV) over the middle and lower reaches of the Yangtze River during the Meiyu period from 1980 to 2017 and their connection to the Tibetan Plateau. The moist isentropic surfaces are found to tilt northward with increasing height over the Meiyu area. The belt of the barotropic term (MPV1) and baroclinic term (MPV2) of the MPV lie along the sloping moist isentropic surfaces, which move northward when the rain belt moves northward. MPV1 and MPV2 are located to the north of the Meiyu rain belt in the middle troposphere. However, in the lower troposphere, the negative value belt of MPV2 corresponds better to the Meiyu rain belt. This better correspondence is mainly due to the distribution of MPV2 satisfying the necessary condition of the development of slantwise vorticity, which is conducive to substantial development of the vertical vorticity of the upsliding warm and wet air, resulting in the development of precipitation. Further analysis reveals that the MPV2 belt over the Meiyu area starts from the Tibetan Plateau in the west and extends eastward to the Northwest Pacific. The FGOALS-f3-L output without Tibetan Plateau topography indicates that the Tibetan Plateau has an important influence on the distribution of MPV2 downstream. In the no Tibetan–Iranian Plateau simulations, the negative value belt of MPV2 is substantially weakened and even disappears along the Yangtze River.
-
Key words:
- Meiyu season /
- Moist potential vorticity /
- Tibetan Plateau
-
图 1 1980~2017年850 hPa (a–c)湿位涡正压项(MPV1,填色,单位:PVU)和(d–f)湿位涡斜压项(MPV2,填色,单位:PVU)及降水量(等值线,单位:mm d−1)在(a、d)入梅前第三天、(b、e)入梅当天和(c、f)入梅后第3天的分布。红色方框表示长江中下游梅雨区(28°~34°N,112°~123°E),下同
Figure 1. Distributions of (a–c) MPV1 (shaded, units: PVU) and (d–f) MPV2 (shaded, units: PVU) at 850 hPa and precipitation (contours, units: mm d−1) on (a, d) the 3rd day before Meiyu onset, (b, e) the Meiyu onset day, and (c, f) the 3rd day after Meiyu onset during the period of 1980–2017. The red box indicates the Meiyu area in the middle and lower Yangtze River basin (28°–34°N, 112°–123°E), the same below
图 2 1980~2017年梅雨期前后112°~123°E平均的850 hPa MPV2(填色,单位:PVU)和降水量(等值线,单位:mm d−1)的时间—纬度剖面。黑色虚线表示长江中下游梅雨区域(28°~34°N),红色虚线表示出梅日
Figure 2. Time–latitude cross-section of MPV2 at 850 hPa (shaded, units: PVU) and precipitation (contours, units: mm d−1), averaged over 112°–123°E around the Meiyu season during the period of 1980–2017. The black dotted lines indicate the Meiyu area in the middle and lower Yangtze River basin (28°–34°N), and the red line indicates the date of the Meiyu retreat
图 4 1980~2017年入梅前第6天至入梅后第3天中国东部(112°~123°E)MPV1(填色,单位:PVU)、相当位温(灰色等值线,单位:K)、经向和垂直方向的MPV1平流(绿色等值线,单位:10−5 PVU s−1)和风场 [矢量,v单位:m s−1,ω单位:(−1/50)Pa s−1] 的垂直剖面(红色竖虚线表示梅雨区纬度范围28°~34°N,下同)
Figure 4. Vertical cross section of MPV1 (shaded, units: PVU), equivalent potential temperature (gray contours, units: K), meridional and vertical MPV1 advection (green contours, units: 10 −5 PVU s−1), and wind [vector, v units: m s−1, ω units: (−1/50) Pa s−1] over eastern China (112°–123°E) from the 6th day before the Meiyu onset to the 3rd day after the Meiyu onset during the period of 1980–2017. The red dotted lines indicate the Meiyu area in the middle and lower Yangtze River basin (28°–34°N), the same below
图 6 1980~2017年500 hPa相当位温(等值线,单位:K)及其(a–c)经向和(d–f)纬向梯度(填色,单位:10−5 K m−1)在(a,d)入梅前第3天、(b,e)入梅当天和(c,f)入梅后第3天的分布
Figure 6. Distributions of equivalent potential temperature (contours, units: K) and its (a–c) meridional and (d–f) zonal gradient (shaded, units: 10−5 K m−1) at 500 hPa on (a, d) the 3rd day before the Meiyu onset, (b, e) the Meiyu onset day, and (c, f) the 3rd day after the Meiyu onset during the period of 1980–2017
图 7 1980~2017年(a–c)500 hPa和(d–f)850 hPa
$ \partial {\theta }_{e}/\partial y $ (填色,单位:10−5 K m−1)和降水量(等值线,单位:mm d−1)在(a,d)入梅前第3天、(b,e)入梅当天和(c,f)入梅后第3天的分布Figure 7. Distributions of
$ \partial {\theta }_{e}/\partial y $ (shaded, units: 10−5 K m−1 at (a–c) 500 hPa and (d–f) 850 hPa and precipitation (contours, units: mm d−1) on (a, d) the 3rd day before the Meiyu onset, (b, e) the Meiyu onset day, and (c, f) the 3rd day after the Meiyu onset during the period of 1980–2017图 9 FGOALS-f3-L模式输出的6月500 hPa MPV2(填色,单位:PVU)和降水量(等值线,单位:mm d−1)在(a)控制试验和(b)无高原试验中的分布,(c)为二者的差异[(a)-(b)]
Figure 9. Distributions of the June MPV2 (shaded, units: PVU) at 500 hPa and precipitation (contours, units: mm d−1) in (a) the control run and (b) the no Tibetan–Iranian Plateau run obtained from FGOALS-f3-L. (c) is the difference between (a) and (b) [(a)-(b)]
图 11 FGOALS-f3-L模式输出的500 hPa
$ \partial {\theta }_{e}/\partial y $ (填色,单位:10−5 K m−1)在(a)控制试验和(b)无高原试验中的分布,(c)为二者的差异 [(a)-(b)]。(d)、(e)和(f)同(a)、(b)和(c),但为$ \partial u/\partial p $ (填色,单位:10−5 m s−1 Pa−1)的分布Figure 11. Distributions of
$ \partial {\theta }_{e}/\partial y $ (shaded, units: 10−5 K m−1) at 500 hPa in (a) the control run and (b) the no Tibetan–Iranian Plateau run obtained from FGOALS-f3-L. (c) is the difference between (a) and (b) [(a)-(b)]. (d)–(f) are identical to (a)–(c) but for$ \partial u/\partial p $ (shaded, units: 10−5 m s−1 Pa−1)表 1 1980~2017年入梅、出梅日期
Table 1. Dates of the onset and retreat of the Meiyu season from 1980 to 2017
年份 入梅日 出梅日 年份 入梅日 出梅日 1980 06-06 07-21 1999 06-07 07-19 1981 06-22 07-01 2000 06-20 07-01 1982 06-12 07-20 2001 06-03 06-27 1983 06-10 07-19 2002 06-19 07-08 1984 06-07 07-07 2003 06-20 07-12 1985 06-22 07-08 2004 06-14 07-15 1986 06-20 07-15 2005 06-26 06-29 1987 06-28 07-29 2006 06-22 07-12 1988 06-10 06-30 2007 06-19 07-28 1989 06-08 07-11 2008 06-07 07-24 1990 06-14 07-03 2009 06-26 07-08 1991 06-02 07-14 2010 06-20 07-24 1992 06-13 07-21 2011 06-06 07-20 1993 06-14 07-09 2012 06-22 07-15 1994 06-07 06-28 2013 06-20 07-08 1995 06-12 07-10 2014 06-25 07-17 1996 06-02 07-22 2015 06-14 07-26 1997 06-24 07-16 2016 06-19 07-17 1998 06-18 07-05 2017 06-22 07-11 -
[1] 鲍媛媛. 2021. 2016年和1998年长江中下游梅雨季风环流异同点及物理机制对比分析 [J]. 大气科学, 45(5): 994–1006.Bao Yuanyuan. 2021. Similarities and differences of monsoon circulations between 2016 and 1998 Meiyu periods in the middle and lower reaches of the Yangtze River and the comparison of their physical mechanisms [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(5): 994−1006. doi:10.3878/j.issn.1006-9895.2101.20174 [2] 贝耐芳, 赵思雄. 2002. 1998年“二度梅”期间突发强暴雨系统的中尺度分析 [J]. 大气科学, 26(4): 526−540. doi: 10.3878/j.issn.1006-9895.2002.04.10Bei Naifang, Zhao Sixiong. 2002. Mesoscale analysis of severe local heavy rainfall during the second stage of the 1998 Meiyu season [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 26(4): 526−540. doi: 10.3878/j.issn.1006-9895.2002.04.10 [3] Cui X P, Gao S T, Wu G X. 2003. Moist potential vorticity and up-sliding slantwise vorticity development [J]. Chinese Physics Letters, 20(1): 167−169. doi: 10.1088/0256-307X/20/1/350 [4] Dee D P, Uppala S M, Simmons A J, et al. 2011. The ERA-interim reanalysis: Configuration and performance of the data assimilation system [J]. Quart. J. Roy. Meteor. Soc., 137(656): 553−597. doi: 10.1002/qj.828 [5] Ding Y H. 1992. Summer monsoon rainfalls in China [J]. J. Meteor. Soc. Japan, 70(1B): 373−396. doi: 10.2151/jmsj1965.70.1B_373 [6] 丁一汇, 柳俊杰, 孙颖, 等. 2007. 东亚梅雨系统的天气—气候学研究 [J]. 大气科学, 31(6): 1082−1101. doi: 10.3878/j.issn.1006-9895.2007.06.05Ding Yihui, Liu Junjie, Sun Ying, et al. 2007. A study of the synoptic–climatology of the Meiyu system in East Asia [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 31(6): 1082−1101. doi: 10.3878/j.issn.1006-9895.2007.06.05 [7] Ding Y H, Liang P, Liu Y J, et al. 2020. Multiscale variability of Meiyu and its prediction: A new review [J]. J. Geophys. Res., 125(7): e2019JD031496. doi: 10.1029/2019JD031496 [8] Ding Y H, Liu Y Y, Hu Z Z. 2021. The record–breaking Mei-yu in 2020 and associated atmospheric circulation and tropical SST anomalies [J]. Adv. Atmos. Sci., 38(12): 1980−1993. doi: 10.1007/s00376-021-0361-2 [9] Dong L L, Xu X D, Zhao T L, et al. 2019. Linkage between moisture transport over the Yangtze River basin and a critical area of the Tibetan Plateau during the Meiyu [J]. Climate Dyn., 53(5): 2643−2662. doi: 10.1007/s00382-019-04648-w [10] Duan Anmin, Liu Yimin, Wu Guoxiong. 2005. Heating status of the Tibetan Plateau from April to June and rainfall and atmospheric circulation anomaly over East Asia in midsummer [J]. Science in China (Series D), 48(2): 250−257. doi: 10.1360/02yd0510 [11] Duan A M, Hu D, Hu W T, et al. 2020. Precursor effect of the Tibetan Plateau heating anomaly on the seasonal march of the East Asian summer monsoon precipitation [J]. J. Geophys. Res., 125(23): e2020JD032948. doi: 10.1029/2020JD032948 [12] 傅慎明, 孙建华, 赵思雄, 等. 2011. 梅雨期青藏高原东移对流系统影响江淮流域降水的研究 [J]. 气象学报, 69(4): 581−600. doi: 10.11676/qxxb2011.051Fu Shenming, Sun Jianhua, Zhao Sixiong, et al. 2011. A study of the impacts of the eastward propagation of convective cloud systems over the Tibetan Plateau on the rainfall of the Yangtze–Huai River basin [J]. Acta Meteor. Sinica (in Chinese), 69(4): 581−600. doi: 10.11676/qxxb2011.051 [13] 高守亭, 雷霆, 周玉淑, 等. 2002. 强暴雨系统中湿位涡异常的诊断分析 [J]. 应用气象学报, 13(6): 662−670. doi: 10.3969/j.issn.1001-7313.2002.06.003Gao Shouting, Lei Ting, Zhou Yushu, et al. 2002. Diagnostic analysis of moist potential vorticity anomaly in torrential rain systems [J]. Journal of Applied Meteorological Science (in Chinese), 13(6): 662−670. doi: 10.3969/j.issn.1001-7313.2002.06.003 [14] Guo Y Y, Yu Y Q, Lin P F, et al. 2020. Simulation and improvements of oceanic circulation and sea ice by the coupled climate system model FGOALS-f3-L [J]. Adv. Atmos. Sci., 37(10): 1133−1148. doi: 10.1007/s00376-020-0006-x [15] Harada Y, Kamahori H, Kobayashi C, et al. 2016. The JRA-55 reanalysis: Representation of atmospheric circulation and climate variability [J]. J. Meteor. Soc. Japan, 94(3): 269−302. doi: 10.2151/jmsj.2016-015 [16] He B, Bao Q, Wang X C, et al. 2019. CAS FGOALS-f3-L model datasets for CMIP6 historical atmospheric model intercomparison project simulation [J]. Adv. Atmos. Sci., 36(8): 771−778. doi: 10.1007/s00376-019-9027-8 [17] He C, Wang Z Q, Zhou T J, et al. 2019. Enhanced latent heating over the Tibetan Plateau as a key to the enhanced East Asian summer monsoon circulation under a warming climate [J]. J. Climate, 32(11): 3373−3388. doi: 10.1175/JCLI-D-18-0427.1 [18] Hsu H H, Liu X. 2003. Relationship between the Tibetan Plateau heating and East Asian summer monsoon rainfall [J]. Geophys. Res. Lett., 30(20): 2066. doi: 10.1029/2003GL017909 [19] Hsu P C, Lee J Y, Ha K J. 2016. Influence of boreal summer intraseasonal oscillation on rainfall extremes in southern China [J]. Int. J. Climatol., 36(3): 1403−1412. doi: 10.1002/joc.4433 [20] Huang R H, Wu Y F. 1989. The influence of ENSO on the summer climate change in China and its mechanism [J]. Adv. Atmos. Sci., 6: 21−32. doi: 10.1007/BF02656915 [21] 江吉喜, 项续康, 范梅珠. 1996. 青藏高原夏季中尺度强对流系统的时空分布 [J]. 应用气象学报, 7(4): 473−478.Jiang Jixi, Xiang Xukang, Fan Meizhu. 1996. The spatial and temporal distributions of severe mesoscale convective systems over Tibetan Plateau in summer [J]. Quarterly Journal of Applied Meteorology (in Chinese), 7(4): 473−478. [22] Kobayashi S, Ota Y, Harada Y, et al. 2015. The JRA-55 reanalysis: General specifications and basic characteristics [J]. J. Meteor. Soc. Japan, 93(1): 5−48. doi: 10.2151/jmsj.2015-001 [23] Kosaka Y, Xie S P, Nakamura H. 2011. Dynamics of interannual variability in summer precipitation over East Asia [J]. J. Climate, 24(20): 5435−5453. doi: 10.1175/2011JCLI4099.1 [24] 李崇银, 王作台, 林士哲, 等. 2004. 东亚夏季风活动与东亚高空西风急流位置北跳关系的研究 [J]. 大气科学, 28(5): 641−658. doi: 10.3878/j.issn.1006-9895.2004.05.01Li Chongyin, Wang Zuotai, Lin Shizhe, et al. 2004. The relationship between East Asian summer monsoon activity and northward jump of the upper westerly jet location [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 28(5): 641−658. doi: 10.3878/j.issn.1006-9895.2004.05.01 [25] 李静楠, 潘晓滨, 臧增亮, 等. 2016. 一次华北暴雨过程的湿位涡诊断分析 [J]. 暴雨灾害, 35(2): 158−165. doi: 10.3969/j.issn.1004-9045.2016.02.008Li Jingnan, Pan Xiaobin, Zang Zengliang, et al. 2016. Diagnostic analysis of moist potential vorticity for a rainstorm in North China [J]. Torrential Rain and Disasters (in Chinese), 35(2): 158−165. doi: 10.3969/j.issn.1004-9045.2016.02.008 [26] Li L, Zhang Y C. 2014. Effects of different configurations of the East Asian subtropical and polar front jets on precipitation during the Mei-yu season [J]. J. Climate, 27(17): 6660−6672. doi: 10.1175/JCLI-D-14-00021.1 [27] Li L, Zhu C W, Zhang R H, et al. 2021. Roles of the Tibetan Plateau vortices in the record Meiyu rainfall in 2020 [J]. Atmos. Sci. Lett., 22(3): e1017. doi: 10.1002/ASL.1017 [28] Li Y D, Wang Y, Yang S, et al. 2008. Characteristics of summer convective systems initiated over the Tibetan Plateau. Part I: Origin, track, development, and precipitation [J]. J. Appl. Meteor. Climatol., 47(10): 2679−2695. doi: 10.1175/2008JAMC1695.1 [29] Liu B Q, Zhu C W, Su J Z, et al. 2019. Record–breaking northward shift of the western North Pacific subtropical high in July 2018 [J]. J. Meteor. Soc. Japan, 97(4): 913−925. doi: 10.2151/jmsj.2019-047 [30] Liu B Q, Yan Y H, Zhu C W, et al. 2020. Record–breaking Meiyu rainfall around the Yangtze River in 2020 regulated by the subseasonal phase transition of the North Atlantic oscillation [J]. Geophys. Res. Lett., 47(22): e2020GL090342. doi: 10.1029/2020GL090342 [31] 刘峰, 丁治英, 梁艳, 等. 2011. “莫拉克”台风暴雨过程中湿位涡场的演变特征 [J]. 暴雨灾害, 30(2): 161−166. doi: 10.3969/j.issn.1004-9045.2011.02.009Liu Feng, Ding Zhiying, Liang Yan, et al. 2011. Evolution characteristics of moist potential vorticity in the rainstorm caused by “Morakot” typhoon [J]. Torrential Rain and Disasters (in Chinese), 30(2): 161−166. doi: 10.3969/j.issn.1004-9045.2011.02.009 [32] Lu R Y, Dong B W, Ding H. 2006. Impact of the Atlantic multidecadal oscillation on the Asian summer monsoon [J]. Geophys. Res. Lett., 33(24): L24701. doi: 10.1029/2006GL027655 [33] 罗会邦, 陈蓉. 1995. 夏半年青藏高原东部大气热源异常对环流和降水的影响 [J]. 气象科学, 15(4): 94−102.Luo Huibang, Chen Rong. 1995. The impact of the anomalous heat sources over the eastern Tibetan Plateau on the circulation over East Asia in summer half year [J]. Scientia Meteorologica Sinica (in Chinese), 15(4): 94−102. [34] 马婷, 刘屹岷, 吴国雄, 等. 2020. 青藏高原低涡形成、发展和东移影响下游暴雨天气个例的位涡分析 [J]. 大气科学, 44(3): 472−486. doi: 10.3878/j.issn.1006-9895.1904.18275Ma Ting, Liu Yimin, Wu Guoxiong, et al. 2020. Effect of potential vorticity on the formation, development, and eastward movement of a Tibetan Plateau vortex and its influence on downstream precipitation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(3): 472−486. doi: 10.3878/j.issn.1006-9895.1904.18275 [35] Ma T T, Wu G X, Liu Y M, et al. 2022. Abnormal warm sea-surface temperature in the Indian Ocean, active potential vorticity over the Tibetan Plateau, and severe flooding along the Yangtze River in summer 2020 [J]. Quart. J. Roy. Meteor. Soc., 148(743): 1001−1019. doi: 10.1002/qj.4243 [36] 毛江玉, 吴国雄. 2005. 1991年江淮梅雨与副热带高压的低频振荡 [J]. 气象学报, 63(5): 762−770. doi: 10.3321/j.issn:0577-6619.2005.05.020Mao Jiangyu, Wu Guoxiong. 2005. Intraseasonal variability in the Yangtze–Huaihe River rainfall and subtropical high during the 1991 Meiyu period [J]. Acta Meteor. Sinica (in Chinese), 63(5): 762−770. doi: 10.3321/j.issn:0577-6619.2005.05.020 [37] Ni C C, Li G P, Xiong X Z. 2017. Analysis of a vortex precipitation event over southwest China using AIRS and in situ measurements [J]. Adv. Atmos. Sci., 34(4): 559−570. doi: 10.1007/s00376-016-5262-4 [38] Ouyang Y, Liu F. 2020. Intraseasonal variability of summer monsoon rainfall over the lower reaches of the Yangtze River basin [J]. Atmos. Oceanic Sci. Lett., 13(4): 323−329. doi: 10.1080/16742834.2020.1741322 [39] 齐艳军, 张人禾, Li T. 2016. 1998年夏季长江流域大气季节内振荡的结构演变及其对降水的影响 [J]. 大气科学, 40(3): 451−462. doi: 10.3878/j.issn.1006-9895.1507.15107Qi Yanjun, Zhang Renhe, Li T. 2016. Structure and evolution characteristics of atmospheric intraseasonal oscillation and its impact on the summer rainfall over the Yangtze River basin in 1998 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(3): 451−462. doi: 10.3878/j.issn.1006-9895.1507.15107 [40] Sampe T, Xie S P. 2010. Large–scale dynamics of the Meiyu–Baiu rainband: Environmental forcing by the westerly jet [J]. J. Climate, 23(1): 113−134. doi: 10.1175/2009JCLI3128.1 [41] Shao X L, Li S L, Liu N, et al. 2018. The Madden–Julian oscillation during the 2016 summer and its possible impact on rainfall in China [J]. Int. J. Climatol., 38(5): 2575−2589. doi: 10.1002/joc.5440 [42] 师春香, 江吉喜, 方宗义. 2000. 1998长江大水期间对流云团活动特征研究 [J]. 气候与环境研究, 5(3): 279−286. doi: 10.3969/j.issn.1006-9585.2000.03.007Shi Chunxiang, Jiang Jixi, Fang Zongyi. 2000. A study on the features of severe convective cloud clusters causing serious flooding over Changjiang River basin in 1998 [J]. Climatic and Environmental Research (in Chinese), 5(3): 279−286. doi: 10.3969/j.issn.1006-9585.2000.03.007 [43] Si D, Ding Y H, Liu Y J. 2009. Decadal northward shift of the Meiyu belt and the possible cause [J]. Chinese Sci. Bull., 54(24): 4742−4748. doi: 10.1007/s11434-009-0385-y [44] Sun B, Wang H J, Zhou B T, et al. 2019. Interdecadal variation in the synoptic features of Mei–yu in the Yangtze River valley region and relationship with the Pacific decadal oscillation [J]. J. Climate, 32(19): 6251−6270. doi: 10.1175/JCLI-D-19-0017.1 [45] Takaya Y, Ishikawa I, Kobayashi C, et al. 2020. Enhanced Meiyu–Baiu rainfall in early summer 2020: Aftermath of the 2019 super IOD event [J]. Geophys. Res. Lett., 47(22): e2020GL090671. doi: 10.1029/2020GL090671 [46] Tanaka M. 1997. Interannual and interdecadal variations of the western North Pacific monsoon and Baiu rainfall and their relationship to the ENSO cycles [J]. J. Meteor. Soc. Japan, 75(6): 1109−1123. doi: 10.2151/jmsj1965.75.6_1109 [47] Tang Y Q, He B, Bao Q, et al. 2020. The climate variability in global land precipitation in FGOALS-f3-L: A comparison between GMMIP and historical simulations [J]. Atmos. Oceanic Sci. Lett., 13(6): 559−567. doi: 10.1080/16742834.2020.1776088 [48] 陶诗言. 1980. 中国之暴雨[M]. 北京: 科学出版社, 225ppTao Shiyan. 1980. Heavy Rainfalls in China (in Chinese) [M]. Beijing: Science Press, 225pp. [49] Tao S Y, Ding Y H. 1981. Observational evidence of the influence of the Qinghai–Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China [J]. Bull. Amer. Meteor. Soc., 62(1): 23−30. doi: 10.1175/1520-0477(1981)062<0023:OEOTIO>2.0.CO;2 [50] Wang B, Orlanski I. 1987. Study of a heavy rain vortex formed over the eastern flank of the Tibetan Plateau [J]. Mon. Wea. Rev., 115(7): 1370−1393. doi: 10.1175/1520-0493(1987)115<1370:SOAHRV>2.0.CO;2 [51] Wang B, Bao Q, Hoskins B, et al. 2008. Tibetan Plateau warming and precipitation changes in East Asia [J]. Geophys. Res. Lett., 35(14): L14702. doi: 10.1029/2008GL034330 [52] Wang B, Xiang B Q, Lee J Y. 2013. Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions [J]. Proc. Natl. Acad. Sci. USA, 110(8): 2718−2722. doi: 10.1073/pnas.1214626110 [53] Wang J, He J H, Liu X F, et al. 2009. Interannual variability of the Meiyu onset over Yangtze–Huaihe River valley and analyses of its previous strong influence signal [J]. Chinese Sci. Bull., 54(4): 687−695. doi: 10.1007/s11434-008-0534-8 [54] Wang X, Wang D X, Zhou W, et al. 2012. Interdecadal modulation of the influence of La Niña events on Mei–yu rainfall over the Yangtze River valley [J]. Adv. Atmos. Sci., 29: 157−168. doi: 10.1007/s00376-011-1021-8 [55] 王子谦, 朱伟军, 段安民. 2010. 孟湾风暴影响高原暴雪的个例分析: 基于倾斜涡度发展的研究 [J]. 高原气象, 29(3): 703−711.Wang Ziqian, Zhu Weijun, Duan Anmin. 2010. A case study of snowstorm in Tibetan Plateau induced by bay of Bengal storm: Based on the theory of slantwise vorticity development [J]. Plateau Meteorology (in Chinese), 29(3): 703−711. [56] Wang Z Q, Yang S, Lau N C, et al. 2018. Teleconnection between summer NAO and East China rainfall variations: A bridge effect of the Tibetan Plateau [J]. J. Climate, 31(16): 6433−6444. doi: 10.1175/JCLI-D-17-0413.1 [57] Weng H Y, Lau K M, Xue Y. 1999. Multi-scale summer rainfall variability over China and its long–term link to global sea surface temperature variability [J]. J. Meteor. Soc. Japan, 77(4): 845−857. doi: 10.2151/jmsj1965.77.4_845 [58] 吴国雄, 蔡雅萍. 1997. 风垂直切变和下滑倾斜涡度发展 [J]. 大气科学, 21(3): 273−282. doi: 10.3878/j.issn.1006-9895.1997.03.03Wu Guoxiong, Cai Yaping. 1997. Vertical wind shear and down-sliding slantwise vorticity development [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 21(3): 273−282. doi: 10.3878/j.issn.1006-9895.1997.03.03 [59] Wu G X, Zhang Y S. 1998. Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea [J]. Mon. Wea. Rev., 126(4): 913−927. doi: 10.1175/1520-0493(1998)126<0913:TPFATT>2.0.CO;2 [60] 吴国雄, 刘还珠. 1999. 全型垂直涡度倾向方程和倾斜涡度发展 [J]. 气象学报, 57(1): 1−15. doi: 10.11676/qxxb1999.001Wu Guoxiong, Liu Huanzhu. 1999. Complete form of vertical vorticity tendency equation and slantwise vorticity development [J]. Acta Meteor. Sinica (in Chinese), 57(1): 1−15. doi: 10.11676/qxxb1999.001 [61] 吴国雄, 蔡雅萍, 唐晓菁. 1995. 湿位涡和倾斜涡度发展 [J]. 气象学报, 53(4): 387–405. Wu Guoxiong, Cai Yaping, Tang Xiaojing. 1995. Moist potential vorticity and slantwise vorticity development [J]. Acta Meteor. Sinica (in Chinese), 53(4): 387−405. doi:10.11676/qxxb1995.045 [62] 吴统文, 钱正安. 2000. 青藏高原冬春积雪异常与中国东部地区夏季降水关系的进一步分析 [J]. 气象学报, 58(5): 570−581. doi: 10.11676/qxxb2000.059Wu Tongwen, Qian Zhengan. 2000. Further analyses of the linkage between winter and spring snow depth anomaly over Qinghai–Xizang Plateau and summer rainfall of eastern China [J]. Acta Meteor. Sinica (in Chinese), 58(5): 570−581. doi: 10.11676/qxxb2000.059 [63] Wu Z W, Wang B, Li J P, et al. 2009. An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO [J]. J. Geophys. Res., 114(D18): D18120. doi: 10.1029/2009JD011733 [64] 肖云清, 沈新勇, 张晓露, 等. 2020. 贺兰山东麓两次局地暴雨过程的湿位涡诊断分析 [J]. 暴雨灾害, 39(2): 148−157. doi: 10.3969/j.issn.1004-9045.2020.02.005Xiao Yunqing, Shen Xinyong, Zhang Xiaolu, et al. 2020. Diagnostic analysis of moist potential vorticity for two local rainstorm events on the eastern foot of Helan Mountain [J]. Torrential Rain and Disasters (in Chinese), 39(2): 148−157. doi: 10.3969/j.issn.1004-9045.2020.02.005 [65] Yamaura T, Tomita T. 2014. Two physical mechanisms controlling the interannual variability of Baiu precipitation [J]. J. Meteor. Soc. Japan, 92(4): 305−325. doi: 10.2151/jmsj.2014-403 [66] Yasunari T, Miwa T. 2006. Convective cloud systems over the Tibetan Plateau and their impact on meso–scale disturbances in the Meiyu/Baiu frontal zone [J]. J. Meteor. Soc. Japan, 84(4): 783−803. doi: 10.2151/jmsj.84.783 [67] Zhang G S, Mao J Y, Wu G X, et al. 2021. Impact of potential vorticity anomalies around the eastern Tibetan Plateau on quasi-biweekly oscillations of summer rainfall within and south of the Yangtze basin in 2016 [J]. Climate Dyn., 56(3): 813−835. doi: 10.1007/s00382-020-05505-x [68] 张顺利, 陶诗言. 2002. 青藏高原对1998年长江流域天气异常的影响 [J]. 气象学报, 60(4): 442−452. doi: 10.11676/qxxb2002.052Zhang Shunli, Tao Shiyan. 2002. The influences of Tibetan Plateau on weather anomalies over Changjiang River in 1998 [J]. Acta Meteor. Sinica (in Chinese), 60(4): 442−452. doi: 10.11676/qxxb2002.052 [69] Zhang W J, Huang Z C, Jiang F, et al. 2021. Exceptionally persistent Madden-Julian oscillation activity contributes to the extreme 2020 East Asian summer monsoon rainfall [J]. Geophys. Res. Lett., 48(5): e2020GL091588. doi: 10.1029/2020GL091588 [70] 赵亮, 丁一汇. 2008. 梅雨期高位涡源区及其传播过程 [J]. 应用气象学报, 19(6): 697−709. doi: 10.3969/j.issn.1001-7313.2008.06.009Zhao Liang, Ding Yihui. 2008. Sources and transfer of high isentropic potential vorticity during Meiyu period [J]. Journal of Applied Meteorological Science (in Chinese), 19(6): 697−709. doi: 10.3969/j.issn.1001-7313.2008.06.009 [71] Zhao P, Chen L X. 2001. Climatic features of atmospheric heat source/sink over the Qinghai–Xizang Plateau in 35 years and its relation to rainfall in China [J]. Science in China Series D:Earth Sciences, 44(9): 858−864. doi: 10.1007/BF02907098 [72] Zheng Y J, Wu G X, Liu Y M. 2013. Dynamical and thermal problems in vortex development and movement. Part I: A PV-Q view [J]. Acta Meteor. Sinica, 27: 1−14. doi: 10.1007/s13351-013-0101-3 [73] Zhou Z Q, Xie S P, Zhang R H. 2021. Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions [J]. Proc. Natl. Acad. Sci. USA, 118(12): e2022255118. doi: 10.1073/pnas.2022255118 [74] Zhu C W, Nakazawa T, Li J P, et al. 2003. The 30–60 day intraseasonal oscillation over the western North Pacific Ocean and its impacts on summer flooding in China during 1998 [J]. Geophys. Res. Lett., 30(18): 1952. doi: 10.1029/2003GL017817 [75] Zhu Y L, Wang H J, Zhou W, et al. 2011. Recent changes in the summer precipitation pattern in East China and the background circulation [J]. Climate Dyn., 36(7–8): 1463–1473. doi:10.1007/s00382-010-0852-9 [76] Zhu Y L, Wang H J, Ma J H, et al. 2015. Contribution of the phase transition of Pacific decadal oscillation to the late 1990s’ shift in East China summer rainfall [J]. J. Geophys. Res., 120(17): 8817−8827. doi: 10.1002/2015JD023545 [77] 卓嘎, 徐祥德, 陈联寿. 2002. 青藏高原对流云团东移发展的不稳定特征 [J]. 应用气象学报, 13(4): 448−456. doi: 10.3969/j.issn.1001-7313.2002.04.008Zhuo Ga, Xu Xiangde, Chen Lianshou. 2002. Instability of eastward movement and development of convective cloud clusters over Tibetan Plateau [J]. Journal of Applied Meteorological Science (in Chinese), 13(4): 448−456. doi: 10.3969/j.issn.1001-7313.2002.04.008 -