Comparative Analysis of Water Vapor Transport and Thermodynamic Characteristics of Different Types of Jiulong Vortices Found in Southwest China
-
摘要: 应用1989~2018年6~8月ERA-interim再分析资料,在西南涡之九龙涡新定义的基础上,通过观测、诊断、合成分析,深入研究了川西高原涡源子区域1和子区域2源地型、偏东型、东北型、偏南型九龙涡的水汽输送、热力特征及其变化。结果表明:(1)夏季九龙涡水汽主要来源于印度洋,受多尺度系统协同作用影响,源地型、偏东型、东北型生成区主要为西南水汽输送,偏南型则为西北水汽输送。伴随九龙涡生成,生成区水汽辐合逐渐加强,结束时次,移动型九龙涡在对应的移动方向下游具有异常的水汽通量辐合。(2)九龙涡涡区主要为热量消耗,其中源地型九龙涡热量消耗较大且无充足补给成为其消亡的原因之一,初生时次低层(高层)水汽消耗(增加),但发展后均为消耗;子区域1(子区域2)下垫面、环流影响复杂(简单),视热源、视水汽汇项垂直分布多样(单一),具有多个(一个)极值中心;辐射冷却和小尺度涡旋垂直输送可使视热源项中心高于视水汽汇项中心。(3)九龙涡的视热源、视水汽汇的大值区主要位于低涡东北部,且视水汽汇强于视热源,分别对应低涡强对流区和强夜发性;移动型的视热源和视水汽汇分布及变化一般都强于源地型,其中,子区域1的东北型、偏南型始终保持较强分布,子区域2的移动型和源地型初生时次差异不大,结束时次东北型显著增强。(4)源地型低涡的消亡最先表现为视水汽汇在低涡外围的减弱,而偏东型、东北型则在移动方向扩展、增强,形成视热源、水汽汇大值区,分别预示着九龙涡的减弱消亡和发展移动;偏南型西南侧有一热源大值系统,可能成为其偏南移出的外强迫因素。综上,区域和环境水汽、大气热力条件等异常变化与九龙涡演变密切相关,两者可能是九龙涡生成、消亡、发展、移动的重要原因。Abstract: The characteristics and changes of water vapor transport and the thermodynamic characteristics of the local, eastward, northeastward, and southward types from various vortex sources (subregions 1 and 2) in the western Sichuan Plateau are thoroughly examined through observation and diagnosis. The ECMWF Reanalysis-interim data from June to August of 1989–2018, based on the new definition of the Jiulong vortex (JLV) of the Southwest China vortex, were examined to conduct this investigation. The results demonstrate the following: (1) The water vapor primarily arises from the Indian Ocean during summer. Under the action of multiple systems, a southwestward transport of water vapor is observed in the local, eastward, and northeastward types, whereas a northwestward transport of water vapor is observed in the southward type. The convergence of water vapor in the generation region is strengthened via the formation of the JLV, at the end of which the moving (eastward, northeastward, southward) type exhibits an anomalous convergence of water vapor flux downstream of the corresponding moving direction. (2) The JLV region primarily involves heat consumption. The local type may not have sufficient supplies and requires a substantial amount of heat, which may be one of the factors leading to its demise. Water vapor is consumed at the lower level and grows at the higher level at birth, but after development, it is consumed throughout the layer. Because of the complex (simple) effect of the underlying surface and circulation associated with subregion 1 (subregion 2), the apparent heat source and apparent water vapor sinks exhibit diverse (single) vertical distributions, with multiple (one) extreme centers. the polar center of the apparent heat source is higher than the polar center of the apparent water vapor sink due to radiative cooling and vertical transport of small-scale vortex. (3) The large value area of the apparent heat source and apparent water vapor sink of JLV are mainly located in the northeast of the low vortex, which corresponds to the strong convection area of the JLV, and the apparent water vapor sink is stronger than the apparent heat source, which corresponds to the strong nocturnal. The intensity of the distribution and variation of the apparent heat source and apparent water vapor sink of the moving type are typically stronger than those of the local type. Among them, the northeastward type and southward type of subregion 1 always maintain a strong distribution of the apparent heat source and apparent water vapor sink , which is in considerable contrast to that observed in local and eastward types. In Subregion 2, the moving type and the local type differ slightly at birth, and after development the northeastward type is greatly improved. (4) The demise of the local type is first manifested as the weakening of the apparent water vapor sink at the periphery of the low vortex, while the eastward and northeastward types expand and strengthen in the direction of movement. There is a large heat source system on the southwest side of the southward type, which may be an external forcing factor for its southward migration. In conclusion, the abnormal changes in regional and environmental water vapor and atmospheric thermodynamic conditions are strongly associated with the evolution of the JLV; such changes could be the main reasons for the formation, extinction, development, and movement of the JLV.
-
图 1 1989~2018年6~8月不同类型九龙涡的空间分布情况(黑色实心圆:源地型,红色实心圆:偏东型,蓝色实心圆:东北型,绿色实心圆:偏南型,不同大小实心圆表示不同频次)
Figure 1. Spatial distributions of different JLVs (Jiulong vortexs) during June–August from 1989 to 2018 (the black solid circle: the local type, the red solid circle: the eastward type, the blue solid circle: the northeastward type, the green solid circle: the southward type, different sizes of solid circles indicate different frequencies of occurrence)
图 2 1989~2018年6~8月(a)源地型、(b)偏东型、(c)东北型和(d)偏南型九龙涡生成前12 h的整层水汽通量(矢量,单位:kg m−1 s−1)、水汽通量散度(填色,单位:g m−2 s−1)分布。虚线矩形框为九龙涡生成区
Figure 2. Distributions of the entire level of water vapor flux (vectors, units: kg m−1 s−1) and water vapor flux divergence (coloring, units: g m−2 s−1) of the (a) local, (b) eastward, (c) northeastward, and (d) southward JLV 12 h before formation during June–August from 1989 to 2018. The dotted rectangular frame indicates the generating area of the JLV
图 3 1989~2018年6~8月(a)源地型、(b)偏东型、(c)东北型和(d)偏南型九龙涡结束时次的整层水汽通量(矢量,单位:kg m−1 s−1)、水汽通量散度(填色,单位:g m−2 s−1)分布。虚线矩形框为九龙涡生成区,红色打点处表示与源地型相比通过了90%显著性检验的水汽通量散度负异常区域
Figure 3. Distributions of the entire level of water vapor flux (vectors, units: kg m−1 s−1) and water vapor flux divergence (coloring, units: g m−2 s−1) of the (a) local, (b) eastward, (c) northeastward, and (d) southward JLV at the end time during June–August from 1989 to 2018. The dotted rectangular frame represents the generating area of JLV, and the red dots show the negative anomaly area of water vapor flux divergence that has passed the 90% significance test compared with the local type
图 4 1989~2018年6~8月子区域1(第一行)、子区域2(第二行)的源地型(线形A)、偏东型(线形B)、东北型(线形C)、偏南型(线形D)九龙涡初生时次涡区平均热量收支[单位:K (6 h)−1]及其分量的合成垂直分布:(a、e)$ \partial T/\partial t $;(b、f)$-{\boldsymbol{V}}\cdot \nabla T$;(c、g)$ -{\left(p/{p}_{0}\right)}^{\kappa }\omega \partial \theta /\partial p $;(d、h)$ {Q}_{1}{/c}_{p} $
Figure 4. Composite vertical distribution of the average heat budget [units: K (6 h)−1] and its components in the main area of the vortex at the time of birth of the local (line A), eastward (line B), northeastward (line C), and southward (line D) JLV in subregion 1 (top line) and subregion 2 (bottom line) during June–August from 1989 to 2018: (a, e) $ \partial T/\partial t $; (b, f) $-{\boldsymbol{V}}\cdot \nabla T$; (c, g)$ -{\left(p/{p}_{0}\right)}^{\kappa }\omega \partial \theta /\partial p $; (d, h) $ {Q}_{1}{/c}_{p} $
图 5 1989~2018年6~8月子区域1(第一行)、子区域2(第二行)的源地型(线形A)、偏东型(线形B)、东北型(线形C)、偏南型(线形D)九龙涡初生时次涡区平均水汽收支[单位:g kg−1 (6 h)−1]及其分量的合成垂直分布:(a、e)$ \partial q/\partial t $;(b、f)$-{\boldsymbol{V}}\cdot \nabla q$;(c、g)$ -\omega \partial q/\partial p $;(d、h)$ -{Q}_{2}/L $
Figure 5. Composite vertical distributions of the average water vapor budget [units: g kg−1 (6 h)−1] and its components in the main area of the vortex at the time of birth of the local (line A), eastward (line B), northeastward (line C), and southward (Line D) JLV in subregion 1 (top line) and subregion 2 (bottom line) during June–August from 1989 to 2018: (a, e) $ \partial q/\partial t $; (b, f) $-{\boldsymbol{V}}\cdot \nabla q$; (c, g) $ -\omega \partial q/\partial p $; (d, h) $ -{Q}_{2}/L $
图 6 1989~2018年6~8月子区域1的(a、e)源地型、(b、f)偏东型、(c、g)东北型和(d、h)偏南型九龙涡初生时次(第一行)、结束时次(第二行)整层Q1(填色)、Q2(等值线)的合成分布,单位:W m−2。坐标(0, 0)为九龙涡合成中心
Figure 6. Composite distributions of the entire level of Q1 (coloring) and Q2 (contours) at the birth time (top line) and the end time (bottom line) of the (a, e) local, (b, f) eastward, (c, g) northeastward, and (d, h) southward JLV in subregion 1 during June–August from 1989 to 2018, units: W m−2. The coordinates (0, 0) represent the composite center of the JLV
图 7 1989~2018年6~8月子区域2的(a、d)源地型、(b、e)偏东型和(c、f)东北型九龙涡初生时次(第一行)、结束时次(第二行)整层Q1(填色)、Q2(等值线)的合成分布,单位:W m−2。坐标(0, 0)为九龙涡合成中心
Figure 7. Composite distributions of the entire level of Q1 (coloring) and Q2 (contours) at the birth time (top line) and the end time (bottom line) of the (a, d) local, (b, e) eastward, and (c, f) northeastward JLV in subregion 2 during June–August from 1989 to 2018, units: W m−2. The coordinates (0, 0) represent the composite center of the JLV
表 1 1989~2018年6~8月子区域1、子区域2各类九龙涡涡区Q1、Q2的平均值和极大值
Table 1. Average and extreme values of Q1 and Q2 of various types of JLV in subregions 1 and 2 during June–August from 1989 to 2018
区域 类型 Q1最大值/W m−2 Q2最大值/W m−2 Q1平均值/W m−2 Q1平均值/W m−2 初生时次 结束时次 初生时次 结束时次 初生时次 结束时次 初生时次 结束时次 子区域1 源地型 659.7 748.9(+) 848.0 866.5(+) 192.8 242.4(+) 310.8 261.9(-) 偏东型 541.0 772.2(+) 677.7 811.2(+) 183.7 403.9(+) 243.8 406.5(+) 东北型 1384.2 1878.6(+) 1513.9 2070.3(+) 493.3 539.9(+) 543.4 599.0(+) 偏南型 1202.6 1565.2(+) 1407.8 1573.4(+) 548.7 543.8(-) 580.1 588.1(+) 子区域2 源地型 945.1 1164.1(+) 1225.9 1288.1(+) 350.1 343.8(-) 381.7 367.2(-) 偏东型 949.1 1113.5(+) 1113.4 1311.7(+) 424.1 364.0(-) 357.9 391.3(+) 东北型 1111.0 1664.0(+) 1451.1 1601.6(+) 374.2 503.6(+) 400.2 457.8(+) 注:表中的(+)和(-)代表结束时次该物理量比初生时次大、小。 -
[1] 陈启智, 黄奕武, 王其伟, 等. 2007. 1990–2004年西南低涡活动的统计研究 [J]. 南京大学学报(自然科学), 43(6): 633−642. doi: 10.3321/j.issn:0469-5097.2007.06.008Chen Qizhi, Huang Yiwu, Wang Qiwei, et al. 2007. The statistical study of the Southwest Vortexes during 1990–2004 [J]. Journal of Nanjing University (Natural Sciences) (in Chinese), 43(6): 633−642. doi: 10.3321/j.issn:0469-5097.2007.06.008 [2] 陈涛, 张芳华, 端义宏. 2009. 广西“6·12”特大暴雨中西南涡与中尺度对流系统发展的相互关系研究 [J]. 气象学报, 69(3): 472−485. doi: 10.11676/qxxb2011.041Chen Tao, Zhang Fanghua, Duan Yihong. 2009. A study of relationship between a Southwest Vortex and the mesoscale convective systems during the severe “6.12” rainstorm event in Guangxi Province [J]. Acta Meteorologica Sinica (in Chinese), 69(3): 472−485. doi: 10.11676/qxxb2011.041 [3] 陈忠明. 1988. 大尺度环境场和CISK与西南低涡发展的动力学分析 [J]. 高原气象, 7(1): 27−38.Chen Zhongmin. 1988. The dynamic analyses of the effect of large-scale environment flow fields and cumulus on the development of sub-synoptic scale Southwest Vortex [J]. Plateau Meteorology (in Chinese), 7(1): 27−38. [4] 陈忠明, 闵文彬, 崔春光. 2004. 西南低涡研究的一些新进展 [J]. 高原气象, 23(S1): 1−5. doi: 10.3321/j.issn:1000-0534.2004.z1.001Chen Zhongming, Min Wenbin, Cui Chunguang. 2004. New advances in Southwest China Vortex research [J]. Plateau Meteorology (in Chinese), 23(S1): 1−5. doi: 10.3321/j.issn:1000-0534.2004.z1.001 [5] 程麟生. 1991. “81.8”持续暴雨期中-α尺度低涡发展的涡度变率及其热源 [J]. 高原气象, 10(4): 337−350.Cheng Linsheng. 1991. The vorticity change-rate and its heat source for development of meso-α scale vortex during a persistent heavy rain of 14–22 August 1981 [J]. Plateau Meteorology (in Chinese), 10(4): 337−350. [6] 濮梅娟, 刘富明, 沈如金. 1989. 一次夏季西南低涡形成机理的数值试验 [J]. 高原气象, 8(4): 321−330.Fu Meijuan, Liu Fuming, Shen Rujin. 1989. Numerical experiment on the formation mechanism of a SW Vortex in summer [J]. Plateau Meteorology (in Chinese), 8(4): 321−330. [7] Fu S M, Zhang J P, Sun J H, et al. 2014. A fourteen–year climatology of the Southwest Vortex in summer [J]. Atmospheric and Oceanic Science Letters, 7(6): 510−514. doi: 10.1080/16742834.2014.11447216 [8] 何光碧, 曾波, 郁淑华, 等. 2016. 青藏高原周边地区持续性暴雨特征分析 [J]. 高原气象, 35(4): 865−874. doi: 10.7522/j.issn.1000-0534.2015.00081He Guangbi, Zeng Bo, Yu Shuhua, et al. 2016. Analysis of durative rainstorm characteristics occurred in the ambient area of Qinghai–Xizang Plateau [J]. Plateau Meteorology (in Chinese), 35(4): 865−874. doi: 10.7522/j.issn.1000-0534.2015.00081 [9] Hodges K I, Lee R W, Bengtsson L. 2011. A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25 [J]. J. Climate, 24(18): 4888−4906. doi: 10.1175/2011JCLI4097.1 [10] 矫梅燕, 李川, 李延香. 2005. 一次川东大暴雨过程的中尺度分析 [J]. 应用气象学报, 16(5): 699−704. doi: 10.3969/j.issn.1001-7313.2005.05.018Jiao Meiyan, Li Chuan, Li Yanxiang. 2005. Mesoscale analyses of a Sichuan heavy rainfall [J]. J. Appl. Meteor. Sci. (in Chinese), 16(5): 699−704. doi: 10.3969/j.issn.1001-7313.2005.05.018 [11] 李超, 李跃清, 蒋兴文. 2015. 四川盆地低涡的月际变化及其日降水分布统计特征 [J]. 大气科学, 39(6): 1191−1203. doi: 10.3878/j.issn.1006-9895.1502.14270Li Chao, Li Yueqing, Jiang Xinwen. 2015. Statistical characteristics of the inter-monthly variation of the Sichuan Basin vortex and the distribution of daily precipitation [J]. Chinese J. Atmos. Sci. (in Chinese), 39(6): 1191−1203. doi: 10.3878/j.issn.1006-9895.1502.14270 [12] Li L, Zhang R H, Wen M, et al. 2014. Effect of the atmospheric heat source on the development and eastward movement of the Tibetan Plateau vortices [J]. Tellus A: Dynamic Meteorology and Oceanography, 66(1): 24451. doi: 10.3402/tellusa.v66.24451 [13] 李永华, 周杰, 何卷雄, 等. 2022. 2020年6~7月西南地区东部降水异常偏多的水汽输送特征 [J]. 大气科学, 46(2): 309−326. doi: 10.3878/j.issn.1006-9895.2105.21002Li Yonghua, Zhou Jie, He Juanxiong, et al. 2022. Characteristics of water vapor transport associated with abnormal precipitation over the east of southwestern China in June and July 2020 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(2): 309−326. doi: 10.3878/j.issn.1006-9895.2105.21002 [14] 李跃清, 徐祥德. 2016. 西南涡研究和观测试验回顾及进展 [J]. 气象科技进展, 6(3): 134−140. doi: 10.3969/j.issn.2095-1973.2016.03.018Li Yueqing, Xu Xiangde. 2016. A review of the research and observing experiment on Southwest China Vortex [J]. Advances in Meteorological Science and Technology (in Chinese), 6(3): 134−140. doi: 10.3969/j.issn.2095-1973.2016.03.018 [15] 李跃清, 郁淑华, 彭俊, 等. 2013. 西南低涡年鉴(2012)[M]. 北京: 科学出版社, 1–352.Li Yueqing, Yu Shuhua, Peng Jun, et al. 2013. Southwest Vortex Yearbook (2012) (in Chinese) [M]. Beijing: Science Press, 1–352. [16] 李跃清, 闵文彬, 彭俊, 等. 2015. 西南低涡年鉴(2013)[M]. 北京: 科学出版社, 1–262.Li Yueqing, Min Wenbin, Peng Jun, et al. 2015. Southwest Vortex Yearbook (2013) (in Chinese) [M]. Beijing: Science Press, 1–262. [17] 李跃清, 闵文彬, 彭俊, 等. 2016. 西南低涡年鉴(2014)[M]. 北京: 科学出版社, 1–183.Li Yueqing, Min Wenbin, Peng Jun, et al. 2016. Southwest Vortex Yearbook (2014) (in Chinese) [M]. Beijing: Science Press, 1–183. [18] 李跃清, 闵文彬, 彭俊, 等. 2017a. 西南低涡年鉴(2015)[M]. 北京: 科学出版社, 1–230.Li Yueqing, Min Wenbin, Peng Jun, et al. 2017a. Southwest Vortex Yearbook (2015) (in Chinese) [M]. Beijing: Science Press, 1–230. [19] 李跃清, 闵文彬, 彭俊, 等. 2017b. 西南低涡年鉴(2016)[M]. 北京: 科学出版社, 1–219.Li Yueqing, Min Wenbin, Peng Jun, et al. 2017b. Southwest Vortex Yearbook (2016) (in Chinese) [M]. Beijing: Science Press, 1–219. [20] 李跃清, 闵文彬, 彭俊, 等. 2019. 西南低涡年鉴(2017)[M]. 北京: 科学出版社, 1–228.Li Yueqing, Min Wenbin, Peng Jun, et al. 2019. Southwest Vortex Yearbook (2017) (in Chinese) [M]. Beijing: Science Press, 1–228. [21] 李跃清, 闵文彬, 彭骏, 等. 2020. 西南低涡年鉴(2018)[M]. 北京: 科学出版社, 1–184.Li Yueqing, Min Wenbin, Peng Jun, et al. 2020. Southwest Vortex Yearbook (2018) (in Chinese) [M]. Beijing: Science Press, 1–184. [22] 刘金卿, 李子良. 2020. 一次西南涡诱生气旋引发的湖南大暴雨个例分析 [J]. 高原气象, 39(2): 311−320. doi: 10.7522/j.issn.1000-0534.2019.00028Liu Jinqing, Li Ziliang. 2020. A case study of a heavy rainstorm in Hunan triggered by the induced cyclone of Southwest Vortex [J]. Plateau Meteorology (in Chinese), 39(2): 311−320. doi: 10.7522/j.issn.1000-0534.2019.00028 [23] 刘建勇, 谈哲敏, 顾思南. 2011. 梅雨期暴雨系统的流依赖中尺度可预报性 [J]. 大气科学, 35(5): 912−926. doi: 10.3878/j.issn.1006-9895.2011.05.11Liu Jianyong, Tan Zhemin, Gu Sinan. 2011. Flow-dependent mesoscale predictability of Meiyu heavy rainfall [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35(5): 912−926. doi: 10.3878/j.issn.1006-9895.2011.05.11 [24] 刘建勇, 谈哲敏, 张熠. 2012. 梅雨期3类不同形成机制的暴雨 [J]. 气象学报, 70(3): 452−466. doi: 10.11676/qxxb2012.038Liu Jianyong, Tan Zhemin, Zhang Yi. 2012. Study of the three types of torrential rains of different formation mechanism during the Meiyu period [J]. Acta Meteorologica Sinica (in Chinese), 70(3): 452−466. doi: 10.11676/qxxb2012.038 [25] 卢敬华. 1986. 西南低涡概论[M]. 北京: 气象出版社, 1–253.Lu Jinghua. 1986. Introduction to the Southwest China Vortex (in Chinese) [M]. Beijing: China Meteorological Press, 1–253. [26] 卢萍, 李跃清. 2021. 增强副热带高压对西南涡影响的数值试验 [J]. 大气科学, 45(4): 851−862. doi: 10.3878/j.issn.1006-9895.2008.20161Lu Ping, Li Yueqing. 2021. Simulation of effect of subtropical high enhancement on Southwest Vortex [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(4): 851−862. doi: 10.3878/j.issn.1006-9895.2008.20161 [27] 慕丹, 李跃清. 2018. 基于ERA-interim再分析资料的近30年九龙低涡气候特征 [J]. 气象学报, 76(1): 15−31. doi: 10.11676/qxxb2017.084Mu Dan, Li Yueqing. 2018. Climatic characteristics of the Jiulong low vortex in recent 30 years based on the ERA-interim reanalysis data [J]. Acta Meteorologica Sinica (in Chinese), 76(1): 15−31. doi: 10.11676/qxxb2017.084 [28] 屈顶, 李跃清. 2021. 西南涡之九龙涡的三维环流和动力结构特征 [J]. 高原气象, 40(6): 1497−1512. doi: 10.7522/j.issn.1000-0534.2021.zk002Qu Ding, Li Yueqing. 2021. Characteristics of the three-dimensional circulation and dynamic structure of Jiulong Vortex of Southwest China Vortex [J]. Plateau Meteorology (in Chinese), 40(6): 1497−1512. doi: 10.7522/j.issn.1000-0534.2021.zk002 [29] 屠妮妮, 陈静, 何光碧. 2008. 高原东侧一次大暴雨过程动力热力特征分析 [J]. 高原气象, 27(4): 796−806.Tu Nini, Chen Jing, He Guangbi. 2008. Dynamical and thermal character analyses of a heavy rain on the east side of Qinghai–Xizang plateau [J]. Plateau Meteorology (in Chinese), 27(4): 796−806. [30] Wang W, Kuo Y H, Warner T T. 1993. A diabatically driven mesoscale vortex in the Lee of the Tibetan Plateau [J]. Mon. Wea. Rev., 121(9): 2542−2561. doi: 10.1175/1520-0493(1993)121<2542:ADDMVI>2.0.CO;2 [31] 肖玉华, 郁淑华, 高文良, 等. 2018. 一例伴随西南涡的入海高原涡持续活动成因分析 [J]. 高原气象, 37(6): 1616−1627. doi: 10.7522/j.issn.1000-0534.2018.00043Xiao Yuhua, Yu Shuhua, Gao Wenliang, et al. 2018. Analysis of the causes of one sustained enter-the-sea Plateau Vortex accompanied by Southwest Vortex [J]. Plateau Meteorology (in Chinese), 37(6): 1616−1627. doi: 10.7522/j.issn.1000-0534.2018.00043 [32] 徐裕华. 1991. 西南气候[M]. 北京: 气象出版社, 56–60Xu Yuhua. 1991. Climate of Southwest China (in Chinese) [M]. Beijing: China Meteorological Press, 56–60. [33] 于波, 林永辉. 2008. 引发川东暴雨的西南低涡演变特征个例分析 [J]. 大气科学, 32(1): 141−154. doi: 10.3878/j.issn.1006-9895.2008.01.13Yu Bo, Lin Yonghui. 2008. A case study of southwest vortex causing heavy rainfall in eastern Sichuan Basin [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(1): 141−154. doi: 10.3878/j.issn.1006-9895.2008.01.13 [34] 朱禾, 邓北胜, 吴洪. 2002. 湿位涡守恒条件下西南涡的发展 [J]. 气象学报, 60(3): 343−351. doi: 10.3321/j.issn:0577-6619.2002.03.010Zhu He, Deng Beisheng, Wu Hong. 2002. The development of Southwest Vortex in conservation of moist potential vorticity [J]. Acta Meteorologica Sinica (in Chinese), 60(3): 343−351. doi: 10.3321/j.issn:0577-6619.2002.03.010 -