高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气热源对高原低涡不同发展阶段的影响——2013年7月个例分析

周庶 孙芳 王美蓉 周顺武 青逸雨

周庶, 孙芳, 王美蓉, 等. 2023. 大气热源对高原低涡不同发展阶段的影响——2013年7月个例分析[J]. 大气科学, 47(3): 907−919 doi: 10.3878/j.issn.1006-9895.2211.21267
引用本文: 周庶, 孙芳, 王美蓉, 等. 2023. 大气热源对高原低涡不同发展阶段的影响——2013年7月个例分析[J]. 大气科学, 47(3): 907−919 doi: 10.3878/j.issn.1006-9895.2211.21267
ZHOU Shu, SUN Fang, WANG Meirong, et al. 2023. Effect of Atmospheric Heat Source on the Tibetan Plateau Vortex During Different Developmental Stages—A Case Study in July 2013 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 47(3): 907−919 doi: 10.3878/j.issn.1006-9895.2211.21267
Citation: ZHOU Shu, SUN Fang, WANG Meirong, et al. 2023. Effect of Atmospheric Heat Source on the Tibetan Plateau Vortex During Different Developmental Stages—A Case Study in July 2013 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 47(3): 907−919 doi: 10.3878/j.issn.1006-9895.2211.21267

大气热源对高原低涡不同发展阶段的影响——2013年7月个例分析

doi: 10.3878/j.issn.1006-9895.2211.21267
基金项目: 中国气象科学研究院青藏高原与极地气象科学研究所开放课题 ITPP2021K01,第二次青藏高原综合科学考察研究项目 2019QZKK0105,国家自然科学基金重点项目 42030602
详细信息
    作者简介:

    周庶,女,1994年出生,硕士研究生,主要从事高原中尺度系统的研究。E-mail: zhoushu_nuist@163.com

    通讯作者:

    王美蓉,E-mail: wmr@nuist.edu.cn

  • 中图分类号: P447

Effect of Atmospheric Heat Source on the Tibetan Plateau Vortex During Different Developmental Stages—A Case Study in July 2013

Funds: Open Project of the Institute of Tibetan Plateau and Polar Meteorology (Grant ITPP2021K01), Second Tibetan Plateau Scientific Expedition and Research (STEP) Program (Grant 2019QZKK0105), Key Program of National Natural Science Foundation of China (Grant 42030602)
  • 摘要: 高原低涡是夏季青藏高原(简称高原)及其下游地区的主要降水系统。本文利用ERA5逐小时再分析资料、FY-2E卫星云顶亮温逐小时数据和TRMM 3 h降水资料,对2013年7月19 21日活动于高原的一次低涡过程进行了诊断分析。此低涡在高原期间的活动时间长达56 h,将其分为初生、发展及移出高原前三个阶段,着重分析了高原大气热源在低涡不同阶段的关键作用和机理。结果表明:此低涡在发展过程中表现为阶段性增强的特征,位势涡度倾向方程诊断发现非绝热加热的垂直梯度是造成低涡发展增强的主要因素,即非绝热加热极值所在高度的下方和上方分别有正的和负的位涡制造,从而加强了低层的气旋和高层的反气旋。进一步分析可知大气热源在低涡发展过程中也表现出阶段性增强的特征,最大值出现在正午时段,且在低涡移出高原前阶段最强。低涡的生成与地面暖中心有关,这归因于地表感热加热的作用;而低涡的后续发展则主要依赖于凝结潜热加热,加热高度位于对流层中层,这主要是由垂直运动将低层的水汽集中到中层,产生水汽凝结所致。
  • 图  1  2013年7月19日12时(北京时,下同)至22日18时基于ERA5再分析资料(绿色线,空心圆为逐小时的低涡位置,实心圆为08时、20时以及低涡生成、消亡的位置)和《青藏高原低涡切变线年鉴》(红色线,线上实心圆代表08时、20时低涡位置)低涡的移动路径。黑色粗实线表示3000 m地形等高线,下同

    Figure  1.  Tibetan Plateau vortex (TPV) track based on ERA5 reanalysis data [green line, hollow dots represent hourly TPV positions, solid dots represent TPV positions at 0800 BJT (Beijing time), 2000 BJT, TPV formation and disappearance] and the “Tibetan Plateau Vortex and Shear Line Yearbook” (red line, the solid dots represent the TPV positions at 0800 BJT and 2000 BJT) from 1200 BJT 19 July to 1800 BJT 22 July 2013. The black bold line represents the 3000-m contour of terrain, the same below

    图  2  2013年7月(a)19日12时、(b)19日20时、(c)20日08时、(d)20日20时、(e)21日08时、(f)21日20时500 hPa风场(矢量,单位:m s−1)及云顶亮温(TBB,阴影,单位:°C)分布。“C”表示低涡位置,下同

    Figure  2.  Distributions of wind field (vectors, units: m s−1) and black-body temperature (TBB, shadings, units: °C) at 500 hPa at (a) 1200 BJT on 19 July, (b) 2000 BJT on 19 July, (c) 0800 BJT on 20 July ,(d) 2000 BJT on 20 July, (e) 0800 BJT on 21 July, and (f) 2000 BJT on 21 July 2013. “C” represents the TPV center, the same below

    图  3  2013年7月19日08时至22日00时沿低涡中心(a)相对涡度(彩色阴影,单位:10−5 s−1)及垂直速度(等值线,单位:Pa s−1)的高度—时间剖面,(b)低涡中心周围2°×2°面积平均的500 hPa相对涡度(曲线,单位:10−5 s−1)和低涡中心以南2°×2°面积平均的降水(柱状,单位:mm h−1)时间序列。黑色阴影表示地形,下同

    Figure  3.  (a) Height–time section of relative vorticity (color shadings, units: 10−5 s−1) and vertical velocity (contours, units: 10−1 Pa s−1) along the TPV center, (b) time series of the 500-hPa relative vorticity (lines, units: 10−5 s−1) averaged over the 2°×2° grid surrounding the TPV center and precipitation (bars, units: mm h−1) averaged over the 2°×2° grid in the south of the TPV center from 0800 BJT 19 July to 0000 BJT on 22 July 2013. The black shadings represent terrain, the same below

    图  4  2013年7月(a、d)19日12时高原低涡初生阶段、(b、e)20日20时发展阶段和(c、f)21日20时移出高原前阶段(a–c)500 hPa位涡变化及(d–f)非绝热加热的垂直梯度引起的位涡变化的空间分布(单位:10−5 PVU s−1, 1 PVU=10−6 K m2 s−1 kg−1

    Figure  4.  Distributions (units: 10−5 PVU s−1, 1 PVU=10−6 K m2 s−1 kg−1) of the (a–c) 500-hPa potential vorticity (PV) change and (d–f) PV change caused by the vertical gradient of diabatic heating in the (a, d) initial (1200 BJT 19 July), (b, e) development (2000 BJT 20 July), and (c, f) moving-out stages (2000 BJT 21 July) of the TPV in 2013

    图  5  2013年7月(a、d)19日12时高原低涡初生阶段、(b、e)20日20时发展阶段和(c、f)21日20时移出高原前阶段沿低涡中心的(a–c)非绝热加热Q(单位:10−4 K s−1)、(d–f)PV1(单位:10−5 PVU s−1)的纬向—垂直剖面。黑色三角形表示低涡中心位置

    Figure  5.  Zonal–vertical cross sections of (a–c) diabatic heating (Q, units: 10−4 K s−1) and (d–f) redistribution of PV induced by the vertical uneven distribution of diabatic heating (PV1, units: 10−5 PVU s−1) along the TPV center in the (a, d) initial (1200 BJT 19 July), (b, e) development (2000 BJT 20 July), and (c, f) moving-out stages (2000 BJT 21 July) of the TPV in 2013. The black triangle represents the position of the TPV center

    图  6  2013年7月19日08时至22日00时低涡中心(a)大气视热源Q1、视水汽汇Q2及其(b)垂直输送项、(c)局地变化项、(d)水平输送项的时间—高度剖面。阴影为Q1及各组成项,等值线为Q2及各组成项,单位:10−1 m2 s−3

    Figure  6.  Time–height section of (a) atmospheric apparent heat source (Q1, shadings, units: 10−1 m2 s−3), apparent moisture sink (Q2, contours, units: 10−1 m2 s−3), and the corresponding (b) vertical transport term, (c) local variation term, (d) horizontal transport term at the TPV center from 0800 BJT 19 July to 0000 BJT 22 July 2013

    图  7  2013年7月19日08时至22日00时低涡中心的温度(彩色阴影,单位:°C)及位势高度(等值线,单位:gpm)纬向偏差的时间—高度剖面

    Figure  7.  Time–height section of zonal deviation of temperature (color shadings, units: °C) and geopotential height (contours, units: gpm) in the TPV center from 0800 BJT 19 July to 0000 BJT 22 July 2013

    图  8  2013年7月(a、b)低涡初生阶段(19日12时)、(c、d)发展阶段(20日20时)和(e、f)移出高原前阶段(21日20时)大气视热源Q1的整层积分(左)、视水汽汇Q2的整层积分(右)的水平分布(单位:W m−2

    Figure  8.  Horizonal distributions (units: W m−2) of the whole layer integral atmospheric apparent heat source (left) and apparent moisture sink (right) in (a, d) the initial (1200 BJT 19 July), (b, e) development (2000 BJT 20 July), and (c, f) moving-out stages (2000 BJT 21 July) in 2013

    图  9  2013年7月19日08时至22日00时低涡中心周围2°×2°区域平均地表感热通量(黑色点线,单位:W m−2)及地表潜热通量(蓝色点线,单位:W m−2)的时间序列

    Figure  9.  Time series of surface sensible heat flux (black dot line, units: W m−2) and latent heat flux (blue dot line, units: W m−2) averaged over the 2°×2° grid surrounding the TPV center from 0800 BJT 19 July to 0000 BJT 22 July 2013

    表  1  2013年7月19日至21日高原低涡不同阶段低涡中心特征量

    Table  1.   Characteristics quantities of TPV at different stages from 19 to 21 July 2013

    高原低涡阶段代表时次位置500 hPaTBB/°C半径/km
    位势高度/gpm相对涡度/10−5 s−1垂直速度/Pa s−1
    初生阶段19日12时(31°N,84°E) 57090.20.11270
    发展阶段20日20时(32°N,91°E) 56989.4−0.3−28546
    移出高原前阶段21日20时(35°N,105°E) 56854.9−0.4−31163
    下载: 导出CSV

    表  2  2013年7月19日至21日不同阶段的高原低涡中心整层积分的大气视热源$ \left\langle {{Q_1}} \right\rangle {\text{ }} $、视水汽汇$ \left\langle {{Q_2}} \right\rangle $的强度及其分量的占比Table 2 Intensity (units: W m−2) of the whole layer integral atmospheric apparent heat source $ \left\langle {{Q_1}} \right\rangle {\text{ }} $, apparent moisture sink $ \left\langle {{Q_2}} \right\rangle $ and proportion of its components at different stages of the TPV center from 19 to 21 July 2013

    $ \left\langle {{Q_1}} \right\rangle {\text{ }} $/W m−2$ \left\langle {{Q_2}} \right\rangle $/W m−2(S+LE)/$ \left\langle {{Q_1}} \right\rangle {\text{ }} $$ \left\langle {{Q_2}} \right\rangle $/$ \left\langle {{Q_1}} \right\rangle {\text{ }} $
    初生阶段45816954%37%
    发展阶段85766720%78%
    移出高原前阶段104086419%83%
    下载: 导出CSV
  • [1] Dell’ Osso L, Chen S J. 1986. Numerical experiments on the genesis of vortices over the Qinghai–Tibet Plateau [J]. Tellus A:Dynamic Meteorology and Oceanography, 38(3): 236−250. doi: 10.3402/tellusa.v38i3.11715
    [2] 丁一汇. 1993.1991年江淮流域持续性特大暴雨研究[M]. 北京: 气象出版社, 113–128

    Ding Yihui. 1993. Study on Persistent Torrential Rain in Jianghuai River Basin in 1991 (in Chinese) [M]. Beijing: China Meteorological Press, 113–128.
    [3] 董元昌, 李国平. 2014. 凝结潜热在高原涡东移发展不同阶段作用的初步研究 [J]. 成都信息工程学院学报, 29(4): 400−407. doi: 10.16836/j.cnki.jcuit.2014.04.013

    Dong Yuanchang, Li Guoping. 2014. A preliminary study on the role played by latent heating during the different periods of the Tibetan Plateau vortex’s eastward movement and development [J]. Journal of Chengdu University of Information Technology (in Chinese), 29(4): 400−407. doi: 10.16836/j.cnki.jcuit.2014.04.013
    [4] 董元昌, 李国平. 2015. 大气能量学揭示的高原低涡个例结构及降水特征 [J]. 大气科学, 39(6): 1136−1148. doi: 10.3878/j.issn.1006-9895.1502.14263

    Dong Yuanchang, Li Guoping. 2015. The structure and precipitation characteristics of typical Tibetan Plateau vortices as revealed by energy analysis [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(6): 1136−1148. doi: 10.3878/j.issn.1006-9895.1502.14263
    [5] Feng X Y, Liu C H, Rasmussen R, et al. 2014. A 10-yr climatology of Tibetan Plateau vortices with NCEP climate forecast system reanalysis [J]. J. Appl. Meteor. Climatol., 53(1): 34−46. doi: 10.1175/JAMC-D-13-014.1
    [6] 干全. 2019. 2013年7月21~22日陕西省大暴雨天气诊断分析 [J]. 成都信息工程大学学报, 34(1): 77−82. doi: 10.16836/j.cnki.jcuit.2019.01.015

    Gan Quan. 2019. The heavy rainfall event over Shanxi during 21–22th July 2013 [J]. Journal of Chengdu University of Information Technology (in Chinese), 34(1): 77−82. doi: 10.16836/j.cnki.jcuit.2019.01.015
    [7] 何光碧, 高文良, 屠妮妮. 2009. 两次高原低涡东移特征及发展机制动力诊断 [J]. 气象学报, 67(4): 599−612. doi: 10.11676/qxxb2009.060

    He Guangbi, Gao Wenliang, Tu Nini. 2009. The dynamic diagnosis on eastwards moving characteristics and developing mechanism of two Tibetan Plateau vortex processes [J]. Acta Meteor. Sinica (in Chinese), 67(4): 599−612. doi: 10.11676/qxxb2009.060
    [8] Hersbach H, Bell B, Berrisford P, et al. 2020. The ERA5 global reanalysis [J]. Quart. J. Roy. Meteor. Soc., 146(730): 1999−2049. doi: 10.1002/qj.3803
    [9] Hoskins B. 2015. Potential vorticity and the PV perspective [J]. Adv. Atmos. Sci., 32(1): 2−9. doi: 10.1007/s00376-014-0007-8
    [10] Hoskins B J, McIntyre M E, Robertson A W. 1985. On the use and significance of isentropic potential vorticity maps [J]. Quart. J. Roy. Meteor. Soc., 111(470): 877−946. doi: 10.1002/qj.49711147002
    [11] 李国平, 赵邦杰, 杨锦青. 2002. 地面感热对青藏高原低涡流场结构及发展的作用 [J]. 大气科学, 26(4): 519−525. doi: 10.3878/j.issn.1006-9895.2002.04.09

    Li Guoping, Zhao Bangjie, Yang Jinqing. 2002. A dynamical study of the role of surface sensible heating in the structure and intensification of the Tibetan Plateau vortices [J]. Chinese J. Atmos. Sci. (in Chinese), 26(4): 519−525. doi: 10.3878/j.issn.1006-9895.2002.04.09
    [12] Li L, Zhang R H, Wen M, et al. 2014. Effect of the atmospheric heat source on the development and eastward movement of the Tibetan Plateau vortices [J]. Tellus A: Dynamic Meteorology and Oceanography, 66(1): 24451. doi: 10.3402/tellusa.v66.24451
    [13] Li L, Zhang R H, Wu P L, et al. 2020. Characteristics of convections associated with the Tibetan Plateau vortices based on geostationary satellite data [J]. International Journal of Climatology, 40(11): 4876−4887. doi: 10.1002/joc.6494
    [14] Lin Z Q, Guo W D, Jia L, et al. 2020. Climatology of Tibetan Plateau vortices derived from multiple reanalysis datasets [J]. Climate Dyn., 55(7): 2237−2252. doi: 10.1007/s00382-020-05380-6
    [15] 刘晓冉, 李国平. 2006. 青藏高原低涡研究的回顾与展望 [J]. 干旱气象, 24(1): 60−66. doi: 10.3969/j.issn.1006-7639.2006.01.013

    Liu Xiaoran, Li Guoping. 2006. Review and prospect of research on the Tibetan Plateau vortex [J]. J. Arid Meteor. (in Chinese), 24(1): 60−66. doi: 10.3969/j.issn.1006-7639.2006.01.013
    [16] 刘云丰, 李国平. 2016. 夏季高原大气热源的气候特征以及与高原低涡生成的关系 [J]. 大气科学, 40(4): 864−876. doi: 10.3878/j.issn.1006-9895.1512.15184

    Liu Yunfeng, Li Guoping. 2016. Climatic characteristics of atmospheric heat source over the Tibetan Plateau and its possible relationship with the generation of the Tibetan Plateau vortex in the summer [J]. Chinese J. Atmos. Sci. (in Chinese), 40(4): 864−876. doi: 10.3878/j.issn.1006-9895.1512.15184
    [17] Luo H B, Yanai M. 1984. The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part Ⅱ: Heat and Moisture Budgets [J]. Mon. Wea. Rev., 112(5): 966−989. doi: 10.1175/1520-0493(1984)112<0966:TLSCAH>2.0.CO;2
    [18] 罗四维, 杨洋. 1992. 一次青藏高原夏季低涡的数值模拟研究 [J]. 高原气象, 11(1): 39−48.

    Luo Siwei, Yang Yang. 1992. A case study on numerical simulation of summer vortex over Qinghai–Xizang (Tibetan) Plateau [J]. Plateau Meteor. (in Chinese), 11(1): 39−48.
    [19] 马婷, 刘屹岷, 吴国雄, 等. 2020. 青藏高原低涡形成、发展和东移影响下游暴雨天气个例的位涡分析 [J]. 大气科学, 44(3): 472−486. doi: 10.3878/j.issn.1006-9895.1904.18275

    Ma Ting, Liu Yimin, Wu Guoxiong, et al. 2020. Effect of potential vorticity on the formation, development, and eastward movement of a Tibetan Plateau vortex and its influence on downstream precipitation [J]. Chinese J. Atmos. Sci. (in Chinese), 44(3): 472−486. doi: 10.3878/j.issn.1006-9895.1904.18275
    [20] 彭广, 李跃清, 郁淑华, 等. 2015. 青藏高原低涡切变线年鉴 (2013) [M]. 北京: 科学出版社.

    Peng Guang, Li Yueqing, Yu Shuhua, et al. 2015. Tibetan Plateau Vortex and Shear Line Yearbook (2013) [M]. Beijing: China Science Press.
    [21] 青藏高原低值系统协作组. 1978. 盛夏青藏高原低涡发生发展的初步研究 [J]. 中国科学(3): 341−350.

    Qinghai–Tibet Plateau Low Value System Cooperation Group. 1978. Preliminary study on the occurrence and development of low vortex in Qinghai–Tibetan Plateau in midsummer [J]. Science China (in Chinese)(3): 341−350.
    [22] 宋雯雯, 李国平, 唐钱奎. 2012. 加热和水汽对两例高原低涡影响的数值试验 [J]. 大气科学, 36(1): 117−129. doi: 10.3878/j.issn.1006-9895.2012.01.10

    Song Wenwen, Li Guoping, Tang Qiankui. 2012. Numerical simulation of the effect of heating and water vapor on two cases of Plateau vortex [J]. Chinese J. Atmos. Sci. (in Chinese), 36(1): 117−129. doi: 10.3878/j.issn.1006-9895.2012.01.10
    [23] 田珊儒, 段安民, 王子谦, 等. 2015. 地面加热与高原低涡和对流系统相互作用的一次个例研究 [J]. 大气科学, 39(1): 125−136. doi: 10.3878/j.issn.1006-9895.1404.13311

    Tian Shanru, Duan Anmin, Wang Ziqian, et al. 2015. Interaction of surface heating, the Tibetan Plateau vortex, and a convective system: A case study [J]. Chinese J. Atmos. Sci. (in Chinese), 39(1): 125−136. doi: 10.3878/j.issn.1006-9895.1404.13311
    [24] 王鑫, 李跃清, 郁淑华, 等. 2009. 青藏高原低涡活动的统计研究 [J]. 高原气象, 28(1): 64−71.

    Wang Xin, Li Yueqing, Yu Shuhua, et al. 2009. Statistical study on the plateau low vortex activities [J]. Plateau Meteor. (in Chinese), 28(1): 64−71.
    [25] Wu D, Zhang F M, Wang C H. 2018. Impacts of diabatic heating on the genesis and development of an inner Tibetan Plateau vortex [J]. J. Geophys. Res.: Atmos., 123(20): 11691−11704. doi: 10.1029/2018JD029240
    [26] 吴国雄, 刘屹岷, 刘新, 等. 2005. 青藏高原加热如何影响亚洲夏季的气候格局 [J]. 大气科学, 29(1): 47−56. doi: 10.3878/j.issn.1006-9895.2005.01.06

    Wu Guoxiong, Liu Yimin, Liu Xin, et al. 2005. How the heating over the Tibetan Plateau affects the Asian climate in summer [J]. Chinese J. Atmos. Sci. (in Chinese), 29(1): 47−56. doi: 10.3878/j.issn.1006-9895.2005.01.06
    [27] 吴国雄, 刘屹岷, 何编, 等. 2018. 青藏高原感热气泵影响亚洲夏季风的机制 [J]. 大气科学, 42(3): 488−504. doi: 10.3878/j.issn.1006-9895.1801.17279

    Wu Guoxiong, Liu Yimin, He Bian, et al. 2018. Review of the impact of the Tibetan Plateau sensible heat driven air-pump on the Asian summer monsoon [J]. Chinese J. Atmos. Sci. (in Chinese), 42(3): 488−504. doi: 10.3878/j.issn.1006-9895.1801.17279
    [28] 许威杰, 张耀存. 2017. 凝结潜热加热与对流反馈对一次高原低涡过程影响的数值模拟 [J]. 高原气象, 36(3): 763−775. doi: 10.7522/j.issn.1000-0534.2016.00061

    Xu Weijie, Zhang Yaocun. 2017. Numerical study on the feedback between latent heating and convection in a Qinghai–Tibetan Plateau vortex [J]. Plateau Meteor. (in Chinese), 36(3): 763−775. doi: 10.7522/j.issn.1000-0534.2016.00061
    [29] Yanai M, Esbensen S, Chu J H. 1973. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets [J]. J. Atmos. Sci., 30(4): 611−627. doi: 10.1175/1520-0469(1973)030<0611:dobpot>2.0.co;2
    [30] 杨克明, 毕宝贵, 李月安, 等. 2001. 1998年长江上游致洪暴雨的分析研究 [J]. 气象, 27(8): 9−14. doi: 10.7519/j.issn.1000-0526.2001.8.002

    Yang Keming, Bi Baogui, Li Yuean, et al. 2001. On flood-causing torrential rainfall in the upstream district of Changjiang River in 1998 [J]. Meteor. Mon. (in Chinese), 27(8): 9−14. doi: 10.7519/j.issn.1000-0526.2001.8.002
    [31] 杨颖璨, 李跃清, 陈永仁. 2018. 高原低涡东移加深过程的结构分析 [J]. 高原气象, 37(3): 702−720. doi: 10.7522/j.issn.1000-0534.2017.00054

    Yang Yingcan, Li Yueqing, Chen Yongren. 2018. The characteristic analysis of an eastwards plateau vortex by its strengthening process [J]. Plateau Meteor. (in Chinese), 37(3): 702−720. doi: 10.7522/j.issn.1000-0534.2017.00054
    [32] 叶笃正, 高由禧. 1979. 青藏高原气象学[M]. 北京: 科学出版社, 122–126

    Ye Duzhen, Gao Youxi, 1979. Meteorology of Qinghai–Tibet Plateau (in Chinese) [M]. Beijing: Science Press, 122–126.
    [33] 郁淑华, 高文良, 彭骏. 2012. 青藏高原低涡活动对降水影响的统计分析 [J]. 高原气象, 31(3): 592−604.

    Yu Shuhua, Gao Wenliang, Peng Jun. 2012. Statistical analysis on influence of Qinghai–Xizang Plateau vortex activity on precipitation in China [J]. Plateau Meteor. (in Chinese), 31(3): 592−604.
    [34] Zhang G S, Mao J Y, Liu Y M, et al. 2021. PV perspective of impacts on downstream extreme rainfall event of a Tibetan Plateau vortex collaborating with a southwest China vortex [J]. Adv. Atmos. Sci., 38(11): 1835−1851. doi: 10.1007/s00376-021-1027-9
    [35] 张顺利, 陶诗言, 张庆云, 等. 2001. 1998年夏季中国暴雨洪涝灾害的气象水文特征 [J]. 应用气象学报, 12(4): 442−457. doi: 10.3969/j.issn.1001-7313.2001.04.007

    Zhang Shunli, Tao Shiyan, Zhang Qingyun, et al. 2001. Meteorological and hydrological characteristics of severe flooding in China during the summer of 1998 [J]. Quart. J. Appl. Meteor. (in Chinese), 12(4): 442−457. doi: 10.3969/j.issn.1001-7313.2001.04.007
    [36] 赵平, 陈隆勋. 2001. 35年来青藏高原大气热源气候特征及其与中国降水的关系 [J]. 中国科学(D辑), 31(4): 327–332.

    Zhao Ping, Chen Longxun. 2001. Climatic features of atmospheric heat source/sink over the Qinghai–Xizang Plateau in 35 years and its relation to rainfall in China [J]. Science in China Series D: Earth Sciences, 44(9): 858–864. doi:10.3969/j.issn.1674-7240.2001.04.009
    [37] 郑永骏, 吴国雄, 刘屹岷. 2013. 涡旋发展和移动的动力和热力问题. I: PV–Q观点 [J]. 气象学报, 71(2): 185−197. doi: 10.11676/qxxb2013.018

    Zheng Yongjun, Wu Guoxiong, Liu Yimin. 2013. Dynamical and thermal problems in vortex development and movement. Part I: A PV–Q view [J]. Acta Meteor. Sinica (in Chinese), 71(2): 185−197. doi: 10.11676/qxxb2013.018
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  286
  • HTML全文浏览量:  83
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-21
  • 录用日期:  2022-11-25
  • 网络出版日期:  2022-10-04
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回