Pollution Characteristics and Source Analysis of Polycyclic Aromatic Hydrocarbons in the Atmosphere of Southeast Tibet
-
摘要: 为探究青藏高原东南部大气中多环芳烃(Polycyclic Aromatic Hydrocarbons,简称PAHs)的污染、源及输送特征,利用鲁朗地区(29.77°N,94.73°E)总悬浮颗粒物(Total Suspended Particles,简称TSP)和大气中的14种PAHs含量,结合同期气象环境数据进行了综合分析。结果表明,该地区TSP中PAHs和气相的PAHs质量浓度变化范围分别为0.22~5.05 ng m−3和0.83~63.75 ng m−3,平均值分别为2.13 ng m−3和11.33 ng m−3。薪柴和柴油的燃烧是污染的主要方式,汽油燃烧等其他排放为次要方式。PAHs来自本地污染和远距离传输(Long Range Transmission,简称LRT)共同的影响。本地污染在四季各个源地均不相同。冬春季本地污染大,源在东南及正南方,夏秋季受本地和外来输送共同作用,本地源在东南方且占比小,LRT占比大。LRT受西北气流、西风气流和西南气流三支气流影响,污染严重时西南气流占主导,西风气流次之,污染较轻时西风气流或西北气流占主导,西北气流所传输的污染最少。该研究结果加深了对藏东南区域PAHs变化、输送特征的认识,为该区域大气污染治理提供了理论依据。Abstract: To investigate the pollution, source, and transport characteristics of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere of the southeast of Tibetan Plateau, a comprehensive analysis was carried out using 14 different PAHs from the total suspended particulate (TSP) matter and the atmospheric gaseous state in the Lulang area (29.77°N, 94.73°E) and combined with meteorological environment data from the same period. The results show that the variation ranges of PAHs mass concentration in TSP and gas phase are 0.22–5.05 ng m−3 and 0.83–63.75 ng m−3, respectively, with average values of 2.13 ng m−3 and 11.33 ng m−3. The primary source of pollution is the combustion of firewood and diesel, while other sources of pollution include the combustion of gasoline. PAHs are emitted by both local pollution and long-range transmission (LRT). In the four seasons, local pollution varies from source to source. Local pollution is serious in the winter and spring, and the source is in the southeast and due south. Pollution in the summer and autumn is primarily caused by local and LRT sources. The primary local source is mainly in the southeast, but LRT is dominant. The northwest air flow, westerly airflow, and southwest air flow all have an impact on the LRT. When pollution is serious, the dominant airflow is southwest, while the secondary dominant airflow is westerly. When the pollution is light, the dominant airflow is westerly or northwest, and the pollution transmitted by the northwest airflow is the least. The results of this study have contributed to a better knowledge of the changes and transport characteristics of PAHs in Southeast Tibet and a theoretical basis for the control of air pollution in this region and the improvement of plateau air quality.
-
图 6 采样点的后向12天气团轨迹及频率(a)2009年10月26日、(b)2009年8月17日、(c)2010年9月13日、(d)2009年1月15日(填色表示频率大小,计算方式为通过经纬度网格(0.125°×0.125°)的每日两条轨迹数除以轨迹总数)
Figure 6. Track and frequency of backward 12 days air mass at sampling points (a) October 26, 2009, (b) August 17, 2009, (c) September 13, 2010, (d) January 15, 2009(The color filling indicates the frequency, and the calculation method is through the longitude and latitude grid (0.125°×0.125°) divided by the total number of tracks)
表 1 2008年11月至2011年9月不同季节总悬浮颗粒物(TSP)中PAHs质量浓度和质量分数
Table 1. Mass concentration and mass fraction of PAHs in TSP (Total Suspended Particulate matter) in different seasons from November 2008 to September 2011
多环芳烃(PAHs) 春季 夏季 秋季 冬季 质量浓度/pg m−3 质量分数 质量浓度/pg m−3 质量分数 质量浓度/pg m−3 质量分数 质量浓度/pg m−3 质量分数 苊烯(Acel) 4.12 0.19% 3 0.22% 6.18 0.22% 4.46 0.19% 苊(Ace) 8.33 0.38% 4.94 0.37% 12.02 0.43% 9.99 0.43% 菲(Phe) 419.24 19% 367.47 27.25% 701.82 25.05% 391.57 16.73% 蒽(Ant) 106.59 4.83% 64.4 4.78% 124.09 4.43% 64.79 2.77% 荧蒽(Fla) 164.53 7.46% 151.67 11.25% 320.73 11.45% 199.57 8.53% 芘(Pyr) 254.59 11.54% 180.93 13.41% 399.82 14.27% 298.14 12.74% 苯并(a)蒽(BaA) 111.35 5.05% 64.87 4.81% 150.55 5.37% 122.57 5.24% 䓛(Chr) 261.29 11.85% 180.07 13.35% 455 16.24% 360.5 15.41% 苯并(b)荧蒽(BbF) 166.88 7.57% 69 5.12% 119.45 4.2% 139.72 5.97% 苯并(k)荧蒽(BkF) 207.56 9.41% 82.93 6.15% 153.45 5.48% 221.71 9.47% 苯并(a)芘(BaP) 160.25 7.26% 53.2 3.95% 121 4.32% 186.64 7.98% 茚并(1,2,3-cd)芘(IcdP) 130.25 5.9% 49.07 3.64% 75.55 2.7% 108.79 4.65% 二苯并(a,h)蒽(DahA) 19.88 0.9% 7.33 0.54% 13.82 0.49% 15.43 0.66% 苯并(ghi)苝(BghiP) 191 8.66% 69.53 5.16% 148 5.28% 216.14 9.24% ∑PAHs 2205.85 100% 1348.4 100% 2801.47 100% 2340.03 100% 多环芳烃(PAHs) 春季 夏季 秋季 冬季 质量浓度/pg m−3 质量分数 质量浓度/pg m−3 质量分数 质量浓度/pg m−3 质量分数 质量浓度/pg m−3 质量分数 苊烯(Acel) 8.45 0.18% 2.36 0.03% 15.36 0.1% 53.62 1.39% 苊(Ace) 3.87 0.08% 1.65 0.02% 7 0.04% 4.28 0.11% 菲(Phe) 2343 48.57% 4404.33 61.13% 10329.23 64.17% 2019.06 52.26% 蒽(Ant) 607.44 12.59% 958.73 13.31% 2011.62 12.5% 318.28 8.24% 荧蒽(Fla) 869.25 18.02% 964.27 13.38% 1913.69 11.89% 647.06 16.75% 芘(Pyr) 686.25 14.23% 688.53 9.56% 1414.31 8.79% 591.22 15.3% 苯并(a)蒽(BaA) 51.88 1.08% 36.11 0.5% 63.92 0.4% 34 0.88% 䓛(Chr) 210.5 4.36% 127.2 1.77% 294.46 1.83% 153 3.965 苯并(b)荧蒽(BbF) 7.63 0.16% 3.12 0.04% 4.75 0.03% 3.13 0.08% 苯并(k)荧蒽(BkF) 12.13 0.25% 9.4 0.13% 15.97 0.1% 10.94 0.28% 苯并(a)芘(BaP) 11.56 0.24% 4.33 0.06% 10.99 0.07% 12.78 0.33% 茚并(1,2,3-cd)芘(IcdP) 2.75 0.06% 1 0.01% 7.6 0.05% 8.2 0.21% 二苯并(a,h)蒽(DahA) — 0 — 0 — 0 — 0 苯并(ghi)苝(BghiP) 9 0.19% 3.62 0.05% 7.57 0.05% 7.94 0.21% ∑PAHs 4823.71 100% 7204.66 100% 16096.47 100% 3863.5 100 表 3 PAHs各单体组分间特征比及污染源
Table 3. Characteristic ratio of the PAHs monomer components and pollution sources
源 各单体质量浓度比值 Ant/(Ant+Phe) BaA/(BaA+Chr) IcdP/(IcdP+BghiP) BaP/BghiP BaP/IcdP BaA/Chr BbF/BkF 木材 0.11~0.25
(李英红等,2015)0.41~0.57
(李英红等,2015)秸秆 0.12~0.24
(李英红等,2015)0.38~0.52
(李英红等,2015)焦化厂 0.42~0.62
(李英红等,2015)柴油燃烧 0.23~0.63
(李英红等,2015)0.3~0.4
(Bourotte et al., 2005)约1.0
(Menichini et al., 1999)0.2~0.4
(Simcik et al., 1999)>0.5
(Park et al., 2002)汽油燃烧 ~0.18
(Kavouras et al., 2001)0.5~0.6
(Bourotte et al., 2005)约0.4
(Menichini et al., 1999)0.3~1.2
(Simcik et al., 1999)1.1~1.5
(Dickhut et al., 2000)冶炼 0.9~6.6
(Akyüz and Çabuk,2008)1.0~1.2
(Gschwend and Hites,1981)3.5~3.9
(Masclet et al.,1987)煤炭 0.5~0.7
(Gschwend and Hites,1981)2.5~2.9
(Masclet et al.,1987)表 4 鲁朗地区冷暖季各单体组分间特征比及污染源
Table 4. Characteristic ratio of the PAHs monomer components and pollution sources during cold and warm season in Lulang
各单体质量浓度比值 Ant/(Ant+Phe) BaA/(BaA+Chr) IcdP/(IcdP+BghiP) BaP/BghiP BaP/IcdP BaA/Chr BbF/BkF 粒相冷季 0.16 0.27 0.37 0.85 1.44 0.37 0.72 粒相暖季 0.15 0.25 0.36 0.81 1.36 0.34 0.77 气相冷季 0.17 0.19 0.4 1.45 2.11 0.24 0.5 气相暖季 0.17 0.19 0.51 1.34 1.30 0.24 0.31 -
[1] Agarwal T. 2009. Concentration level, pattern and toxic potential of PAHs in traffic soil of Delhi, India [J]. Journal of Hazardous Materials, 171(1–3): 894–900. doi:10.1016/j.jhazmat.2009.06.081 [2] Akyüz M, Çabuk H. 2008. Particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey [J]. Science of the Total Environment, 405(1–3): 62–70. doi:10.1016/j.scitotenv.2008.07.026 [3] Ali-Taleshi M S, Moeinaddini M, Bakhtiari A R, et al. 2021. A one-year monitoring of spatiotemporal variations of PM2.5-bound PAHs in Tehran, Iran: Source apportionment, local and regional sources origins and source-specific cancer risk assessment [J]. Environmental Pollution, 274: 115883. doi: 10.1016/j.envpol.2020.115883 [4] Aulagnier F, Poissant L. 2005. Some pesticides occurrence in air and precipitation in Québec, Canada [J]. Environ. Sci. Technol., 39(9): 2960−2967. doi: 10.1021/es048361s [5] Bi X, Luo W, Gao J J, et al. 2016. Polycyclic aromatic hydrocarbons in soils from the central-Himalaya region: Distribution, sources, and risks to humans and wildlife [J]. Science of the Total Environment, 556: 12−22. doi: 10.1016/j.scitotenv.2016.03.006 [6] Bourotte C, Forti M C, Taniguchi S, et al. 2005. A wintertime study of PAHs in fine and coarse aerosols in São Paulo city, Brazil [J]. Atmos. Environ., 39(21): 3799−3811. doi: 10.1016/j.atmosenv.2005.02.054 [7] 曹蓉, 张海军, 耿柠波, 等. 2019. 雾霾期北京大气中多环芳烃污染特征及暴露风险评估 [J]. 生态毒理学报, 14(5): 114−122. doi: 10.7524/AJE.1673-5897.20180601001Cao Rong, Zhang Haijun, Geng Ningbo, et al. 2019. Haze influenced the concentration, profile and human exposure effects of atmospheric PAHs in urban area of Beijing [J]. Asian Journal of Ecotoxicology (in Chinese), 14(5): 114−122. doi: 10.7524/AJE.1673-5897.20180601001 [8] Chen Y, Cao J J, Zhao J, et al. 2014. n-Alkanes and polycyclic aromatic hydrocarbons in total suspended particulates from the southeastern Tibetan Plateau: Concentrations, seasonal variations, and sources [J]. Science of the Total Environment, 470–471: 9–18. doi:10.1016/j.scitotenv.2013.09.033 [9] Clergé A, Le Goff J, Lopez C, et al. 2019. Oxy-PAHs: Occurrence in the environment and potential genotoxic/mutagenic risk assessment for human health [J]. Critical Reviews in Toxicology, 49(4): 302−328. doi: 10.1080/10408444.2019.1605333 [10] Cong Z Y, Kang S C, Liu X D, et al. 2007. Elemental composition of aerosol in the Nam Co region, Tibetan Plateau, during summer monsoon season [J]. Atmos. Environ., 41(6): 1180−1187. doi: 10.1016/j.atmosenv.2006.09.046 [11] Dickhut R M, Canuel E A, Gustafson K E, et al. 2000. Automotive sources of carcinogenic polycyclic aromatic hydrocarbons associated with particulate matter in the Chesapeake Bay region [J]. Environ. Sci. Technol., 34(21): 4635−4640. doi: 10.1021/es000971e [12] Ding K, Liu J, Ding A, et al. 2015. Uplifting of carbon monoxide from biomass burning and anthropogenic sources to the free troposphere in East Asia [J]. Atmospheric Chemistry and Physics, 15(5): 2843−2866. doi: 10.5194/acp-15-2843-2015 [13] Ding Y, Huang H F, Chen W, et al. 2022. Background levels of OCPs, PCBs, and PAHs in soils from the eastern Pamirs, China, an alpine region influenced by westerly atmospheric transport [J]. Journal of Environmental Sciences, 115: 453−464. doi: 10.1016/j.jes.2020.11.022 [14] 丁一汇, 张莉. 2008. 青藏高原与中国其他地区气候突变时间的比较 [J]. 大气科学, 32(4): 794−805. doi: 10.3878/j.issn.1006-9895.2008.04.08Ding Yihui, Zhang Li. 2008. Intercomparison of the time for climate abrupt change between the Tibetan Plateau and other regions in China [J]. Chinese Journal of Atmospheric Sciences, 32(4): 794−805. doi: 10.3878/j.issn.1006-9895.2008.04.08 [15] Gong P, Wang X P. 2021. Forest fires enhance the emission and transport of persistent organic pollutants and polycyclic aromatic hydrocarbons from the Central Himalaya to the Tibetan Plateau [J]. Environmental Science & Technology Letters, 8(7): 498−503. doi: 10.1021/acs.estlett.1c00221 [16] Gong P, Wang X P, Yao T D. 2011. Ambient distribution of particulate-and gas–phase n-alkanes and polycyclic aromatic hydrocarbons in the Tibetan Plateau [J]. Environmental Earth Sciences, 64(7): 1703−1711. doi: 10.1007/s12665-011-0974-3 [17] Grote M, Schüürmann G, Altenburger R. 2005. Modeling photoinduced algal toxicity of polycyclic aromatic hydrocarbons [J]. Environ. Sci. Technol., 39(11): 4141−4149. doi: 10.1021/es048310v [18] Gschwend P M, Hites R A. 1981. Fluxes of polycyclic aromatic hydrocarbons to marine and lacustrine sediments in the northeastern United States [J]. Geochimica et Cosmochimica Acta, 45(12): 2359−2367. doi: 10.1016/0016-7037(81)90089-2 [19] Guillon A, Le Ménach K, Flaud P M, et al. 2013. Chemical characterization and stable carbon isotopic composition of particulate Polycyclic Aromatic Hydrocarbons issued from combustion of 10 Mediterranean woods [J]. Atmospheric Chemistry and Physics, 13(5): 2703−2719. doi: 10.5194/acp-13-2703-2013 [20] Halsall C J, Sweetman A J, Barrie L A, et al. 2001. Modelling the behaviour of PAHs during atmospheric transport from the UK to the Arctic [J]. Atmos. Environ., 35(2): 255−267. doi: 10.1016/S1352-2310(00)00195-3 [21] Harner T, Bidleman T F. 1998. Octanol−air partition coefficient for describing particle/gas partitioning of aromatic compounds in urban air [J]. Environ. Sci. Technol., 32(10): 1494−1502. doi: 10.1021/es970890r [22] Harner T, Shoeib M, Diamond M, et al. 2004. Using passive air samplers to assess urban−rural trends for persistent organic pollutants. 1. Polychlorinated biphenyls and organochlorine pesticides [J]. Environ. Sci. Technol., 38(17): 4474−4483. doi: 10.1021/es040302r [23] Harner T, Su K, Genualdi S, et al. 2013. Calibration and application of PUF disk passive air samplers for tracking polycyclic aromatic compounds (PACs) [J]. Atmospheric Environment, 75: 123−128. doi: 10.1016/j.atmosenv.2013.04.012 [24] Harrison R M, Smith D J T, Luhana L. 1996. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, U. K. [J]. Environ. Sci. Technol., 30(3): 825−832. doi: 10.1021/es950252d [25] He Q S, Zhang G X, Yan Y L, et al. 2015. Effect of input pathways and altitudes on spatial distribution of polycyclic aromatic hydrocarbons in background soils, the Tibetan Plateau [J]. Environmental Science and Pollution Research, 22(14): 10890−10901. doi: 10.1007/s11356-015-4283-3 [26] Hong W J, Li Y F, Li W L, et al. 2020. Soil concentrations and soil-air exchange of polycyclic aromatic hydrocarbons in five Asian countries [J]. Science of the Total Environment, 711: 135223. doi: 10.1016/j.scitotenv.2019.135223 [27] Hong Y W, Xu X B, Liao D, et al. 2021. Air pollution increases human health risks of PM2.5-bound PAHs and nitro-PAHs in the Yangtze River Delta, China [J]. Science of the Total Environment, 770: 145402. doi: 10.1016/j.scitotenv.2021.145402 [28] 黄荣辉, 蔡榕硕, 陈际龙, 等. 2006. 我国旱涝气候灾害的年代际变化及其与东亚气候系统变化的关系 [J]. 大气科学, 30(5): 730−743. doi: 10.3878/j.issn.1006-9895.2006.05.02Huang Ronghui, Cai Rongshuo, Chen Jilong, et al. 2006. Interdecaldal variations of drought and flooding disasters in China and their association with the East Asian climate system [J]. Chinese Journal of Atmospheric Sciences, 30(5): 730−743. doi: 10.3878/j.issn.1006-9895.2006.05.02 [29] 姜大膀, 王会军, 郎咸梅. 2004. 关于末次盛冰期青藏高原大范围冰盖存在可能性的再研究 [J]. 大气科学, 28(1): 1−6. doi: 10.3878/j.issn.1006-9895.2004.01.01Jiang Dabang, Wang Huijun, Lang Xianmei. 2004. On the possibility of ice sheet over the Tibetan Plateau at the last glacial maximum [J]. Chinese Journal of Atmospheric Sciences, 28(1): 1−6. doi: 10.3878/j.issn.1006-9895.2004.01.01 [30] 康世昌, 张玉兰, 张强弓. 2020. 探索地球之巅: 60年来珠峰气候环境变化 [J]. 自然杂志, 42(5): 355−363. doi: 10.3969/j.issn.0253-9608.2020.05.001Kang Shichang, Zhang Yulan, Zhang Qianggong. 2020. To the top of the Earth: Climate and environmental changes in Mt. Qomolangma region during past 60 years [J]. Chinese Journal of Nature (in Chinese), 42(5): 355−363. doi: 10.3969/j.issn.0253-9608.2020.05.001 [31] 康世昌, 丛志远, 王小萍, 等. 2019. 大气污染物跨境传输及其对青藏高原环境影响 [J]. 科学通报, 64(27): 2876−2884. doi: 10.1360/TB-2019-0135Kang Shichang, Cong Zhiyuan, Wang Xiaoping, et al. 2019. The transboundary transport of air pollutants and their environmental impacts on Tibetan Plateau [J]. Chinese Science Bulletin (in Chinese), 64(27): 2876−2884. doi: 10.1360/TB-2019-0135 [32] Kavouras I G, Koutrakis P, Tsapakis M, et al. 2001. Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods [J]. Environ. Sci. Technol., 35(11): 2288−2294. doi: 10.1021/es001540z [33] Kim K H, Jahan S A, Kabir E, et al. 2013. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects [J]. Environment International, 60: 71−80. doi: 10.1016/j.envint.2013.07.019 [34] 李英红, 谭吉华, 段菁春, 等. 2015. 中国主要排放源颗粒相多环芳烃的成分谱特征 [J]. 环境科学与技术, 38(6): 58−69. doi: 10.3969/j.issn.1003-6504.2015.06.010Li Yinghong, Tan Jihua, Duan Jingchun, et al. 2015. Characteristic of particle-PAHs source profile in China [J]. Environmental Science & Technology (in Chinese), 38(6): 58−69. doi: 10.3969/j.issn.1003-6504.2015.06.010 [35] Liang Q, Jaeglé L, Jaffe D A, et al. 2004. Long-range transport of Asian pollution to the northeast Pacific: Seasonal variations and transport pathways of carbon monoxide [J]. J. Geophys. Res.: Atmos., 109(D23): D23S07. doi: 10.1029/2003JD004402 [36] Lin H, Wang X P, Gong P, et al. 2017. The influence of climate change on the accumulation of polycyclic aromatic hydrocarbons, black carbon and mercury in a shrinking remote lake of the southern Tibetan Plateau [J]. Science of the Total Environment, 601–602: 1814–1823. doi:10.1016/j.scitotenv.2017.06.038 [37] Liu J W, Li J, Lin T, et al. 2013. Diurnal and nocturnal variations of PAHs in the Lhasa atmosphere, Tibetan Plateau: Implication for local sources and the impact of atmospheric degradation processing [J]. Atmospheric Research, 124: 34−43. doi: 10.1016/j.atmosres.2012.12.016 [38] Liu L Y, Wang J Z, Wei G L, et al. 2012. Sediment records of polycyclic aromatic hydrocarbons (PAHs) in the continental shelf of China: Implications for evolving anthropogenic impacts [J]. Environ. Sci. Technol., 46(12): 6497−6504. doi: 10.1021/es300474z [39] Lohmann R, Breivik K, Dachs J, et al. 2007. Global fate of POPs: Current and future research directions [J]. Environmental Pollution, 150(1): 150−165. doi: 10.1016/j.envpol.2007.06.051 [40] Lu X M, Liang E Y, Wang Y F, et al. 2019. Past the climate optimum: Recruitment is declining at the world's highest juniper shrublines on the Tibetan Plateau [J]. Ecology, 100(2): e02557. doi: 10.1002/ecy.2557 [41] 罗东霞, 张淑娟, 杨瑞强. 2016. 藏东南色季拉山土壤中有机氯农药和多环芳烃的浓度分布及来源解析 [J]. 环境科学, 37(7): 2745−2755. doi: 10.13227/j.hjkx.2016.07.043Luo Dongxia, Zhang Shujuan, Yang Ruiqiang. 2016. Distribution and source analysis of Polycyclic Aromatic Hydrocarbons (PAHs) and Organochlorine Pesticides (OCPs) in soils from Shergyla Mountain, Southeast Tibetan Plateau [J]. Environmental Science (in Chinese), 37(7): 2745−2755. doi: 10.13227/j.hjkx.2016.07.043 [42] Ma J M, Hung H, Tian C G, et al. 2011. Revolatilization of persistent organic pollutants in the Arctic induced by climate change [J]. Nature Climate Change, 1(5): 255−260. doi: 10.1038/nclimate1167 [43] Ma W L, Qi H, Baidron S, et al. 2013. Implications for long-range atmospheric transport of polycyclic aromatic hydrocarbons in Lhasa, China [J]. Environmental Science and Pollution Research, 20(8): 5525−5533. doi: 10.1007/s11356-013-1577-1 [44] Masclet P, Bresson M A, Mouvier G. 1987. Polycyclic aromatic hydrocarbons emitted by power stations, and influence of combustion conditions [J]. Fuel, 66(4): 556−562. doi: 10.1016/0016-2361(87)90163-3 [45] Menichini E, Monfredini F, Merli F. 1999. The temporal variability of the profile of carcinogenic polycyclic aromatic hydrocarbons in urban air: A study in a medium traffic area in Rome, 1993–1998 [J]. Atmos. Environ., 33(23): 3739−3750. doi: 10.1016/S1352-2310(99)00114-4 [46] Menzie C A, Potocki B B, Santodonato J. 1992. Exposure to carcinogenic PAHs in the environment [J]. Environ. Sci. Technol., 26(7): 1278−1284. doi: 10.1021/es00031a002 [47] Nadal M, Wargent J J, Jones K C, et al. 2006. Influence of UV-B radiation and temperature on photodegradation of PAHs: Preliminary results [J]. Journal of Atmospheric Chemistry, 55(3): 241−252. doi: 10.1007/s10874-006-9037-7 [48] Park S S, Kim Y J, Kang C H. 2002. Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea [J]. Atmos. Environ., 36(17): 2917−2924. doi: 10.1016/S1352-2310(02)00206-6 [49] Pokhrel B, Gong P, Wang X P, et al. 2018. Distribution, sources, and air–soil exchange of OCPs, PCBs and PAHs in urban soils of Nepal [J]. Chemosphere, 200: 532−541. doi: 10.1016/j.chemosphere.2018.01.119 [50] Ravindra K, Sokhi R, Van Grieken R. 2008. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation [J]. Atmos. Environ., 42(13): 2895−2921. doi: 10.1016/j.atmosenv.2007.12.010 [51] Rolph G, Stein A, Stunder B. 2017. Real-time environmental applications and display system: READY [J]. Environmental Modelling & Software, 95: 210−228. doi: 10.1016/j.envsoft.2017.06.025 [52] Shen G F, Tao S, Wei S Y, et al. 2012. Emissions of parent, nitro, and oxygenated polycyclic aromatic hydrocarbons from residential wood combustion in rural China [J]. Environ. Sci. Technol., 46(15): 8123−8130. doi: 10.1021/es301146v [53] Sheng J J, Wang X P, Gong P, et al. 2013. Monsoon-driven transport of organochlorine pesticides and polychlorinated biphenyls to the Tibetan Plateau: Three year atmospheric monitoring study [J]. Environ. Sci. Technol., 47(7): 3199−3208. doi: 10.1021/es305201s [54] Simcik M F, Eisenreich S J, Lioy P J. 1999. Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan [J]. Atmos. Environ., 33(30): 5071−5079. doi: 10.1016/S1352-2310(99)00233-2 [55] Stein A F, Draxler R R, Rolph G D, et al. 2015. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system [J]. Bull. Amer. Meteor. Soc., 96(12): 2059−2077. doi: 10.1175/BAMS-D-14-00110.1 [56] 唐志刚, 刘喆, 李韵谱, 等. 2022. 2016年北京市某城区采暖季PM2.5中PAHs的污染特征及来源分析 [J]. 环境卫生学杂志, 12(2): 87−94. doi: 10.13421/j.cnki.hjwsxzz.2022.02.003Tang Zhigang, Liu Zhe, Li Yunpu, et al. 2022. Pollution characteristics and sources of PM2.5-bound polycyclic aromatic hydrocarbons during heating season in a district of Beijing, China, 2016 [J]. Journal of Environmental Hygiene (in Chinese), 12(2): 87−94. doi: 10.13421/j.cnki.hjwsxzz.2022.02.003 [57] Tao S, Wang W T, Liu W X, et al. 2011. Polycyclic aromatic hydrocarbons and organochlorine pesticides in surface soils from the Qinghai–Tibetan plateau [J]. Journal of Environmental Monitoring, 13(1): 175−181. doi: 10.1039/c0em00298d [58] von Waldow H, MacLeod M, Jones K, et al. 2010. Remoteness from emission sources explains the fractionation pattern of polychlorinated biphenyls in the Northern Hemisphere [J]. Environ. Sci. Technol., 44(16): 6183−6188. doi: 10.1021/es101291q [59] Wang C F, Wang X P, Gong P, et al. 2014. Polycyclic aromatic hydrocarbons in surface soil across the Tibetan Plateau: Spatial distribution, source and air–soil exchange [J]. Environmental Pollution, 184: 138−144. doi: 10.1016/j.envpol.2013.08.029 [60] 王同美, 吴国雄, 万日金. 2008. 青藏高原的热力和动力作用对亚洲季风区环流的影响 [J]. 高原气象, 27(1): 1−9.Wang Tongmei, Wu Guoxiong, Wan Rijin. 2008. Influence of the mechanical and thermal forcing of Tibetan Plateau on the circulation of the Asian summer monsoon area [J]. Plateau Meteorology (in Chinese), 27(1): 1−9. [61] Wang X P, Xu B Q, Kang S C, et al. 2008. The historical residue trends of DDT, hexachlorocyclohexanes and polycyclic aromatic hydrocarbons in an ice core from Mt. Everest, central Himalayas, China [J]. Atmos. Environ., 42(27): 6699−6709. doi: 10.1016/j.atmosenv.2008.04.035 [62] Wang X P, Gong P, Sheng J J, et al. 2015. Long-range atmospheric transport of particulate Polycyclic Aromatic Hydrocarbons and the incursion of aerosols to the southeast Tibetan Plateau [J]. Atmos. Environ., 115: 124−131. doi: 10.1016/j.atmosenv.2015.04.050 [63] 吴国雄, 刘屹岷, 刘新, 等. 2005. 青藏高原加热如何影响亚洲夏季的气候格局 [J]. 大气科学, 29(1): 47−56. doi: 10.3878/j.issn.1006-9895.2005.01.06Wu Guoxiong, Li Yimin, Liu Xin, et al. 2005. How the heating over the Tibetan Plateau affects the Asian climate in summer [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 29(1): 47−56. doi: 10.3878/j.issn.1006-9895.2005.01.06 [64] Wu X M, Sun W J, Huai B J, et al. 2023. Seasonal variation and sources of atmospheric polycyclic aromatic hydrocarbons in a background site on the Tibetan Plateau [J]. Journal of Environmental Sciences, 125: 524−532. doi: 10.1016/j.jes.2022.02.042 [65] Yuan G L, Wu L J, Sun Y, et al. 2015. Polycyclic aromatic hydrocarbons in soils of the central Tibetan Plateau, China: Distribution, sources, transport and contribution in global cycling [J]. Environmental Pollution, 203: 137−144. doi: 10.1016/j.envpol.2015.04.002 [66] Zhang R X, Wang Y H, He Q S, et al. 2017. Enhanced trans-Himalaya pollution transport to the Tibetan Plateau by cut-off low systems [J]. Atmospheric Chemistry and Physics, 17(4): 3083−3095. doi: 10.5194/acp-17-3083-2017 [67] Zhu N L, Schramm K W, Wang T, et al. 2014. Environmental fate and behavior of persistent organic pollutants in Shergyla Mountain, southeast of the Tibetan Plateau of China [J]. Environmental Pollution, 191: 166−174. doi: 10.1016/j.envpol.2014.04.031 -