Research Directions and Keywords under the Secondary Application Codes of the Atmospheric Sciences Discipline of the National Natural Science Foundation of China: D0504 Atmospheric Dynamics
-
摘要: 2019年以来,大气学科作为试点率先开展了国家自然科学基金委员会推动的项目分类评审改革和学科资助布局优化,通过战略研究与研讨形成了以“分支学科”“支撑技术”和“发展领域”三大类、共15个二级申请代码为主要架构的学科资助体系,并对各二级申请代码的下设研究方向和关键词进行了系统梳理和分析,经过三年实施和不断优化形成了当前的版本。“D0504大气动力学”二级申请代码在此次改革中的名称保持不变,但内涵和范畴有一定变化,主要表现为随着学科的进步,传统“动力学”与“物理过程”之间的界限正在变得模糊且发生变化,大气动力学的内涵也相应地扩展到许多以往被认为是“物理过程”的领域;同时,大气动力学的研究范畴也正从单纯的研究大气自身的动力学问题扩展到研究大气与其他圈层相互作用中的动学问题,其研究手段也从以实验研究、理论分析和简化模型模拟为主转向实验研究、事实分析、理论分析和不同复杂程度模型模拟的紧密结合。为了服务基金项目申请和评审,推动学科进一步发展,本文针对调整后的“D0504大气动力学”二级申请代码,对其含义、范畴、研究方向和关键词的设置逻辑等进行解读说明,并对2020~2022年申请书中的关键词使用情况进行简要分析。Abstract: Since 2019, the National Natural Science Foundation of China (NSFC) has been actively promoting scientific fund reform in the new era. In light of this, NSFC’s Department of Atmospheric Sciences took the lead in carrying out the reform of project review classification to help optimize the layout of discipline funding and formed the new application code system through strategic research and discussion. The new system is made up of 15 secondary application codes divided into three categories: sub-disciplines, supporting technologies, and development fields. As a result, the research directions and keywords of each secondary application code were also redesigned, implemented, and continuously optimized. The secondary application code “D0504 Atmospheric Dynamics” retains its name unchanged in this reform, but its connotation and scope have been slightly widened. One notable development is that the boundary between traditionally accepted “dynamics” and “physical processes” is becoming fuzzy and changing, which leads to a widening of the connotation of atmospheric dynamics to many fields previously considered “physical processes”. Meanwhile, the scope of atmospheric dynamics is also expanding from simply investigating the dynamics of the atmosphere to examining the dynamics of the atmosphere’s interactions with other spheres. Its research methods are also changing, from experimental research, theoretical analysis, and numerical simulations with simplified models to experimental research, fact analysis, theoretical analysis, and numerical simulations with hierarchical models. In order to serve the application and review of proposals and promote the development of the discipline, this paper interprets the essence, scope, and logic of the research directions and keywords of the secondary application code “D0504 Atmospheric Dynamics”. It also briefly analyzes the application data under the secondary application code to demonstrate how the keywords were used during 2020–2022.
-
表 1 D0504大气动力学二级申请代码下设的主要研究方向与关键词
Table 1. Research directions and keywords for the secondary application code D0504 Atmospheric Dynamics
研究方向 关键词 地球流体动力学 计算地球流体、摄动法、量纲分析、地球流体实验、数值模拟、纳维—斯托克斯方程、能量串级、层结、非地转、地转、旋转流体、大气环流、海洋环流、波动、涡旋、湍流、混合、输送、不稳定、闭合方案 热带大气动力学 热带、沃克环流、哈德莱环流、信风、热带波动、热带辐合带、副热带高压、季节内振荡、厄尔尼诺和南方涛动、对流层准两年振荡、边界层、湿静力能、对流、对流—环流耦合、热带气旋、台风、第二类条件不稳定、积云动力学、动力过程、热力过程 热带外大气动力学 极区、中高纬度、副热带、中小尺度、大尺度、急流、锋面、阻塞高压、气旋、风暴轴、降水、能量、瞬变波、定常波、波—流相互作用、波—波相互作用、多尺度相互作用、遥相关、位涡、绝热、非绝热 中层大气动力学 平流层、中间层、临近空间、中层大气、平流层爆发性增温、平流层准两年振荡、准半年振荡、最后增温、行星波、重力波、潮汐波、平流层—对流层相互作用、传输与混合、剩余环流、化学—辐射—动力反馈、火山、臭氧、痕量气体、极涡、临界层、空间天气 气候动力学 海—气相互作用、陆—气相互作用、冰—气相互作用、多圈层相互作用、纬度间相互作用、次季节至季节变率、年际变率、年代际和多年代际变率、季风、全球变化、内部变率、辐射、气溶胶、云、地形、海陆分布、极端事件、气候反馈、气候敏感性、北大西洋多年代际振荡、太平洋年代际振荡、青藏高原 非线性动力学和可预报性 相空间重构、集合预报、目标观测、非线性模型、非线性诊断与归因、非线性反演、突变与临界点、熵、分形、复杂网络、非线性动力系统、多平衡态、复杂系统、初始扰动、预报障碍、初始误差、预报误差、模式误差、敏感性、可预报性、非线性动力学、随机动力学 表 2 2020~2022年D0504大气动力学二级申请代码面上项目和青年项目申请中出现频次最高的前20个关键词
Table 2. Top 20 keywords in the proposals of General Project and Youth Project that choose D0504 Atmospheric Dynamics as the application code based on statistics of 2020–2022
面上项目 青年项目 关键词 出现频次 关键词 出现频次 热带气旋 19 可预报性 8 可预报性 17 青藏高原 8 平流层 17 热带气旋 6 平流层—对流层动力耦合 12 纬度间相互作用 6 复杂系统 10 非线性特性 5 台风 10 复杂系统 5 平流层—对流层相互作用 9 集合预报 5 行星波 9 季节内振荡 5 数值模拟 8 次季节—季节变率 4 非线性动力学 7 非线性模型 4 非线性模型 7 海—气相互作用 4 极涡 7 年际变率 4 非线性预报 6 区域气候动力学 4 季节内振荡 6 热带波动 4 平流层爆发性增温 6 重力波 4 纬度间相互作用 6 波—流相互作用 3 重力波 6 对流—环流耦合 3 对流 5 极端事件 3 非线性动力系统 5 平流层爆发性增温 3 非线性特性 5 上对流层—下平流层 3 注:频次相同的关键词,按拼音排序截取。 -
[1] Benjamin S G, Brown J M, Brunet G, et al. 2018. 100 years of progress in forecasting and NWP applications [J]. Meteor. Monogr., 59(1): 13.1−13.67. doi: 10.1175/AMSMONOGRAPHS-D-18-0020.1 [2] Blumen W, Washington W M. 1973. Atmospheric dynamics and numerical weather prediction in the People’s Republic of China 1949–1966 [J]. Bull. Amer. Meteor. Soc., 54(6): 502−518. doi: 10.1175/1520-0477(1973)054<0502:ADANWP>2.0.CO;2 [3] Emanuel K. 2020. The relevance of theory for contemporary research in atmospheres, oceans, and climate [J]. AGU Advances, 1(2): e2019AV000129. doi: 10.1029/2019AV000129 [4] Held I M. 2005. The gap between simulation and understanding in climate modeling [J]. Bull. Amer. Meteor. Soc., 86(11): 1609−1614. doi: 10.1175/BAMS-86-11-1609 [5] Held I M. 2019. 100 years of progress in understanding the general circulation of the atmosphere [J]. Meteor. Monogr., 59(1): 6.1−6.23. doi: 10.1175/AMSMONOGRAPHS-D-18-0017.1 [6] Holopainen E, Kokkola H, Faiola C, et al. 2022. Insect herbivory caused plant stress emissions increases the negative radiative forcing of aerosols [J]. J. Geophys. Res.: Atmos., 127(13): e2022JD036733. doi: 10.1029/2022JD036733 [7] Hoskins B J. 1983. Dynamical processes in the atmosphere and the use of models [J]. Quart. J. Roy. Meteor. Soc., 109(459): 1−21. doi: 10.1002/qj.49710945902 [8] Huang X, Ding A J. 2021. Aerosol as a critical factor causing forecast biases of air temperature in global numerical weather prediction models [J]. Science Bulletin, 66(18): 1917−1924. doi: 10.1016/j.scib.2021.05.009 [9] Kiladis G N, Wheeler M C, Haertel P T, et al. 2009. Convectively coupled equatorial waves [J]. Rev. Geophys., 47(2): RG2003. doi: 10.1029/2008RG000266 [10] 李崇银, 黄荣辉, 杨大升, 等. 1995. 近几年中国大气动力学的主要进展 [J]. 气象学报, 53(3): 260−270. doi: 10.11676/qxxb1995.031Li C Y, Huang R H, Yang D S, et al. 1995. New advances of atmospheric dynamics in China [J]. Acta Meteorologica Sinica (in Chinese), 53(3): 260−270. doi: 10.11676/qxxb1995.031 [11] 刘哲, 丁爱军, 张人禾. 2020. 调整国家自然科学基金申请代码, 优化大气学科资助布局 [J]. 科学通报, 65(12): 1068−1075. doi: 10.1360/TB-2020-0146Liu Z, Ding A J, Zhang R H. 2020. Adjusting application codes and optimizing funding layout for the discipline of atmospheric sciences in the National Natural Science Foundation of China [J]. Chinese Science Bulletin (in Chinese), 65(12): 1068−1075. doi: 10.1360/TB-2020-0146 [12] Lu J H, Schneider T. 2017. Evolving perspectives on abrupt seasonal changes of the general circulation [J]. Advances in Atmospheric Sciences, 34(10): 1185−1194. doi: 10.1007/s00376-017-7068-4 [13] 吕建华. 2016. 关于《大气环流的若干基本问题》 [J]. 大气科学, 40(1): 78−85. doi: 10.3878/j.issn.1006-9895.1505.15140Lü J H. 2016. On “Some Fundamental Problems of the General Circulation of the Atmosphere” [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(1): 78−85. doi: 10.3878/j.issn.1006-9895.1505.15140 [14] 穆穆. 2013. 目标观测的方法、现状与发展展望 [J]. 中国科学: 地球科学, 43(11): 1717–1725. doi:10.1007/s11430-013-4727-x.Mu M. 2013. Methods, current status, and prospect of targeted observation [J]. Science China Earth Sciences, 56(12): 1997–2005. doi:10.1007/s11430-013-4727-x [15] Randall D A, Bitz C M, Danabasoglu G, et al. 2018. 100 years of earth system model development [J]. Meteor. Monogr., 59(1): 12.1−12.66. doi: 10.1175/AMSMONOGRAPHS-D-18-0018.1 [16] Shepherd T G. 2003. Large-scale atmospheric dynamics for atmospheric chemists [J]. Chemical Reviews, 103(12): 4509−4532. doi: 10.1021/cr020511z [17] Stevens B, Satoh M, Auger L, et al. 2019. Dyamond: The dynamics of the atmospheric general circulation modeled on non-hydrostatic domains [J]. Progress in Earth and Planetary Science, 6(1): 61. doi: 10.1186/s40645-019-0304-z [18] Vallis G K. 2016. Geophysical fluid dynamics: Whence, whither and why? [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472(2192): 20160140. doi: 10.1098/rspa.2016.0140 [19] 曾庆存. 1979. 我国大气动力学和数值天气预报研究工作的进展 [J]. 大气科学, 3(3): 256−269. doi: 10.3878/j.issn.1006-9895.1979.03.08Zeng Q C. 1979. The advance in atmospheric dynamics and numerical weather prediction in China [J]. Scientia Atmospherica Sinica (in Chinese), 3(3): 256−269. doi: 10.3878/j.issn.1006-9895.1979.03.08 [20] 张朝林, 郑袁明, 王西勃, 等. 2021. 国际主要科学基金机构在地球科学领域的学科布局与申请导向 [J]. 科学通报, 66(2): 145−152. doi: 10.1360/TB-2020-1366Zhang C L, Zheng Y M, Wang X B, et al. 2021. Discipline layout and application guide for earth sciences from leading international science foundations and agencies [J]. Chinese Science Bulletin (in Chinese), 66(2): 145−152. doi: 10.1360/TB-2020-1366 [21] 朱日祥, 侯增谦, 郭正堂, 等. 2021. 宜居地球的过去、现在与未来——地球科学发展战略概要 [J]. 科学通报, 66(35): 4485−4490. doi: 10.1360/TB-2021-1051Zhu R X, Hou Z Q, Guo Z T, et al. 2021. Summary of “the past, present and future of the habitable Earth: Development strategy of Earth science” [J]. Chinese Science Bulletin (in Chinese), 66(35): 4485−4490. doi: 10.1360/TB-2021-1051 -