高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

国家自然科学基金大气科学学科二级申请代码下设研究方向与关键词解读:D0501天气学

孟智勇 梁旭东

孟智勇, 梁旭东. 2023. 国家自然科学基金大气科学学科二级申请代码下设研究方向与关键词解读:D0501天气学[J]. 大气科学, 47(1): 101−110 doi: 10.3878/j.issn.1006-9895.2301.22301
引用本文: 孟智勇, 梁旭东. 2023. 国家自然科学基金大气科学学科二级申请代码下设研究方向与关键词解读:D0501天气学[J]. 大气科学, 47(1): 101−110 doi: 10.3878/j.issn.1006-9895.2301.22301
MENG Zhiyong, LIANG Xudong. 2023. Research Directions and Keywords under the Secondary Application Codes of the Atmospheric Sciences Discipline of the National Natural Science Foundation of China: D0501 Synoptic Meteorology [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 47(1): 101−110 doi: 10.3878/j.issn.1006-9895.2301.22301
Citation: MENG Zhiyong, LIANG Xudong. 2023. Research Directions and Keywords under the Secondary Application Codes of the Atmospheric Sciences Discipline of the National Natural Science Foundation of China: D0501 Synoptic Meteorology [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 47(1): 101−110 doi: 10.3878/j.issn.1006-9895.2301.22301

国家自然科学基金大气科学学科二级申请代码下设研究方向与关键词解读:D0501天气学

doi: 10.3878/j.issn.1006-9895.2301.22301
详细信息
    作者简介:

    孟智勇,女,1969年出生,教授,主要从事中小尺度气象学研究。E-mail: zymeng@pku.edu.cn

  • 中图分类号: P44

Research Directions and Keywords under the Secondary Application Codes of the Atmospheric Sciences Discipline of the National Natural Science Foundation of China: D0501 Synoptic Meteorology

  • 摘要: 2019年国家自然科学基金委员会大气科学科学调整了申请代码。2020版大气科学学科申请代码包括15个二级申请代码,分属“分支学科”“支撑技术”和“发展领域”三个板块。其中,D0501天气学二级申请代码由原代码D0505天气学与天气预报调整而来,天气预报的内容调整到了“支撑技术”板块二级申请代码D0511大气数值模式发展。本文对天气学二级申请代码下设的6个研究方向的设计思路和关键词设置进行了解读,对一些易被混淆或误用的关键词做了解释,同时分析了2020~2022年申请书中关键词使用情况,并针对性地提出了关键词使用注意事项与建议。希望本文的解读有助于基金申请人准确选择研究方向和关键词,使申请书能被更精确地匹配评审专家。
  • 图  1  2020~2022年天气学申请书的前20个关键词使用情况。蓝(红)色代表在(不在)推荐列表里的关键词,绿色代表与推荐列表的关键词比较接近

    Figure  1.  Usage of the top 20 keywords in the proposals in the synoptic meteorology from 2020 to 2022. The blue (red) color denotes the keywords included (not included) in the recommended list. The green color denotes keywords similar to those in the recommended list

    图  2  2020~2022年天气学申请书各研究方向使用频次不小于4次的关键词

    Figure  2.  Keywords used at least four times in the proposals from all research directions in synoptic meteorology from 2020 to 2022

    图  3  2022年天气学修订关键词里2020~2022年均未被使用的关键词

    Figure  3.  Keywords in the updated 2022 version but not used in the proposals from all research directions in synoptic meteorology from 2020 to 2022

    表  1  天气学D0501申请代码的下设研究方向及关键词

    Table  1.   Research directions and keywords under the application code of synoptic meteorology (D0501)

      研究方向关键词
    大尺度天气系统锋面、梅雨锋、准静止锋、西风槽、切变线、干线、气旋、低涡、冷涡、极地天气系统、极涡、阻塞高压、切断低压、副热带高压、南亚高压、季风槽,热带辐合带、罗斯贝波、开尔文波、东风波、高空急流、低空急流
    中小尺度天气系统对流、中尺度对流系统、飑线、下击暴流、冷池、阵风锋、超级单体、龙卷、中尺度高压、中尺度低压、中小尺度涡旋、中尺度低涡、热带气旋、涡旋波、重力波、涡旋罗斯贝波、重力罗斯贝波、惯性重力波、中尺度环流、中尺度辐合线、海风锋、边界层滚涡
    灾害性天气暴雨、降水、短时强降水、持续性降水、极端降水、强对流、雷暴、雷电、冰雹、大风、台风、寒潮、暴雪、雨雪冰冻、低温阴雨、高温热浪、焚风、低能见度、大雾、沙尘暴、高影响天气
    天气系统结构和演变
    机理
    动力结构、热力结构、云微物理结构、边界层结构、触发、对流自聚合、形成、对流组织化、强度变化、强度突变、路径变化、路经突变、移动传播、日变化、环境场、不稳定性、垂直风切变、水汽输送、非线性过程、台风变性
    关键物理过程动力过程、热力过程、非绝热加热、不稳定过程、云微物理过程、气溶胶效应、辐射过程、边界层过程、湍流过程、陆面过程、土壤湿度、能量转换、多尺度相互作用、多系统相互作用、波流相互作用、海气相互作用、陆气相互作用、下垫面强迫、地形强迫、高原影响、城市热岛
    预报理论与可预报性数值模拟、大涡模拟、客观预报、数值预报、动力统计预报、降尺度预报、网格预报、短临预报、短期预报、中期预报、延伸期预报、集合预报、可预报性、模式释用与订正、预报检验、大数据、人工智能、外场观测试验、自适应观测、目标观测、多源资料融合、资料同化、资料反演、卫星资料应用、雷达资料应用、灾害预报预警、灾害评估与防范
    下载: 导出CSV

    A1  天气学D0501申请代码的下设研究方向及关键词的英文表述

    A1.   Research directions and keywords in English under the application code D0501 Synoptic Meteorology

    Research directionsKeywords
    Large-scale weather systemsfront, Meiyu front, quasi-stationary front, westerly trough, shear line, dry line, cyclone, low-pressure vortex, coldvortex, polar weather system, polar vortex, blocking high, cut-off low, subtropical high, South Asian high, monsoon trough,tropical convergence zone, Rossby wave, Kelvin wave, easterly wave, upper-level jet, low-level jet
    Mesoscale and small-scale weather systemsconvection, mesoscale convective system, squall line, downburst, cold pool, gust front, supercell, tornado, mesoscalehigh, mesoscale low, mesoscale and small-scale eddy, mesoscale low eddy, tropical cyclone, vortex wave, gravity wave,vortex Rossby wave, Rossby-gravity wave, inertial gravity wave, mesoscale circulation, mesoscale convergence line, seabreeze front, boundary-layer roll vortex
    Severe weatherheavy rain, precipitation, short-term heavy precipitation, persistent precipitation, extreme precipitation, severeconvection, thunderstorm, thunder and lightning, hail, strong wind, typhoon, cold wave, blizzard, freezing rain, lowtemperature and rain, high temperature and heatwave, foehn, low visibility, heavy fog, dust storm, high impact weather
    Weather system structure and evolution mechanismdynamic structure, thermal structure, cloud microphysical structure, boundary-layer structure, initiation, convectiveself-aggregation, formation, convective organization, intensity change, sudden change in intensity, path change, suddenchange in path, propagation, diurnal variation, environmental field, instability, vertical wind shear, water vaportransport, nonlinear process, extratropical transformation of typhoon
    Key physical processesdynamic process, thermodynamic process, diabatic heating, unstable process, cloud microphysical process, aerosoleffect, radiation process, boundary-layer process, turbulent process, land surface process, soil moisture, energyconversion, multiscale interaction, multisystem interaction, wave-current interaction, air–sea interaction,land–atmosphere interaction, underlying surface forcing, topographic forcing, plateau influence, urban heat island
    Forecast theory and predictabilityNumerical simulation, large eddy simulation, objective forecasting, numerical forecasting, dynamic statistical forecasting, downscaling forecasting, grid forecasting, nowcasting, short-term forecasting, medium-term forecasting, extended-range forecasting, ensemble forecasting, predictability, model output interpretation and correction, forecast verification, big data, artificial intelligence, field experiment, adaptive observation, target observation, multi-source data fusion, data assimilation, data inversion, satellite data application, radar data application, disaster forecast and early warning, disaster assessment and prevention
    下载: 导出CSV
  • [1] American Meteorological Society. 2022a. Predictability [EB/OL]. Glossary of Meteorology. http://glossary.ametsoc.org/wiki/predictability [2022-11-11]
    [2] American Meteorological Society. 2022b. Large eddy simulation [EB/OL]. Glossary of Meteorology. https://glossary.ametsoc.org/wiki/Large_eddy_simulation [2022-11-11]
    [3] Duan M S, Xia J J, Yan Z W, et al. 2021. Reconstruction of the radar reflectivity of convective storms based on deep learning and Himawari-8 observations [J]. Remote Sensing, 13(16): 3330. doi: 10.3390/rs13163330
    [4] Han L, Zhao Y Y, Chen H N, et al. 2021a. Advancing radar nowcasting through deep transfer learning [J]. IEEE Trans. Geosci. Remote Sens., 60: 4100609. doi: 10.1109/TGRS.2021.3056470
    [5] Han L, Chen M X, Chen K K, et al. 2021b. A deep learning method for bias correction of ECMWF 24–240 h forecasts [J]. Adv. Atmos. Sci., 38(9): 1444−1459. doi: 10.1007/s00376-021-0215-y
    [6] 刘哲, 丁爱军, 张人禾. 2020. 调整国家自然科学基金申请代码, 优化大气学科资助布局 [J]. 科学通报, 65(12): 1068−1075. doi: 10.1360/TB-2020-0146

    Liu Z, Ding A J, Zhang R H. 2020. Adjusting application codes and optimizing funding layout for the discipline of atmospheric sciences in the National Natural Science Foundation of China [J]. Chinese Science Bulletin (in Chinese), 65(12): 1068−1075. doi: 10.1360/TB-2020-0146
    [7] Lorenz E N. 1963. Deterministic nonperiodic flow [J]. J. Atmos. Sci., 20(2): 130−141. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
    [8] Lorenz E N. 1969. The predictability of a flow which possesses many scales of motion [J]. Tellus, 21(3): 289−307. doi: 10.3402/tellusa.v21i3.10086
    [9] Lorenz E N. 1982. Atmospheric predictability experiments with a large numerical model [J]. Tellus, 34(6): 505−513. doi: 10.3402/tellusa.v34i6.10836
    [10] Lorenz E N. 1996. Predictability—A problem partly solved [R]. ECMWF Seminar on Predictability.
    [11] Melhauser C, Zhang F Q. 2012. Practical and intrinsic predictability of severe and convective weather at the mesoscales [J]. J. Atmos. Sci., 69(11): 3350−3371. doi: 10.1175/JAS-D-11-0315.1
    [12] 孟智勇, 张福青, 罗德海, 等. 2019. 新中国成立70年来的中国大气科学研究: 天气篇 [J]. 中国科学: 地球科学, 49(12): 1875−1918. doi:10.1360/SSTe-2019-0175

    Meng Z Y, Zhang F Q, Luo D H, et al. 2019. Review of Chinese atmospheric science research over the past 70 years: Atmospheric physics and atmospheric environment [J]. Science China Earth Sciences, 62(12): 1946–1991. https://doi.org/10.1007/s11430-019-9534-6
    [13] Wing A A, Emanuel K, Holloway C E, et al. 2017. Convective self-aggregation in numerical simulations: A review [J]. Surv. Geophys., 38(6): 1173−1197. doi: 10.1007/s10712-017-9408-4
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  638
  • HTML全文浏览量:  74
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-12
  • 网络出版日期:  2023-01-09
  • 刊出日期:  2023-01-15

目录

    /

    返回文章
    返回