Understanding the Influence of Background Mean-state Field on ENSO Tropical and Extratropical Teleconnection from An Energetic Perspective
-
摘要: 厄尔尼诺-南方涛动 (El Niño-Southern Oscillation, ENSO) 通过遥相关过程影响全球天气气候。在热带地区,ENSO能通过影响热带对流层温度导致遥远海盆降水和海表温度异常;在热带外,ENSO能通过激发准定常罗斯贝波动造成北美、亚洲等地区气候异常。气候背景场对ENSO热带和热带外遥相关有重要影响。一方面,气候背景大气环流场可以通过正压和斜压能量转换影响ENSO遥相关波列的位置和强度。另一方面,热带气候背景海温和对流场会通过影响湿静力能分布影响ENSO热带遥相关过程。这些研究表明分析能量过程有助于理解气候背景场影响ENSO遥相关的机理。本文回顾了近几十年来国内外关于气候背景场对ENSO热带与热带外遥相关影响的能量分析研究进展,在此基础上,回顾了全球变暖背景下ENSO遥相关的可能变化,并提出了一些未来该领域内需要进一步研究的科学问题。Abstract: El Niño-Southern Oscillation (ENSO) influences global weather and climate through teleconnection patterns. In tropical regions, ENSO can induce precipitation and sea surface temperature anomalies over remote ocean basins by influencing tropical tropospheric temperatures. In extratropical regions, ENSO can pose climate impacts over regions such as North America and Asia through the excitation of quasi-stationary Rossby waves. The background mean-state fields are of vital importance to ENSO's tropical and extratropical teleconnections. On one hand, the background mean-state atmospheric circulations can influence the position and intensity of ENSO teleconnection wave trains through barotropic and baroclinic energy conversion. On the other hand, the tropical background mean-state sea surface temperature and convection fields can influence ENSO’s tropical teleconnection processes through the adjustment of moist static energy distribution. These studies suggest that analyzing energetic processes can help to understand the mechanisms through which the background mean-state fields influence ENSO teleconnections. The present study reviews the progress in energetic analysis researches on the impacts of the background mean-state fields on ENSO's tropical and extratropical teleconnections in recent decades. Based on it, this study will further review the potential changes of ENSO teleconnections under global warming, and propose some important scientific questions that need to be studied in the future.
-
图 1 ENSO影响全球天气气候的主要遥相关机制示意图。引自Yang et al. (2018)。
Figure 1. A schematic illustrating the major teleconnections through which ENSO affects the global weather and climate. From Yang et al. (2018).
图 2 El Niño衰退年夏季西北太平洋背景场动能和扰动动能之间的转换。(a)西北太平洋850-hPa气候态风场(矢量,单位:m/s),(b)850-hPa扰动场从背景场中获取的动能转换(CK,单位:m−2/s3),(c)和(d)分别为CK的纬向部分和经向部分(单位:m−2/s3)。引自Hu et al. (2019)
Figure 2. The energy conversion between the background mean flow and perturbations in the Northwest Pacific during the El Niño decaying summer. (a) Boreal summer 850-hPa wind climatology (vectors, unit: m/s). (b) Conversion of kinetic energy (CK, unit: m−2/s3) at 850-hPa from the basic state to perturbations. (c) and (d) are the zonal and meridional parts of CK (unit: m−2/s3), respectively. From Hu et al. (2019).
图 3 高层机制和异常总湿稳定度(湿更湿)机制示意图。修改自Neelin and Su (2005)。
Figure 3. Schematic diagram of the upped-ante mechanism and the anomalous gross moist stability (rich-get-richer) mechanism. Adapted from Neelin and Su (2005).
图 4 全球变暖下ENSO热带遥相关变化示意图。修改自Hu et al. (2021)。
Figure 4. Schematic diagram of ENSO tropical teleconnection changes under global warming. Adapted from Hu et al. (2021).
-
[1] Adames Á F, Wallace J M. 2017. On the tropical atmospheric signature of El Niño [J]. J. Atmos. Sci., 74(6): 1923−1939. doi: 10.1175/JAS-D-16-0309.1 [2] Cai W J, Santoso A, Wang G J, et al. 2015. ENSO and greenhouse warming [J]. Nat. Climate Change, 5(9): 849−859. doi: 10.1038/nclimate2743 [3] Charney J G. 1963. A note on large-scale motions in the tropics [J]. J. Atmos. Sci., 20(6): 607−609. doi: 10.1175/1520-0469(1963)020<0607:ANOLSM>2.0.CO;2 [4] Collins M, An S I, Cai W J, et al. 2010. The impact of global warming on the tropical Pacific ocean and El Niño [J]. Nat. Geosci., 3(6): 391−397. doi: 10.1038/ngeo868 [5] Ding Q H, Wang B, Wallace J M, et al. 2011. Tropical-extratropical teleconnections in boreal summer: Observed interannual variability [J]. J. Climate, 24(7): 1878−1896. doi: 10.1175/2011JCLI3621.1 [6] Du Y, Xie S P, Huang G, et al. 2009. Role of air–sea interaction in the long persistence of El Nino–induced north Indian Ocean warming [J]. J. Climate, 22(8): 2023−2038. doi: 10.1175/2008JCLI2590.1 [7] Du Y, Chen Z S, Xie S P, et al. 2022. Drivers and characteristics of the Indo-western Pacific Ocean capacitor [J]. Front. Climate, 4: 1014138. doi: 10.3389/FCLIM.2022.1014138 [8] Enomoto T, Hoskins B J, Matsuda Y. 2003. The formation mechanism of the Bonin high in August [J]. Quart. J. Roy. Meteor. Soc., 129(587): 157−178. doi: 10.1256/qj.01.211 [9] Fu C B, Ye D Z. 1988. The tropical very low-frequency oscillation on interannual scale [J]. Adv. Atmos. Sci., 5(3): 369−388. doi: 10.1007/BF02656760 [10] Hirota N, Takahashi M. 2012. A tripolar pattern as an internal mode of the East Asian summer monsoon [J]. Climate Dyn., 39(9–10): 2219–2238. doi:10.1007/s00382-012-1416-y [11] Hoerling M P, Kumar A, Zhong M. 1997. El Niño, La Niña, and the nonlinearity of their teleconnections [J]. J. Climate, 10(8): 1769−1786. doi: 10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2 [12] Horel J D, Wallace J M. 1981. Planetary-scale atmospheric phenomena associated with the southern oscillation [J]. Mon. Wea. Rev., 109(4): 813−829. doi: 10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2 [13] Hoskins B J, Ambrizzi T. 1993. Rossby wave propagation on a realistic longitudinally varying flow [J]. J. Atmos. Sci., 50(12): 1661−1671. doi: 10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2 [14] Hu K M, Huang G, Wu R G, et al. 2018. Structure and dynamics of a wave train along the wintertime Asian jet and its impact on East Asian climate [J]. Climate Dyn., 51(11): 4123−4137. doi: 10.1007/s00382-017-3674-1 [15] Hu K M, Huang G, Xie S P, et al. 2019. Effect of the mean flow on the anomalous anticyclone over the Indo-Northwest Pacific in post-El Niño summers [J]. Climate Dyn., 53(9): 5725−5741. doi: 10.1007/s00382-019-04893-z [16] Hu K M, Huang G, Huang P, et al. 2021. Intensification of El Niño-induced atmospheric anomalies under greenhouse warming [J]. Nat. Geosci., 14(6): 377−382. doi: 10.1038/s41561-021-00730-3 [17] Huang G, Hu K M, Xie S P. 2010. Strengthening of tropical Indian Ocean teleconnection to the Northwest Pacific since the Mid-1970s: An atmospheric GCM study [J]. J. Climate, 23(19): 5294−5304. doi: 10.1175/2010JCLI3577.1 [18] 黄刚, 胡开明, 屈侠, 等. 2016. 热带印度洋海温海盆一致模的变化规律及其对东亚夏季气候影响的回顾 [J]. 大气科学, 40(1): 121−130. doi: 10.3878/j.issn.1006-9895.1505.15143Huang Gang, Hu Kaiming, Qu Xia, et al. 2016. A review about indian ocean basin mode and its impacts on East Asian summer climate [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(1): 121−130. doi: 10.3878/j.issn.1006-9895.1505.15143 [19] Huang P, Xie S P. 2015. Mechanisms of change in ENSO-induced tropical Pacific rainfall variability in a warming climate [J]. Nat. Geosci., 8(12): 922−926. doi: 10.1038/ngeo2571 [20] Huang R, Li W. 1987. Influence of the heat source anomaly over the western tropical Pacific on the subtropical high over East Asia[C]//Proceedings of International Conference on the General Circulation of East Asia. China, 40–51. [21] Huang R H, Wu Y F. 1989. The influence of ENSO on the summer climate change in China and its mechanism [J]. Adv. Atmos. Sci., 6(1): 21−32. doi: 10.1007/BF02656915 [22] 黄荣辉, 孙凤英. 1994. 热带西太平洋暖池上空对流活动对东亚夏季风季节内变化的影响 [J]. 大气科学, 18(4): 456−465. doi: 10.3878/j.issn.1006-9895.1994.04.10Huang Ronghui, Sun Fengying. 1994. Impact of the convective activities over the western tropical pacific warm pool on the intraseasonal variability of the East Asian Summer monsoon [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 18(4): 456−465. doi: 10.3878/j.issn.1006-9895.1994.04.10 [23] Huang R H, Chen W, Yang B L, et al. 2004. Recent advances in studies of the interaction between the East Asian winter and summer monsoons and ENSO cycle [J]. Adv. Atmos. Sci., 21(3): 407−424. doi: 10.1007/BF02915568 [24] Jiang W P, Huang G, Hu K M, et al. 2017. Diverse relationship between ENSO and the northwest Pacific summer climate among CMIP5 models: Dependence on the ENSO decay pace [J]. J. Climate, 30(1): 109−127. doi: 10.1175/JCLI-D-16-0365.1 [25] Johnson N C, Wittenberg A T, Rosati A J, et al. 2022. Future changes in boreal winter ENSO teleconnections in a large ensemble of high-resolution climate simulations [J]. Front. Climate, 4: 941055. doi: 10.3389/fclim.2022.941055 [26] Klein S A, Soden B J, Lau N C. 1999. Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge [J]. J. Climate, 12: 917−932. doi: 10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2 [27] Kosaka Y, Nakamura H. 2006. Structure and dynamics of the summertime Pacific–Japan teleconnection pattern [J]. Quart. J. Roy. Meteor. Soc., 132(619): 2009−2030. doi: 10.1256/qj.05.204 [28] Kosaka Y, Nakamura H, Watanabe M, et al. 2009. Analysis on the dynamics of a wave-like teleconnection pattern along the summertime Asian jet based on a reanalysis dataset and climate model simulations [J]. J. Meteor. Soc. Japan, 87(3): 561−580. doi: 10.2151/jmsj.87.561 [29] Kosaka Y, Xie S P, Lau N C, et al. 2013. Origin of seasonal predictability for summer climate over the Northwestern Pacific [J]. Proc. Natl. Acad. Sci. USA, 110(19): 7574−7579. doi: 10.1073/pnas.1215582110 [30] Kug J S, An S I, Ham Y G, et al. 2010. Changes in El Niño and La Niña teleconnections over North Pacific–America in the global warming simulations [J]. Theor. Appl. Climatol., 100(3): 275−282. doi: 10.1007/s00704-009-0183-0 [31] Lau N C, Nath M J. 1996. The Role of the “Atmospheric Bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies [J]. J. Climate, 9(9): 2036−2057. doi: 10.1175/1520-0442(1996)009<2036:TROTBI>2.0.CO;2 [32] Li S L, Hoerling M P, Peng S L, et al. 2006. The annular response to tropical Pacific SST forcing [J]. J. Climate, 19(9): 1802−1819. doi: 10.1175/JCLI3668.1 [33] Lu R Y, Lin Z D. 2009. Role of Subtropical precipitation anomalies in maintaining the summertime meridional teleconnection over the Western North Pacific and East Asia [J]. J. Climate, 22(8): 2058−2072. doi: 10.1175/2008JCLI2444.1 [34] Lu R Y, Oh J H, Kim B J. 2002. A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer [J]. Tellus A Dyn. Meteor. Oceanogr., 54(1): 44−55. doi: 10.3402/tellusa.v54i1.12122 [35] Müller W A, Roeckner E. 2008. ENSO teleconnections in projections of future climate in ECHAM5/MPI-OM [J]. Climate Dyn., 31(5): 533−549. doi: 10.1007/s00382-007-0357-3 [36] Meehl G A, Tebaldi C, Teng H Y, et al. 2007. Current and future U. S. Weather extremes and El Niño [J]. Geophys. Res. Lett., 34(20): L20704. doi: 10.1029/2007GL031027 [37] Neelin J D, Su H. 2005. Moist teleconnection mechanisms for the tropical south american and atlantic sector [J]. J. Climate, 18(18): 3928−3950. doi: 10.1175/JCLI3517.1 [38] Nitta T. 1987. Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation [J]. J. Meteor. Soc. Japan, 65(3): 373−390. doi: 10.2151/jmsj1965.65.3_373 [39] Power S, Delage F, Chung C, et al. 2013. Robust twenty-first-century projections of El Niño and related precipitation variability [J]. Nature, 502(7472): 541−545. doi: 10.1038/nature12580 [40] Rong X Y, Zhang R H, Li T M. 2010. Impacts of Atlantic sea surface temperature anomalies on Indo-East Asian summer monsoon-ENSO relationship [J]. Chinese Sci. Bull., 55(22): 2458−2468. doi: 10.1007/s11434-010-3098-3 [41] Seager R, Harnik N, Kushnir Y, et al. 2003. Mechanisms of hemispherically symmetric climate variability [J]. J. Climate, 16(18): 2960−2978. doi: 10.1175/1520-0442(2003)016<2960:MOHSCV>2.0.CO;2 [42] Seager R, Harnik N, Robinson W A, et al. 2005. Mechanisms of ENSO-forcing of hemispherically symmetric precipitation variability [J]. Quart. J. Roy. Meteor. Soc., 131(608): 1501−1527. doi: 10.1256/qj.04.96 [43] Simmons A J, Wallace J M, Branstator G W. 1983. Barotropic wave propagation and instability, and atmospheric teleconnection patterns [J]. J. Atmos. Sci., 40(6): 1363−1392. doi: 10.1175/1520-0469(1983)040<1363:BWPAIA>2.0.CO;2 [44] Sobel A H, Nilsson J, Polvani L M. 2001. The weak temperature gradient approximation and balanced tropical moisture waves [J]. J. Atmos. Sci., 58(23): 3650−3665. doi: 10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2 [45] Sobel A H, Held I M, Bretherton C S. 2002. The ENSO signal in tropical tropospheric temperature [J]. J. Climate, 15(18): 2702−2706. doi: 10.1175/1520-0442(2002)015<2702:TESITT>2.0.CO;2 [46] Song J, Li C Y, Zhou W. 2013. High and low latitude types of the downstream influences of the North Atlantic Oscillation [J]. Climate Dyn., 42(3–4): 1097–1111. doi:10.1007/s00382-013-1844-3 [47] Su H, Neelin J D, Meyerson J E. 2003. Sensitivity of tropical tropospheric temperature to sea surface temperature forcing [J]. J. Climate, 16(9): 1283−1301. doi: 10.1175/1520-0442(2003)16<1283:SOTTTT>2.0.CO;2 [48] 唐颢苏, 胡开明, 黄刚. 2019. El Niño衰退年夏季西北太平洋异常反气旋季节内演变特征及其机制 [J]. 气候与环境研究, 24(4): 525−536. doi: 10.3878/j.issn.1006-9585.2019.18156Tang Haosu, Hu Kaiming, Huang Gang. 2019. Characteristics and mechanisms of sub-seasonal evolution of Northwest Pacific Anomalous anticyclone during the El Niño Decaying Summer [J]. Climatic Environ. Res. (in Chinese), 24(4): 525−536. doi: 10.3878/j.issn.1006-9585.2019.18156 [49] Tang H S, Hu K M, Huang G, et al. 2021. Intensification and Northward extension of Northwest Pacific anomalous anticyclone in El Niño decaying mid-summer: An energetic perspective [J]. Climate Dyn., 58(1–2): 591–606. doi:10.1007/s00382-021-05923-5 [50] Tang H S, Wang J, Chen Y, et al. 2023a. Human contribution to the risk of 2021 northwestern Pacific concurrent marine and terrestrial summer heat [J]. Bull. Amer. Meteor. Soc., 104(3): E673−E679. doi: 10.1175/BAMS-D-22-0238.1 [51] Tang H S, Huang G, Hu K M, et al. 2023b. Weak persistence of Northwest Pacific anomalous anticyclone during post-El Niño summers in CMIP5 and CMIP6 models [J]. Climate Dyn., 61(7–8): 3805–3830. [52] Tao W C, Huang G, Wu R G, et al. 2018. Origins of biases in CMIP5 models simulating Northwest Pacific summertime atmospheric circulation anomalies during the decaying phase of ENSO [J]. J. Climate, 31(14): 5707−5729. doi: 10.1175/JCLI-D-17-0289.1 [53] Trenberth K E, Branstator G W, Karoly D, et al. 1998. Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures [J]. J. Geophys. Res., 103(C7): 14291−14324. doi: 10.1029/97JC01444 [54] Wallace J M, Gutzler D S. 1981. Teleconnections in the geopotential height field during the Northern Hemisphere Winter [J]. Mon. Wea. Rev., 109(4): 784−812. doi: 10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2 [55] Wallace J M, Rasmusson E M, Mitchell T P, et al. 1998. On the structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA [J]. J. Geophys. Res., 103(C7): 14241−14259. doi: 10.1029/97JC02905 [56] Wang B, Wu R G, Li T. 2003. Atmosphere-warm ocean interaction and its impacts on Asian-Australian monsoon variation [J]. J. Climate, 16(8): 1195−1211. doi: 10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2 [57] Wang Y, Hu K M, Huang G, et al. 2021. Asymmetric impacts of El Niño and La Niña on the Pacific–North American teleconnection pattern: The role of subtropical jet stream [J]. Environ. Res. Lett., 16(11): 114040. doi: 10.1088/1748-9326/ac31ed [58] Wang Y, Huang G, Hu K M, et al. 2022a. Asymmetric impacts of El Niño and La Niña on the Pacific-South America teleconnection pattern [J]. J. Climate, 35(6): 1825−1838. doi: 10.1175/JCLI-D-21-0285.1 [59] Wang Y, Huang G, Hu K M, et al. 2022b. Understanding the eastward shift and intensification of the ENSO teleconnection Over South Pacific and Antarctica under greenhouse warming [J]. Front. Earth Sci., 10: 916624. doi: 10.3389/feart.2022.916624 [60] Wu B, Li T M, Zhou T J. 2010. Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the Western North Pacific anomalous anticyclone during the El Niño decaying summer [J]. J. Climate, 23(11): 2974−2986. doi: 10.1175/2010JCLI3300.1 [61] Wu R G, Kirtman B P, Krishnamurthy V. 2008. An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring [J]. J. Geophys. Res., 113(D5): D05104. doi: 10.1029/2007JD009316 [62] Xie S P, Annamalai H, Schott F A, et al. 2002. Structure and mechanisms of South Indian Ocean climate variability [J]. J. Climate, 15(8): 864−878. doi: 10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2 [63] Xie S P, Hu K M, Hafner J, et al. 2009. Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño [J]. J. Climate, 22(3): 730−747. doi: 10.1175/2008JCLI2544.1 [64] Xie S P, Du Y, Huang G, et al. 2010. Decadal shift in El Niño influences on Indo-western Pacific and East Asian climate in the 1970s [J]. J. Climate, 23(12): 3352−3368. doi: 10.1175/2010JCLI3429.1 [65] Xie S P, Kosaka Y, Du Y, et al. 2016. Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review [J]. Adv. Atmos. Sci., 33(4): 411−432. doi: 10.1007/s00376-015-5192-6 [66] Xu P Q, Wang L, Dong Z Z, et al. 2022. The british-okhotsk corridor pattern and its linkage to the silk road pattern [J]. J. Climate, 35(17): 5787−5804. doi: 10.1175/JCLI-D-21-0705.1 [67] Yang S, Li Z N, Yu J Y, et al. 2018. El Niño–Southern Oscillation and its impact in the changing climate [J]. Natl. Sci. Rev., 5(6): 840−857. doi: 10.1093/nsr/nwy046 [68] 杨修群, 黄士松. 1992. 北半球夏季遥相关型的水平结构和能量特征 [J]. 气象科学, 12(2): 119−127.Yang Xiuqun, Huang Shisong. 1992. Horizontal structure and energy characteristics of summer teleconnection patterns in the Northern Hemisphere [J]. Sci. Meteor. Sinica (in Chinese), 12(2): 119−127. [69] Yeh S W, Cai W J, Min S K, et al. 2018. ENSO atmospheric teleconnections and their response to greenhouse gas forcing [J]. Rev. Geophys., 56(1): 185−206. doi: 10.1002/2017RG000568 [70] Zhou Z Q, Xie S P, Zheng X T, et al. 2014. Global warming-induced changes in El Niño teleconnections over the North Pacific and North America [J]. J. Climate, 27(24): 9050−9064. doi: 10.1175/JCLI-D-14-00254.1 -