高级检索
贾龙, 于姗杉, 徐永福. 2024. 解析北京郊区一次典型臭氧污染的物理化学过程[J]. 大气科学, 48(1): 391−404. DOI: 10.3878/j.issn.1006-9895.2311.23309
引用本文: 贾龙, 于姗杉, 徐永福. 2024. 解析北京郊区一次典型臭氧污染的物理化学过程[J]. 大气科学, 48(1): 391−404. DOI: 10.3878/j.issn.1006-9895.2311.23309
JIA Long, YU Shanshan, XU Yongfu. 2024. Physicochemical Processes of a Typical Ozone Pollution in Suburb of Beijing [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 48(1): 391−404. DOI: 10.3878/j.issn.1006-9895.2311.23309
Citation: JIA Long, YU Shanshan, XU Yongfu. 2024. Physicochemical Processes of a Typical Ozone Pollution in Suburb of Beijing [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 48(1): 391−404. DOI: 10.3878/j.issn.1006-9895.2311.23309

解析北京郊区一次典型臭氧污染的物理化学过程

Physicochemical Processes of a Typical Ozone Pollution in Suburb of Beijing

  • 摘要: 臭氧污染是我国当前面临的重要大气环境问题,其不仅取决于大气化学反应过程,而且会受大气物理过程和各气象要素的影响,因此需要从化学和物理两个方向来研究近地面臭氧污染问题。本研究结合外场观测和欧拉光化学模式,解析了2022年秋季北京怀柔城区的一次光化学污染周期内的物理和化学过程。给出了温度、湿度和风速等气象因子,以及臭氧及其前体物挥发性有机物(VOCs)和氮氧化物(NOxx=1、2)在此期间的日变化特征。通过源解析得到VOCs主要来源为交通排放(46%)、植物源(25%)、溶剂挥发(23%)和燃烧源(9%)。通过欧拉光化学模式确定了区域传输和本地VOCs对臭氧的贡献,结果显示强北风天气条件下,怀柔区臭氧以外来水平输送为主(贡献超过70%);当以弱的南风或东南风为主时,天气处于稳定状态,臭氧主要来自VOCs和NOx的二次转化。根据VOCs的臭氧潜势,在所有VOCs中对臭氧贡献最大的物质为烯烃,其贡献为67%,其次为芳香烃(16%)。通过敏感度分析,发现臭氧生成对物理因子中的光强、温度和边界层高度最敏感;在臭氧前体物中,活性较强的烯烃类物质的敏感度最高,烷烃最低。最后基于本地VOCs特征的EKMA曲线,提出了控制臭氧污染的减排策略。

     

    Abstract: Ozone (O3) pollution is currently a major environmental problem in some cities in China. O3 formation depends on chemical reactions influenced by atmospheric physical processes and various meteorological conditions. Therefore, it is necessary to study near-ground O3 pollution from both chemical and physical aspects. This study analyzed the physicochemical processes of photochemical pollution in Huairou, an urban city in Beijing, during autumn 2022. The analysis combines field observations and Eulerian photochemical box model simulations. Daily variations in meteorological factors (such as temperature, relative humidity, and wind speed) and concentrations of O3 and its precursors including volatile organic compounds (VOCs) and nitrogen oxides (NOx, x=1, 2) were determined. Source analysis revealed that the primary sources of VOCs are traffic emissions (46%), plant sources (25%), solvent evaporation (23%), and combustion processes (9%). The contribution of O3 from regional transport and the reactions of local VOCs were obtained using the Euler photochemical box model. The results indicate that O3 is primarily from horizontal transport (>74%) during the strong north wind prevailing period. During weak south or southeast winds, O3 is formed primarily through VOC and NOx photochemical reactions. Based on the O3 formation potential of VOCs, alkenes contribute the most to O3 formation (67%), followed by aromatics (16%). Sensitivity analysis revealed that O3 formation is most sensitive to physical factors, such as light intensity, temperature, and boundary layer height, with reactive alkenes being the most sensitive among VOCs. Finally, O3 pollution control strategies are suggested based on the Empirical Kinetics Modeling Approach (EKMA) curves.

     

/

返回文章
返回