2017年 第22卷 第4期
2017, 22(4): 381-391.
doi: 10.3878/j.issn.1006-9585.2016.16072
摘要:
利用欧洲中期预报中心再分析数据和中国气象局提供的降水数据分析了2008年1月到2月初东亚急流对我国南方雨雪冰冻灾害的影响,并给出东亚急流变化可能的原因。东亚急流强度和位置的变化引起其入口区的垂直运动的变化,从而使得我国南方降雨的位置和强度发生改变。为了研究灾害发生期间东亚急流变化的原因,利用扰动动能方程分析了与东亚急流有关扰动动能以及方程各项的变化,结果表明:扰动动能的变化能够很好的表示东亚急流的变化;扰动位势平流对扰动动能的发展至关重要。东亚急流北部弱风区存在较小的扰动动能中心,位势通量矢量将这个中心的扰动动能输送到东亚急流的入口区并辐合,使得东亚急流增强。
利用欧洲中期预报中心再分析数据和中国气象局提供的降水数据分析了2008年1月到2月初东亚急流对我国南方雨雪冰冻灾害的影响,并给出东亚急流变化可能的原因。东亚急流强度和位置的变化引起其入口区的垂直运动的变化,从而使得我国南方降雨的位置和强度发生改变。为了研究灾害发生期间东亚急流变化的原因,利用扰动动能方程分析了与东亚急流有关扰动动能以及方程各项的变化,结果表明:扰动动能的变化能够很好的表示东亚急流的变化;扰动位势平流对扰动动能的发展至关重要。东亚急流北部弱风区存在较小的扰动动能中心,位势通量矢量将这个中心的扰动动能输送到东亚急流的入口区并辐合,使得东亚急流增强。
2017, 22(4): 392-404.
doi: 10.3878/j.issn.1006-9585.2017.16166
摘要:
利用数值模拟的方法,讨论了利用微降水雷达MRR(Micro Rain Radar)雷达功率谱密度反演降水参数时,MIE散射(米散射)效应、垂直气流(包括上升气流、下沉气流)对数浓度N、雷达反射率Z、雨强I、液态含水量LWC等参数的影响。MIE散射主要影响直径为1.20~4.00 mm的粒子,MIE散射效应影响的N、Z、I、LWC偏差的平均值分别为2.74 m-3 mm-1、1.47 dBZ、0.0061 mm h-1、0.0004 g m-3。下沉气流使反演液滴直径偏大,上升气流使得反演的液滴直径偏小,下沉气流的影响更大,尤其是对低层影响大于高层。例如,在300 m高度上,当液滴直径为2.67 mm时,下沉气流为2.00 m s-1时,理论上反演的直径为8.07 mm,超出了MRR探测的阈值,其相对误差值能接近200%。下沉气流使得反射率谱向大粒子方向平移,且谱型展宽;上升气流则相反。将MRR资料与同步观测的THIES雨滴谱仪数据进行比对,分析MRR资料的可靠性。选取2015年4月1日01~12时(协调世界时)山东济南的一次降水过程,将MRR在300 m高度上反演的雷达反射率因子、雨强、数浓度、中值体积直径与雨滴谱仪资料进行对比。结果表明:两种仪器探测的Z、I、N、中值体积直径D0在时间序列上都有较好的吻合度,变化趋势和幅度相近,Z、I、D0的平均偏差分别为1.19 dBZ、0.34 mm h-1、0.36 mm。MRR反演的I值偏大,而粒子直径偏小,分析了产生偏差的主要原因,除了探测系统偏差、分析方法本身存在的偏差外,上升气流导致的偏差不容忽视。这些结果初步验证了微降水雷达观测的功率谱密度及其反演方法的可靠性。
利用数值模拟的方法,讨论了利用微降水雷达MRR(Micro Rain Radar)雷达功率谱密度反演降水参数时,MIE散射(米散射)效应、垂直气流(包括上升气流、下沉气流)对数浓度N、雷达反射率Z、雨强I、液态含水量LWC等参数的影响。MIE散射主要影响直径为1.20~4.00 mm的粒子,MIE散射效应影响的N、Z、I、LWC偏差的平均值分别为2.74 m-3 mm-1、1.47 dBZ、0.0061 mm h-1、0.0004 g m-3。下沉气流使反演液滴直径偏大,上升气流使得反演的液滴直径偏小,下沉气流的影响更大,尤其是对低层影响大于高层。例如,在300 m高度上,当液滴直径为2.67 mm时,下沉气流为2.00 m s-1时,理论上反演的直径为8.07 mm,超出了MRR探测的阈值,其相对误差值能接近200%。下沉气流使得反射率谱向大粒子方向平移,且谱型展宽;上升气流则相反。将MRR资料与同步观测的THIES雨滴谱仪数据进行比对,分析MRR资料的可靠性。选取2015年4月1日01~12时(协调世界时)山东济南的一次降水过程,将MRR在300 m高度上反演的雷达反射率因子、雨强、数浓度、中值体积直径与雨滴谱仪资料进行对比。结果表明:两种仪器探测的Z、I、N、中值体积直径D0在时间序列上都有较好的吻合度,变化趋势和幅度相近,Z、I、D0的平均偏差分别为1.19 dBZ、0.34 mm h-1、0.36 mm。MRR反演的I值偏大,而粒子直径偏小,分析了产生偏差的主要原因,除了探测系统偏差、分析方法本身存在的偏差外,上升气流导致的偏差不容忽视。这些结果初步验证了微降水雷达观测的功率谱密度及其反演方法的可靠性。
2017, 22(4): 405-417.
doi: 10.3878/j.issn.1006-9585.2016.16066
摘要:
利用1951~2010年的NECP/NCAR再分析资料和GPCC(Global Precipitation Climatology Centre)降水资料,分析了索马里急流强度与西南降水的联系。研究结果表明:索马里急流与西南降水在初夏5月有很好的正相关关系,当索马里急流偏强时,西南地区降水偏多;反之,索马里急流偏弱时,西南地区降水偏少。进一步的分析发现,两者的联系存在明显的年代际变化,事实上,西南地区5月降水与索马里急流之间的关系在1980年代以后显著加强。低层风场辐合是西南地区5月降水的关键环流配置特征,在1980年之前,5月索马里急流强度仅仅与从孟加拉湾到我国东部地区的低层西南风场相关;但在1980年之后,其与我国西南地区以西的西南风和其以东的东北风均有密切的联系。索马里急流强度与中国西南初夏降水关系的加强,主要是由于索马里急流作用的东伸加强,这可能与印度洋对东亚季风影响作用的加强有关。
利用1951~2010年的NECP/NCAR再分析资料和GPCC(Global Precipitation Climatology Centre)降水资料,分析了索马里急流强度与西南降水的联系。研究结果表明:索马里急流与西南降水在初夏5月有很好的正相关关系,当索马里急流偏强时,西南地区降水偏多;反之,索马里急流偏弱时,西南地区降水偏少。进一步的分析发现,两者的联系存在明显的年代际变化,事实上,西南地区5月降水与索马里急流之间的关系在1980年代以后显著加强。低层风场辐合是西南地区5月降水的关键环流配置特征,在1980年之前,5月索马里急流强度仅仅与从孟加拉湾到我国东部地区的低层西南风场相关;但在1980年之后,其与我国西南地区以西的西南风和其以东的东北风均有密切的联系。索马里急流强度与中国西南初夏降水关系的加强,主要是由于索马里急流作用的东伸加强,这可能与印度洋对东亚季风影响作用的加强有关。
2017, 22(4): 418-434.
doi: 10.3878/j.issn.1006-9585.2016.16065
摘要:
利用ERA-Interim再分析资料分析了夏秋季西北太平洋季风槽的气候特征以及季节和年际变化特征及其对西北太平洋热带气旋和台风(TCs)生成大尺度环境因子的影响。研究结果表明了西北太平洋季风槽有很明显的季节变化,在6~7月,季风槽和强对流活动区在5°N~15°N的南海和西北太平洋西侧上空,并逐渐东伸;到了8~9月,季风槽和强对流活动区向北移动、并向东扩展,一般位于10°N~20°N的南海和西北太平洋西侧、中部上空,有的年份可东伸到西北太平洋东侧,强度加强;到了10~11月,季风槽迅速减弱,并成为涡旋,强对流活动区也向南移和向西收缩。同时,研究还表明了西北太平洋季风槽有明显的年际变化。在季风槽强的年份,季风槽和强对流活动区可以从南海经西北太平洋西侧和中部东伸到西北太平洋的东侧上空;而在季风槽弱的年份,季风槽和强对流活动区主要位于南海和西北太平洋西侧和中部上空,季风槽强度的年际变化对它的季节变化也有重要影响。此外,研究还表明了随着季风槽的季节和年际变化,西北太平洋TCs生成的大尺度环境因子分布也发生很明显的变化。
利用ERA-Interim再分析资料分析了夏秋季西北太平洋季风槽的气候特征以及季节和年际变化特征及其对西北太平洋热带气旋和台风(TCs)生成大尺度环境因子的影响。研究结果表明了西北太平洋季风槽有很明显的季节变化,在6~7月,季风槽和强对流活动区在5°N~15°N的南海和西北太平洋西侧上空,并逐渐东伸;到了8~9月,季风槽和强对流活动区向北移动、并向东扩展,一般位于10°N~20°N的南海和西北太平洋西侧、中部上空,有的年份可东伸到西北太平洋东侧,强度加强;到了10~11月,季风槽迅速减弱,并成为涡旋,强对流活动区也向南移和向西收缩。同时,研究还表明了西北太平洋季风槽有明显的年际变化。在季风槽强的年份,季风槽和强对流活动区可以从南海经西北太平洋西侧和中部东伸到西北太平洋的东侧上空;而在季风槽弱的年份,季风槽和强对流活动区主要位于南海和西北太平洋西侧和中部上空,季风槽强度的年际变化对它的季节变化也有重要影响。此外,研究还表明了随着季风槽的季节和年际变化,西北太平洋TCs生成的大尺度环境因子分布也发生很明显的变化。
2017, 22(4): 435-445.
doi: 10.3878/j.issn.1006-9585.2017.15170
摘要:
利用1979~2012年青藏高原125个基本、基准站观测日最高及最低气温数据、Hadley中心月平均海冰覆盖率资料、ERA-Interim的风场、高度场等再分析资料,根据相关统计分析、合成分析等方法系统地分析了青藏高原地区秋、冬季冷昼和冷夜日数(低温日数)与关键影响海区海冰的关系及影响机理。结果表明,夏、秋季关键海区海冰偏少时,秋、冬季极地和青藏高原地区500 hPa位势高度减小,中高纬西伯利亚地区位势高度增强,北极至青藏高原有明显由北向南波动通量,高压反气旋系统在西伯利亚地区形成与壮大,青藏高原以北风场呈现明显偏北风,Rossby波在青藏高原及其以北地区呈现由北向南波动形式,青藏高原以北的西风带地区Rossby波东传减缓,导致经向活动加强,北部冷空气易于通过气流向高原侵袭,秋、冬季青藏高原低温日数将偏多。
利用1979~2012年青藏高原125个基本、基准站观测日最高及最低气温数据、Hadley中心月平均海冰覆盖率资料、ERA-Interim的风场、高度场等再分析资料,根据相关统计分析、合成分析等方法系统地分析了青藏高原地区秋、冬季冷昼和冷夜日数(低温日数)与关键影响海区海冰的关系及影响机理。结果表明,夏、秋季关键海区海冰偏少时,秋、冬季极地和青藏高原地区500 hPa位势高度减小,中高纬西伯利亚地区位势高度增强,北极至青藏高原有明显由北向南波动通量,高压反气旋系统在西伯利亚地区形成与壮大,青藏高原以北风场呈现明显偏北风,Rossby波在青藏高原及其以北地区呈现由北向南波动形式,青藏高原以北的西风带地区Rossby波东传减缓,导致经向活动加强,北部冷空气易于通过气流向高原侵袭,秋、冬季青藏高原低温日数将偏多。
2017, 22(4): 446-462.
doi: 10.3878/j.issn.1006-9585.2016.16122
摘要:
利用1901~2013年中国大陆地区的气象台站实测降水资料,对东英吉利(East Anglia)大学气候研究中心(Climatic Research Unit,CRU)和全球降水气候中心(Global Precipitation Climatology Centre,GPCC)的降水资料分别从季节、年际和年代际尺度上进行了评估。结果表明:1961~2013年CRU与GPCC降水资料均能较准确地描述中国大陆地区的降水特征,且在东部较西部地区、夏季较冬季与站点实测降水情况更为一致。将中国大陆划分为不同区域并在其季节、年际和年代际时间尺度上通过比较降水偏差绝对值的百分比、均方根误差和相关系数等统计量后发现:CRU在青藏高原和其它较大的山脉附近与站点实测降水的差别较大,且年均降水趋势在西北一带的阿尔金山脉、黄土高原、东南地区和长江下游地区,比实测降水的年均趋势小、甚至出现趋势相反的情况。此外,CRU降水的年代际变化趋势也偏小。而GPCC数据不论是降水量还是降水趋势都更接近实际情况。在1901~1961年,通过与65个长期气象观测站点的降水时间序列比较发现,CRU在110°E以西地区与站点观测的降水资料间的差别较大,而GPCC与站点观测资料的吻合较好。最后,利用1961~2013年两套降水资料和站点实测资料分别计算了标准化降水指数(SPI),简单分析了中国大陆地区的干旱变化,发现GPCC对旱涝的时空变化特征的描述比CRU更接近站点实际观测;并且CRU也没有反映出1997年夏季中国地区出现的严重干旱情况,而GPCC较为准确地反映出了这一干旱事件特征。因此,本文的研究结果认为,就中国大陆地区长时期降水资料而言,GPCC的适用性优于CRU。
利用1901~2013年中国大陆地区的气象台站实测降水资料,对东英吉利(East Anglia)大学气候研究中心(Climatic Research Unit,CRU)和全球降水气候中心(Global Precipitation Climatology Centre,GPCC)的降水资料分别从季节、年际和年代际尺度上进行了评估。结果表明:1961~2013年CRU与GPCC降水资料均能较准确地描述中国大陆地区的降水特征,且在东部较西部地区、夏季较冬季与站点实测降水情况更为一致。将中国大陆划分为不同区域并在其季节、年际和年代际时间尺度上通过比较降水偏差绝对值的百分比、均方根误差和相关系数等统计量后发现:CRU在青藏高原和其它较大的山脉附近与站点实测降水的差别较大,且年均降水趋势在西北一带的阿尔金山脉、黄土高原、东南地区和长江下游地区,比实测降水的年均趋势小、甚至出现趋势相反的情况。此外,CRU降水的年代际变化趋势也偏小。而GPCC数据不论是降水量还是降水趋势都更接近实际情况。在1901~1961年,通过与65个长期气象观测站点的降水时间序列比较发现,CRU在110°E以西地区与站点观测的降水资料间的差别较大,而GPCC与站点观测资料的吻合较好。最后,利用1961~2013年两套降水资料和站点实测资料分别计算了标准化降水指数(SPI),简单分析了中国大陆地区的干旱变化,发现GPCC对旱涝的时空变化特征的描述比CRU更接近站点实际观测;并且CRU也没有反映出1997年夏季中国地区出现的严重干旱情况,而GPCC较为准确地反映出了这一干旱事件特征。因此,本文的研究结果认为,就中国大陆地区长时期降水资料而言,GPCC的适用性优于CRU。
2017, 22(4): 463-472.
doi: 10.3878/j.issn.1006-9585.2016.15011
摘要:
利用复经验正交函数(CEOF)分解对冬季热带印度洋海洋上层流场异常做了模态分析和结果讨论,得到以下主要结果:该流场异常前两个模态均呈现赤道俘获波形式,其异常在赤道上最大,向南北两侧迅速衰减,呈现纬向流的形态;第一、二模态的性质分别是大洋赤道波动的半波和1波形态,这表明此时赤道波动异常在大洋流场异常中占有重要地位。冬季第一模态大洋垂直运动所导致的近表层海温异常与春、秋季不同,此时在赤道印度洋呈现正-负-正的经向分布态势,这与印度洋耦极子(Indian Ocean Dipole,IOD)的不同,并是IOD在冬季衰亡的直接原因。第二模态相应的海温异常则在赤道东印度洋呈现北负南正的分布态势。第一模态与南亚冬季风异常密切有关,为印度洋冬季风环流模态。第一、二模态都有明显的年际变化和年代际变化,年际变化均为3~5年,主要的年代际变化则分别为约18、22年,此外两者还均有约13年的年代际变化。本文第一、二模态年代际变化的主周期也是冬季北太平洋和冬季热带太平洋流场异常第二、一模态的主周期。
利用复经验正交函数(CEOF)分解对冬季热带印度洋海洋上层流场异常做了模态分析和结果讨论,得到以下主要结果:该流场异常前两个模态均呈现赤道俘获波形式,其异常在赤道上最大,向南北两侧迅速衰减,呈现纬向流的形态;第一、二模态的性质分别是大洋赤道波动的半波和1波形态,这表明此时赤道波动异常在大洋流场异常中占有重要地位。冬季第一模态大洋垂直运动所导致的近表层海温异常与春、秋季不同,此时在赤道印度洋呈现正-负-正的经向分布态势,这与印度洋耦极子(Indian Ocean Dipole,IOD)的不同,并是IOD在冬季衰亡的直接原因。第二模态相应的海温异常则在赤道东印度洋呈现北负南正的分布态势。第一模态与南亚冬季风异常密切有关,为印度洋冬季风环流模态。第一、二模态都有明显的年际变化和年代际变化,年际变化均为3~5年,主要的年代际变化则分别为约18、22年,此外两者还均有约13年的年代际变化。本文第一、二模态年代际变化的主周期也是冬季北太平洋和冬季热带太平洋流场异常第二、一模态的主周期。
2017, 22(4): 473-486.
doi: 10.3878/j.issn.1006-9585.2017.16201
摘要:
利用1979~2011年中国东北地区119站气温观测数据,对东北春季寒潮的年代际变化特征进行了分析,并在此基础上通过分析大气环流及北极海冰的变化,对寒潮年代际变化的可能原因进行了探讨。结果表明,东北地区春季寒潮的频次及强度在20世纪80年代末和21世纪初均有明显年代际转折,即20世纪90年代寒潮频次减少而强度增加,21世纪初寒潮频次有所回升但强度减弱。北极新地岛地区海冰的变化可能是造成我国东北地区寒潮活动年代际变化的原因之一。20世纪90年代新地岛附近海冰迅速减少,地表温度明显升高,而高纬海平面气压偏低,此处冷空气不易南下,同时东亚大槽偏强,冷空气强度增加。21世纪初该区海冰减少趋势减缓,冷空气频次有所回升,强度减弱。
利用1979~2011年中国东北地区119站气温观测数据,对东北春季寒潮的年代际变化特征进行了分析,并在此基础上通过分析大气环流及北极海冰的变化,对寒潮年代际变化的可能原因进行了探讨。结果表明,东北地区春季寒潮的频次及强度在20世纪80年代末和21世纪初均有明显年代际转折,即20世纪90年代寒潮频次减少而强度增加,21世纪初寒潮频次有所回升但强度减弱。北极新地岛地区海冰的变化可能是造成我国东北地区寒潮活动年代际变化的原因之一。20世纪90年代新地岛附近海冰迅速减少,地表温度明显升高,而高纬海平面气压偏低,此处冷空气不易南下,同时东亚大槽偏强,冷空气强度增加。21世纪初该区海冰减少趋势减缓,冷空气频次有所回升,强度减弱。
2017, 22(4): 487-498.
doi: 10.3878/j.issn.1006-9585.2017.16213
摘要:
为探究放电后电荷重置对雷暴云电过程的影响,在已有的三维雷暴云起、放电模式中分别加入两种不同的电荷重置方案:一种是植入法即放电后闪电通道上的感应电荷与原空间电荷叠加(简称ZR方案);另一种是中和法即放电后直接按一定比例降低闪电通道处的空间电荷浓度(简称ZH方案)。利用长春一次探空个例进行敏感性试验,发现放电后重置方式的不同会导致闪电特征存在明显差异:1)ZR方案下的云闪发生率比ZH方案下的云闪发生率少。闪电放电后ZR方案在云中植入异极性电荷,对雷暴云中电荷的中和量比ZH方案多,摧毁云中电场的能力更强;2)ZR方案下的正、负地闪发生率均比ZH方案多。相对于ZH方案,ZR方案中主正电荷区的分布范围大于主负电荷区,导致其出现了更多的正地闪;ZR方案中的云顶屏蔽层与主正电荷区的混合程度高,混合时间长,导致ZR方案在主正电荷区与主负电荷区之间触发了更多的负地闪;3)ZR方案下的闪电通道长度比ZH方案下的闪电通道长度短。ZR方案在云中植入异极性电荷,导致云中难以形成大范围同极性电荷堆,闪电通道传播局限在一对较小的异极性电荷堆内,而ZH方案不改变云中电荷分布,存在大范围同极性电荷堆,闪电通道传播范围较大。
为探究放电后电荷重置对雷暴云电过程的影响,在已有的三维雷暴云起、放电模式中分别加入两种不同的电荷重置方案:一种是植入法即放电后闪电通道上的感应电荷与原空间电荷叠加(简称ZR方案);另一种是中和法即放电后直接按一定比例降低闪电通道处的空间电荷浓度(简称ZH方案)。利用长春一次探空个例进行敏感性试验,发现放电后重置方式的不同会导致闪电特征存在明显差异:1)ZR方案下的云闪发生率比ZH方案下的云闪发生率少。闪电放电后ZR方案在云中植入异极性电荷,对雷暴云中电荷的中和量比ZH方案多,摧毁云中电场的能力更强;2)ZR方案下的正、负地闪发生率均比ZH方案多。相对于ZH方案,ZR方案中主正电荷区的分布范围大于主负电荷区,导致其出现了更多的正地闪;ZR方案中的云顶屏蔽层与主正电荷区的混合程度高,混合时间长,导致ZR方案在主正电荷区与主负电荷区之间触发了更多的负地闪;3)ZR方案下的闪电通道长度比ZH方案下的闪电通道长度短。ZR方案在云中植入异极性电荷,导致云中难以形成大范围同极性电荷堆,闪电通道传播局限在一对较小的异极性电荷堆内,而ZH方案不改变云中电荷分布,存在大范围同极性电荷堆,闪电通道传播范围较大。
2017, 22(4): 499-508.
doi: 10.3878/j.issn.1006-9585.2017.16197
摘要:
城市不同下垫面与建筑物空间形态对近地表气温等微气候要素产生了重要影响。开展城市气温时空变化模拟与影响因素分析,对于城市热环境评价与城市规划具有重要意义。论文基于高空间分辨率Geoeye-1立体影像,在建筑物高度、下垫面覆盖类型信息提取的基础上,选择南京一中、光华东街、玄武湖、头陀岭4个区域,采用ENVI-met微气候模式,以城市基本气象站南京站的实时气象数据作为背景气象场,模拟不同区域近地表气温的时空分布特征,并利用区域自动气象站观测数据进行精度检验。结果表明:在时间变化上,ENVI-met模拟气温与实测值之间吻合程度较高;在空间分布上,南京一中与光华东街区域气温时空分布规律总体相似,但城市空间形态的差异使得局部区域气温变化不同,玄武湖区域气温由陆地中心向外围呈递减趋势,而头陀岭地形复杂多变,白天气温变化剧烈,夜间空间变化较小。
城市不同下垫面与建筑物空间形态对近地表气温等微气候要素产生了重要影响。开展城市气温时空变化模拟与影响因素分析,对于城市热环境评价与城市规划具有重要意义。论文基于高空间分辨率Geoeye-1立体影像,在建筑物高度、下垫面覆盖类型信息提取的基础上,选择南京一中、光华东街、玄武湖、头陀岭4个区域,采用ENVI-met微气候模式,以城市基本气象站南京站的实时气象数据作为背景气象场,模拟不同区域近地表气温的时空分布特征,并利用区域自动气象站观测数据进行精度检验。结果表明:在时间变化上,ENVI-met模拟气温与实测值之间吻合程度较高;在空间分布上,南京一中与光华东街区域气温时空分布规律总体相似,但城市空间形态的差异使得局部区域气温变化不同,玄武湖区域气温由陆地中心向外围呈递减趋势,而头陀岭地形复杂多变,白天气温变化剧烈,夜间空间变化较小。
2017, 22(4): 509-518.
doi: 10.3878/j.issn.1006-9585.2017.16153
摘要:
基于1979~2014年ERA-Interim逐日再分析温度资料,依据温度递减率插值法,计算出北半球两类对流层顶(热带对流层顶和极地对流层顶)频率数据。对比分析了青藏高原与同纬度地区两类对流层顶频率在季节变化上的差异,并讨论了青藏高原两类对流层顶频率分布与高空温度的关系。结果表明:1)依据温度递减率插值法计算出的再分析两类对流层顶频率可以反映青藏高原两类对流层顶频率季节变化特征:热带对流层顶全年频率高,冷、暖季节差异不明显;极地对流层顶盛夏频率极低,冷、暖季节差异明显。与极地对流层顶频率相比,青藏高原热带对流层顶频率的可信度更高。2)青藏高原和同纬度地区热带(极地)对流层顶频率在暖季增加(减少),在冷季减少(增加)。相比同纬度地区,青藏高原热带(极地)对流层顶频率在冬季偏少(多),其他季节偏多(少)。青藏高原两类对流层顶频率等值线的梯度更大,表明青藏高原对流层顶更易断裂。3)青藏高原两类对流层顶频率与高空温度关系密切。青藏高原对流层中上层(平流层下部)温度升高(降低),有利于青藏高原热带对流层顶频率增加,极地对流层顶频率减少,反之亦然。
基于1979~2014年ERA-Interim逐日再分析温度资料,依据温度递减率插值法,计算出北半球两类对流层顶(热带对流层顶和极地对流层顶)频率数据。对比分析了青藏高原与同纬度地区两类对流层顶频率在季节变化上的差异,并讨论了青藏高原两类对流层顶频率分布与高空温度的关系。结果表明:1)依据温度递减率插值法计算出的再分析两类对流层顶频率可以反映青藏高原两类对流层顶频率季节变化特征:热带对流层顶全年频率高,冷、暖季节差异不明显;极地对流层顶盛夏频率极低,冷、暖季节差异明显。与极地对流层顶频率相比,青藏高原热带对流层顶频率的可信度更高。2)青藏高原和同纬度地区热带(极地)对流层顶频率在暖季增加(减少),在冷季减少(增加)。相比同纬度地区,青藏高原热带(极地)对流层顶频率在冬季偏少(多),其他季节偏多(少)。青藏高原两类对流层顶频率等值线的梯度更大,表明青藏高原对流层顶更易断裂。3)青藏高原两类对流层顶频率与高空温度关系密切。青藏高原对流层中上层(平流层下部)温度升高(降低),有利于青藏高原热带对流层顶频率增加,极地对流层顶频率减少,反之亦然。