2018年 第23卷 第3期
2018, 23(3): 259-267.
doi: 10.3878/j.issn.1006-9585.2018.17063
摘要:
将8个主要平衡分潮加入到耦合模式中,对比研究潮汐对北大西洋模拟影响。由于潮汐的引入,模式模拟SST在北大西洋中纬度区域偏差显著减小,高纬度区域SST降温明显。SST模拟的改变使潮汐试验的海表净热通量模拟误差下降了约30%,但高纬度海冰显著增加。模式中引入潮汐对北大西洋上层环流,尤其是西边界流的路径模拟改进显著,这是SST及海表净热通量模拟改变的主要原因。同时,北大西洋上层和深层西边界流在潮汐的作用下,都表现出环流减弱的特点,这也使得大西洋经向翻转环流在26.5°N处上层2 km的输送减弱,与观测数据更为接近。较弱的大西洋经向翻转环流导致海洋热量在中低纬度聚集而无法输送到高纬度区域,这是造成潮汐试验模拟的海温在中低纬度偏高、高纬度偏低的原因,较弱的热输送也同时导致了潮汐试验中北半球海冰面积增加。
将8个主要平衡分潮加入到耦合模式中,对比研究潮汐对北大西洋模拟影响。由于潮汐的引入,模式模拟SST在北大西洋中纬度区域偏差显著减小,高纬度区域SST降温明显。SST模拟的改变使潮汐试验的海表净热通量模拟误差下降了约30%,但高纬度海冰显著增加。模式中引入潮汐对北大西洋上层环流,尤其是西边界流的路径模拟改进显著,这是SST及海表净热通量模拟改变的主要原因。同时,北大西洋上层和深层西边界流在潮汐的作用下,都表现出环流减弱的特点,这也使得大西洋经向翻转环流在26.5°N处上层2 km的输送减弱,与观测数据更为接近。较弱的大西洋经向翻转环流导致海洋热量在中低纬度聚集而无法输送到高纬度区域,这是造成潮汐试验模拟的海温在中低纬度偏高、高纬度偏低的原因,较弱的热输送也同时导致了潮汐试验中北半球海冰面积增加。
2018, 23(3): 268-274.
doi: 10.3878/j.issn.1006-9585.2017.17089
摘要:
选取北京2013~2015年6~9月共362个自动气象站的逐分钟降雨资料进行统计,分析北京夏季短时强降水的特征,并进行蓝色暴雨预警指标的选取。结果表明:1)蓝色暴雨预警降雨样本中的5 min、10 min最大降水量约为其它降雨样本的5倍,而蓝色暴雨预警降雨样本中在达到预警标准后有5 min、10 min的最大雨强也有显著降低;2)资料中有63.0%的蓝色暴雨预警降雨样本达到预警的时间不超过60 min,18:00(北京时间,下同)至01:00的蓝色预警降雨样本占全部蓝色预警降雨样本的60%;3)分钟雨强统计在暴雨蓝色预警中可有较好的提前指示作用,如当5 min降水量达到7.7 mm发出预警,则有关提前时效为16.7 min,HSS评分可达0.503。
选取北京2013~2015年6~9月共362个自动气象站的逐分钟降雨资料进行统计,分析北京夏季短时强降水的特征,并进行蓝色暴雨预警指标的选取。结果表明:1)蓝色暴雨预警降雨样本中的5 min、10 min最大降水量约为其它降雨样本的5倍,而蓝色暴雨预警降雨样本中在达到预警标准后有5 min、10 min的最大雨强也有显著降低;2)资料中有63.0%的蓝色暴雨预警降雨样本达到预警的时间不超过60 min,18:00(北京时间,下同)至01:00的蓝色预警降雨样本占全部蓝色预警降雨样本的60%;3)分钟雨强统计在暴雨蓝色预警中可有较好的提前指示作用,如当5 min降水量达到7.7 mm发出预警,则有关提前时效为16.7 min,HSS评分可达0.503。
2018, 23(3): 275-286.
doi: 10.3878/j.issn.1006-9585.2018.17095
摘要:
利用地面气温观测资料及NCEP/NCAR逐月再分析资料,分析了中纬度北太平洋东部海温异常变化对中国北方地区冬季气温的可能影响。结果表明,前期夏、秋季中纬度北太平洋东部海温与北方地区冬季气温存在持续稳定的正相关关系,并且这种相关性在年代际尺度上较年际尺度更为显著。这种联系与中纬度北太平洋东部关键区海温在对流层中低层激发出的一种类似北美—大西洋—欧亚遥相关型波列有关。当前期关键区海温偏高(低)时,其激发的波列使得乌拉尔山阻塞高压偏弱(强),西伯利亚高压偏弱(强),导致贝加尔湖以南大部地区受正(负)高度距平控制,亚洲地区中高纬以纬(经)向环流为主,有利于北方大部地区气温偏高(低)。研究表明,中纬度北太平洋东部海温异常通过激发出一个从关键海区到我国北方地区的跨越东西半球的遥相关型波列,引发北半球中高纬度大气环流异常,进而影响北方冬季气温。
利用地面气温观测资料及NCEP/NCAR逐月再分析资料,分析了中纬度北太平洋东部海温异常变化对中国北方地区冬季气温的可能影响。结果表明,前期夏、秋季中纬度北太平洋东部海温与北方地区冬季气温存在持续稳定的正相关关系,并且这种相关性在年代际尺度上较年际尺度更为显著。这种联系与中纬度北太平洋东部关键区海温在对流层中低层激发出的一种类似北美—大西洋—欧亚遥相关型波列有关。当前期关键区海温偏高(低)时,其激发的波列使得乌拉尔山阻塞高压偏弱(强),西伯利亚高压偏弱(强),导致贝加尔湖以南大部地区受正(负)高度距平控制,亚洲地区中高纬以纬(经)向环流为主,有利于北方大部地区气温偏高(低)。研究表明,中纬度北太平洋东部海温异常通过激发出一个从关键海区到我国北方地区的跨越东西半球的遥相关型波列,引发北半球中高纬度大气环流异常,进而影响北方冬季气温。
2018, 23(3): 287-298.
doi: 10.3878/j.issn.1006-9585.2017.17097
摘要:
慢特征分析法(Slow Feature Analysis,SFA)是一个从快变的信号中提取慢变特征的有效方法,它的提出丰富了人们对非平稳系统外强迫特征的重建手段。本文以Henon映射为基础,构造二维非平稳系统模型,尝试SFA方法在二维复杂非平稳系统中重建外强迫特征的能力。试验表明,SFA方法能够较好地从单时变参数Henon映射中提取出外强迫信号;通过结合小波变换技术,可以还原双时变参数Henon映射中的外强迫信号。另外,本文利用SFA方法重建了北京市气温的外强迫信号,分析其外强迫信号的尺度特征及其可能的物理机制。这些工作将为气候系统驱动力的研究提供新的思路。
慢特征分析法(Slow Feature Analysis,SFA)是一个从快变的信号中提取慢变特征的有效方法,它的提出丰富了人们对非平稳系统外强迫特征的重建手段。本文以Henon映射为基础,构造二维非平稳系统模型,尝试SFA方法在二维复杂非平稳系统中重建外强迫特征的能力。试验表明,SFA方法能够较好地从单时变参数Henon映射中提取出外强迫信号;通过结合小波变换技术,可以还原双时变参数Henon映射中的外强迫信号。另外,本文利用SFA方法重建了北京市气温的外强迫信号,分析其外强迫信号的尺度特征及其可能的物理机制。这些工作将为气候系统驱动力的研究提供新的思路。
2018, 23(3): 299-310.
doi: 10.3878/j.issn.1006-9585.2018.17180
摘要:
利用1979~2015年JTWC(Joint Typhoon Warning Center)最佳路径资料(2001~2015年资料用于台风风圈结构分析)及ERA-interim(0.5°×0.5°)再分析数据,统计分析我国海南岛附近区域(15.5°N~23.5°N,106°E~116°E)热带气旋(Tropical Cyclone,简称TC)低层风场的变化特征。结果表明:(1)年均5.5个TC于4~12月主要以西偏北路径进入该区域,其中海南岛东南侧海域TC出现频率最高且强TC比例最多,而岛西北区域出现频率最低,强TC比例最少。(2)TC中心位于海南岛不同方位时,其外围低层风场分布具有不同的非对称特征,且大风出现比率也各有差异;TC中心位于海南岛上时出现大风比率最高,位于岛南侧时次之,位于岛北侧时最小。(3)该区域TC平均最大风速半径(RMW)为58.3 km;TC位于岛上时RMW最大,而位于岛西南侧最小。(4)TC近中心最大风速由海上向陆地急剧减小,其高值中心主要位于雷州半岛东侧及西侧海域。(5)研究区域内TC的34节风圈半径在TC环流的东侧大而西侧小,强TC大而弱TC小。(6)不同区域TC变形程度有所差异。平均而言,位于岛西南侧TC变形最大而位于岛东南侧时变形最小。
利用1979~2015年JTWC(Joint Typhoon Warning Center)最佳路径资料(2001~2015年资料用于台风风圈结构分析)及ERA-interim(0.5°×0.5°)再分析数据,统计分析我国海南岛附近区域(15.5°N~23.5°N,106°E~116°E)热带气旋(Tropical Cyclone,简称TC)低层风场的变化特征。结果表明:(1)年均5.5个TC于4~12月主要以西偏北路径进入该区域,其中海南岛东南侧海域TC出现频率最高且强TC比例最多,而岛西北区域出现频率最低,强TC比例最少。(2)TC中心位于海南岛不同方位时,其外围低层风场分布具有不同的非对称特征,且大风出现比率也各有差异;TC中心位于海南岛上时出现大风比率最高,位于岛南侧时次之,位于岛北侧时最小。(3)该区域TC平均最大风速半径(RMW)为58.3 km;TC位于岛上时RMW最大,而位于岛西南侧最小。(4)TC近中心最大风速由海上向陆地急剧减小,其高值中心主要位于雷州半岛东侧及西侧海域。(5)研究区域内TC的34节风圈半径在TC环流的东侧大而西侧小,强TC大而弱TC小。(6)不同区域TC变形程度有所差异。平均而言,位于岛西南侧TC变形最大而位于岛东南侧时变形最小。
2018, 23(3): 311-320.
doi: 10.3878/j.issn.1006-9585.2017.17024
摘要:
基于ERA-Interim逐月再分析资料及同期高原和我国西北干旱区观测站温度与降水资料,分析高原季风与西北干旱区气候的关系,对比高原典型强弱季风年平均大尺度环流和水汽输送条件的差异,探讨高原强弱季风年西北干旱区气候差异形成的原因。研究结果表明:高原季风与我国西北干旱区气候相关关系显著;高原强弱季风年对应的大尺度环流和垂直环流系统存在明显差异;水汽条件和抬升条件好坏与降水量多寡配合得较好,即强高原季风年,高原北部边缘水汽条件和抬升条件更有利于降水,而弱高原季风年,高原北部边缘水汽条件和抬升条件偏差,对应降水量较常年同期偏少。
基于ERA-Interim逐月再分析资料及同期高原和我国西北干旱区观测站温度与降水资料,分析高原季风与西北干旱区气候的关系,对比高原典型强弱季风年平均大尺度环流和水汽输送条件的差异,探讨高原强弱季风年西北干旱区气候差异形成的原因。研究结果表明:高原季风与我国西北干旱区气候相关关系显著;高原强弱季风年对应的大尺度环流和垂直环流系统存在明显差异;水汽条件和抬升条件好坏与降水量多寡配合得较好,即强高原季风年,高原北部边缘水汽条件和抬升条件更有利于降水,而弱高原季风年,高原北部边缘水汽条件和抬升条件偏差,对应降水量较常年同期偏少。
2018, 23(3): 321-331.
doi: 10.3878/j.issn.1006-9585.2017.17044
摘要:
基于1979~2013年多种再分析资料,合成分析了El Niño发展年和La Niña年东亚夏季风的季节内变化。结果表明,东亚夏季风在两种情况下呈现出不同的季节内变化特征。在El Niño发展年,初夏期间高纬度地区出现偏北风异常,造成东亚地区位势高度场偏低,西太平洋副热带高压偏东,但均不显著。盛夏期间,El Niño强迫造成中太平洋对流增强,副热带西太平洋出现气旋异常,位势高度显著降低,副热带高压明显偏东。与此不同的是,La Niña年春季暖池海温偏高,造成夏季对流偏强,西太平洋地区位势高度场偏低,副热带高压减弱东退。此外,La Niña年东亚夏季风的季节内变化较为复杂,6月异常较弱,7月达到最强,8月又开始减弱。因此,虽然El Niño发展年和La Niña年夏季平均副高异常有一定的相似性,但季节内变化则有很大差异,其成因也完全不同。
基于1979~2013年多种再分析资料,合成分析了El Niño发展年和La Niña年东亚夏季风的季节内变化。结果表明,东亚夏季风在两种情况下呈现出不同的季节内变化特征。在El Niño发展年,初夏期间高纬度地区出现偏北风异常,造成东亚地区位势高度场偏低,西太平洋副热带高压偏东,但均不显著。盛夏期间,El Niño强迫造成中太平洋对流增强,副热带西太平洋出现气旋异常,位势高度显著降低,副热带高压明显偏东。与此不同的是,La Niña年春季暖池海温偏高,造成夏季对流偏强,西太平洋地区位势高度场偏低,副热带高压减弱东退。此外,La Niña年东亚夏季风的季节内变化较为复杂,6月异常较弱,7月达到最强,8月又开始减弱。因此,虽然El Niño发展年和La Niña年夏季平均副高异常有一定的相似性,但季节内变化则有很大差异,其成因也完全不同。
2018, 23(3): 332-340.
doi: 10.3878/j.issn.1006-9585.2017.17046
摘要:
利用现场观测资料、OAFlux的湍流热通量,评估了JOFURO(Japanese Ocean Flux Data Sets with use of Remote Sensing Observations)、HOAPS-2(Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite data version 2)、GSSTF-2(Goddard Satellite-Based Surface Turbulent Fluxes version 2)3种卫星资料在南海区域的表现。3套卫星资料可以说各有千秋,总体而言JOFURO和GSSTF-2资料的空间分布和时间变化与OAFlux资料整体上较一致,但是这两套资料都在很大程度上低估了海盆平均的潜热和感热,前者低估约10%~20%,后者则可以达到50%以上。HOAPS-2资料与现场观测资料有较好的一致性,但在时间变化上和其他资料的差异则较大,特别是感热方面,季节变化振幅、年际变化位相等都与其他资料不一致。通过比较我们发现,海南岛周边以及南海南部区域估算的潜热和感热释放偏小是造成整体偏小的主要原因。
利用现场观测资料、OAFlux的湍流热通量,评估了JOFURO(Japanese Ocean Flux Data Sets with use of Remote Sensing Observations)、HOAPS-2(Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite data version 2)、GSSTF-2(Goddard Satellite-Based Surface Turbulent Fluxes version 2)3种卫星资料在南海区域的表现。3套卫星资料可以说各有千秋,总体而言JOFURO和GSSTF-2资料的空间分布和时间变化与OAFlux资料整体上较一致,但是这两套资料都在很大程度上低估了海盆平均的潜热和感热,前者低估约10%~20%,后者则可以达到50%以上。HOAPS-2资料与现场观测资料有较好的一致性,但在时间变化上和其他资料的差异则较大,特别是感热方面,季节变化振幅、年际变化位相等都与其他资料不一致。通过比较我们发现,海南岛周边以及南海南部区域估算的潜热和感热释放偏小是造成整体偏小的主要原因。
2018, 23(3): 341-354.
doi: 10.3878/j.issn.1006-9585.2017.17048
摘要:
基于1958~2002年欧洲中期数值预报中心(ECMWF)提供的ERA-40再分析资料和美国气象环境预报中心/美国国家大气研究中心提供的NCEP/NCAR再分析资料研究了夏季南亚高压的东西偏向与亚洲季风区对流层顶附近水汽输送之间的关系。结果表明:(1)南亚高压的东西偏向对上对流层200 hPa水汽高值中心的位置影响较小,主要影响其强度,对100 hPa水汽高值中心的位置和强度有着较强的影响,而对平流层下部70 hPa的水汽分布几乎没有影响。(2)南亚高压偏东年,高原上空和高原南部的垂直上升运动较强,在西风急流的共同作用下可将低层丰富的水汽向上输送,使200 hPa和100 hPa的水汽高值中心位于高原上空,而100 hPa南亚高压范围内偏北风和偏东风增强,在水平输送的作用下使高值中心周围水汽的分布形态与高压中心的分布形态一致。(3)南亚高压偏西年,沿着高原西部的地形抬升作用比高原上空的对流上升运动更强,西风急流北移,对流层顶附近在60°E~80°E范围内形成气旋式环流,因此水汽高值中心向西偏移到伊朗高原。(4)南亚高压范围内200 hPa的温度异常分布与水汽的异常分布一致,暖中心有利于高水汽的生成。而100 hPa的温度异常分布与水汽异常分布相反,暖中心对应异常偏低的水汽,说明南亚高压范围内下平流层的水汽分布受环流场和温度场共同作用的影响。该研究对理解南亚高压东西偏向机制及提高亚洲气候预测有一定的参考意义。
基于1958~2002年欧洲中期数值预报中心(ECMWF)提供的ERA-40再分析资料和美国气象环境预报中心/美国国家大气研究中心提供的NCEP/NCAR再分析资料研究了夏季南亚高压的东西偏向与亚洲季风区对流层顶附近水汽输送之间的关系。结果表明:(1)南亚高压的东西偏向对上对流层200 hPa水汽高值中心的位置影响较小,主要影响其强度,对100 hPa水汽高值中心的位置和强度有着较强的影响,而对平流层下部70 hPa的水汽分布几乎没有影响。(2)南亚高压偏东年,高原上空和高原南部的垂直上升运动较强,在西风急流的共同作用下可将低层丰富的水汽向上输送,使200 hPa和100 hPa的水汽高值中心位于高原上空,而100 hPa南亚高压范围内偏北风和偏东风增强,在水平输送的作用下使高值中心周围水汽的分布形态与高压中心的分布形态一致。(3)南亚高压偏西年,沿着高原西部的地形抬升作用比高原上空的对流上升运动更强,西风急流北移,对流层顶附近在60°E~80°E范围内形成气旋式环流,因此水汽高值中心向西偏移到伊朗高原。(4)南亚高压范围内200 hPa的温度异常分布与水汽的异常分布一致,暖中心有利于高水汽的生成。而100 hPa的温度异常分布与水汽异常分布相反,暖中心对应异常偏低的水汽,说明南亚高压范围内下平流层的水汽分布受环流场和温度场共同作用的影响。该研究对理解南亚高压东西偏向机制及提高亚洲气候预测有一定的参考意义。
2018, 23(3): 355-365.
doi: 10.3878/j.issn.1006-9585.2017.17113
摘要:
应用MODIS地表反照率产品MCD43C3,结合青藏高原自然带数据、积雪覆盖率和植被指数数据,采用一元线性回归方法分析了2000~2016年青藏高原地表反照率的分布及变化特征,结果表明:1)高原地表反照率空间分布差异大,整体上东南部低、西北部高,受地形和地表覆盖影响较大。2)高原地表反照率四季的空间分布变化明显,高海拔山脉和高寒灌丛草甸是高原地表反照率年内和年际变化的敏感地区。3)高原地表反照率年变化介于0.19~0.26,一定程度上表现为“双峰单谷”型,与地表覆盖类型的季节变化密切相关。4)高原地表反照率年际变化整体呈缓慢波动减小的趋势,平均变率约为-0.4×10-3 a-1,减小的区域约占高原总面积的66%,川西 —藏东针叶林带的西南部地区减小得最快,减小速率超过1.0×10-2 a-1。5)高原地表反照率减小与冰川消融和积雪减少密切相关,高原植被覆盖改善也是一个重要因素。
应用MODIS地表反照率产品MCD43C3,结合青藏高原自然带数据、积雪覆盖率和植被指数数据,采用一元线性回归方法分析了2000~2016年青藏高原地表反照率的分布及变化特征,结果表明:1)高原地表反照率空间分布差异大,整体上东南部低、西北部高,受地形和地表覆盖影响较大。2)高原地表反照率四季的空间分布变化明显,高海拔山脉和高寒灌丛草甸是高原地表反照率年内和年际变化的敏感地区。3)高原地表反照率年变化介于0.19~0.26,一定程度上表现为“双峰单谷”型,与地表覆盖类型的季节变化密切相关。4)高原地表反照率年际变化整体呈缓慢波动减小的趋势,平均变率约为-0.4×10-3 a-1,减小的区域约占高原总面积的66%,川西 —藏东针叶林带的西南部地区减小得最快,减小速率超过1.0×10-2 a-1。5)高原地表反照率减小与冰川消融和积雪减少密切相关,高原植被覆盖改善也是一个重要因素。
2018, 23(3): 366-386.
doi: 10.3878/j.issn.1006-9585.2018.17131
摘要:
对云中水凝物粒子分类识别是双偏振雷达的主要应用之一。本文利用IAP-714XDP-A X波段双偏振雷达观测数据,在对其进行质量控制的基础上,利用滑动自适应订正算法对雷达反射率及差分反射率进行衰减订正,进而采用纹理参数SD(ZH)和SD(ϕDP)区分气象回波与非气象回波,最后建立基于X波段双偏振雷达偏振参量(ZH、ZDR、KDP、ρHV)、环境温度T和纹理参数(SD(ZH)、SD(ϕDP))的模糊逻辑水凝物粒子分类识别算法。本文通过对2016年8月7日一次低仰角的观测,检验了纹理参数SD(ZH)和SD(ϕDP)对气象回波和非气象回波的识别效果,结果表明:SD(ZH)与SD(ϕDP)两者结合可有效区分气象回波和非气象回波;用2015年8月7日北京一次较大范围的降雹个例,对建立的模糊逻辑水凝物粒子分类识别算法进行效果验证,识别降雹落点与地面观测降雹落点一致,表明各种水凝物粒子对应偏振参量取值范围合理;对2016年9月14日一次处于不同发展阶段的多单体对流云进行水凝物粒子分类识别,结果显示处于发展阶段对流云中存在过冷水柱,其形成的微物理过程是对流云中强烈的上升气流将暖层的水滴抬升到0℃层之上形成过冷云雨水,进而冻结形成雹胚并发展成为冰雹。
对云中水凝物粒子分类识别是双偏振雷达的主要应用之一。本文利用IAP-714XDP-A X波段双偏振雷达观测数据,在对其进行质量控制的基础上,利用滑动自适应订正算法对雷达反射率及差分反射率进行衰减订正,进而采用纹理参数SD(ZH)和SD(ϕDP)区分气象回波与非气象回波,最后建立基于X波段双偏振雷达偏振参量(ZH、ZDR、KDP、ρHV)、环境温度T和纹理参数(SD(ZH)、SD(ϕDP))的模糊逻辑水凝物粒子分类识别算法。本文通过对2016年8月7日一次低仰角的观测,检验了纹理参数SD(ZH)和SD(ϕDP)对气象回波和非气象回波的识别效果,结果表明:SD(ZH)与SD(ϕDP)两者结合可有效区分气象回波和非气象回波;用2015年8月7日北京一次较大范围的降雹个例,对建立的模糊逻辑水凝物粒子分类识别算法进行效果验证,识别降雹落点与地面观测降雹落点一致,表明各种水凝物粒子对应偏振参量取值范围合理;对2016年9月14日一次处于不同发展阶段的多单体对流云进行水凝物粒子分类识别,结果显示处于发展阶段对流云中存在过冷水柱,其形成的微物理过程是对流云中强烈的上升气流将暖层的水滴抬升到0℃层之上形成过冷云雨水,进而冻结形成雹胚并发展成为冰雹。