高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2019年  第24卷  第2期

显示方式:
香河地基观测臭氧柱总量数据分析及臭氧变化趋势研究
窦鑫, 张金强, 朱彬, 郑向东, 夏祥鳌, 陈洪滨
2019, 24(2): 143-151. doi: 10.3878/j.issn.1006-9585.2018.17102
摘要:
大气臭氧变化在全球气候和环境中具有重要作用,是当今大气科学领域的重要研究对象之一。对比分析了中国科学院大气物理研究所河北香河大气综合观测试验站2014~2016年Dobson和Brewer两种臭氧总量观测仪器探测结果的一致性,并使用1979~2016年Dobson观测数据分析了香河地区臭氧总量的长期变化趋势。结果表明:进行有效温度修正后,两种臭氧总量仪器观测结果一致性较好,平均偏差仅为-0.14 DU(多布森单位),平均绝对偏差为8.00 DU,标准差为36.09 DU,相关系数达0.964。整体来说,两类仪器观测臭氧总量吻合较好。SO2浓度对Dobson仪器数据精度有一定影响,两组仪器数据在SO2浓度为0~0.2 DU、0.2~0.4 DU和>0.4 DU大气条件情况下的平均偏差分别为4.8 DU、7.0 DU和8.0 DU,平均偏差随SO2浓度升高而增大。过去38年香河地区的臭氧总量季节差异性强,春、冬两季臭氧总量高,夏、秋两季臭氧总量相对低,季节变化趋势差异明显。从长期变化上看,臭氧总量变化波动有不同的周期,在4个大的时间段变化趋势不同,2000~2010年臭氧层有显著恢复,但最近几年又有变薄的趋势。
2014年11月上旬西北太平洋一次极端强度爆发气旋的数值模拟和分片位涡反演分析
姜立智, 傅慎明, 孙建华, 刘靓珂, 沈新勇
2019, 24(2): 152-168. doi: 10.3878/j.issn.1006-9585.2018.17174
摘要:
基于NCEP 6 h一次,0.5°(纬度)×0.5°(经度)水平分辨率的GFS(Global Forecasting System)再分析数据,利用数值模式WRF(Weather Research and Forecasting),对2014年11月上旬西北太平洋一次极端强度的爆发气旋事件进行了模拟。在成功复制爆发气旋主要特征的基础上,较详细的分析了本次爆发气旋快速发展的有利环境条件,并利用分片位涡反演的方法,对此次爆发气旋的快速发展过程进行了研究,主要结论如下:(1)本次爆发气旋的爆发性发展阶段维持了约27 h,其最大加深率约为3.98 Bergeron(气旋加深率单位),最低中心气压约为919.2 hPa。(2)爆发气旋的快速发展与对流层高层高空急流对热量的输送,对流层中层西风带短波槽槽前暖平流和正涡度平流的有利准地转强迫,以及对流层低层暖锋伴随的暖平流过程密切相关。(3)分片位涡反演的结果表明,对流层顶皱褶对应的平流层大值位涡下传和降水凝结潜热过程造成的正位涡异常是本次爆发气旋快速发展的主导因子,而对流层低层的斜压过程贡献相对较小。在气旋爆发期的前期和强盛期,降水凝结潜热释放是爆发气旋发展的最重要因子,而在爆发期后期,随着降水的减弱和爆发气旋的东北向移动,对流层顶皱褶作用所造成的正位涡异常成为维持气旋快速发展的最有利因子。
区域气候模式不同积云对流参数化方案对新疆气候模拟的影响研究
周心河, 熊喆
2019, 24(2): 169-185. doi: 10.3878/j.issn.1006-9585.2018.18075
摘要:
使用NCEP-FNL全球分析资料作为WRF模式的初始场和边界场,利用该模式中7种积云对流参数化方案对新疆地区进行2006年10月1日至2008年3月1日的模拟积分试验,重点考察模式在水平分辨率为10 km下不同积云对流参数化方案对新疆地区气象要素模拟的敏感性。结果表明:1)采用7种积云对流参数化方案的模式都能较好地模拟出年、雨季总降水量、平均温度的空间分布及大气的垂直结构。2)对于不同区域来说,采用各种积云对流参数化方案的模式都能模拟出候降水及候平均温度随时间演变,模式候降水与观测的相关系数在0.20~0.85之间,而候平均温度与观测的相关系数在0.98以上。对于整个新疆地区来说,采用各方案模式模拟的低层偏干偏冷,大气层结较稳定导致降水较观测偏少,而其中天山地区模式模拟的低层较观测偏湿偏暖,大气层结偏向不稳定导致降水偏多。3)采用新的Grell和Kain-Fritsch(new Eta)方案模式模拟的效果综合来看较好。因此利用WRF模式开展新疆地区数值模拟研究时应该考虑不同积云对流参数化方案适用范围。
基于气象要素的气溶胶吸湿增长分析:以浙江省为例
祝好, 王永前, 陶金花, 张自力, 王子峰, 曾巧林, 陈良富
2019, 24(2): 186-198. doi: 10.3878/j.issn.1006-9585.2018.17142
摘要:
气溶胶粒子的吸湿增长对区域环境、气象与辐射收支都有巨大影响,精确的气溶胶吸湿特性观测对描述气溶胶吸湿增长特性,以及研究气溶胶对气候环境影响,拓展卫星气溶胶产品的应用有非常重要的意义。本研究提出一种基于常规气象观测(能见度、相对湿度)和空气质量观测(PM2.5浓度,即空气动力学当量直径小于等于2.5 μm的颗粒物浓度)相结合的气溶胶吸湿增长估算方法,在此基础上对浙江地区气溶胶吸湿特性的时空变化影响因素进行了探讨。研究发现,沿海的温州瓯海站的吸湿增长能力最高,长三角典型城市环境的杭州和睦小学站的吸湿增长能力次之,而地处较为洁净内陆的衢州实验学校站的吸湿增长能力最低。在时间变化中,同一站点不同湿度条件的吸湿增长变化趋势相同,温州瓯海站的吸湿性变化最为剧烈,杭州和睦小学站的吸湿性变化次之,衢州实验学校站变化较为平缓。本研究表明,浙江地区的气溶胶吸湿增长特性存在较大的时空差异,基于本方法能够在较大的时空范围内描述气溶胶的吸湿增长特性,为有限的精密观测提供重要补充。
中国中小尺度强对流天气气候学特征
薛晓颖, 任国玉, 孙秀宝, 任玉玉, 余予
2019, 24(2): 199-213. doi: 10.3878/j.issn.1006-9585.2018.17148
摘要:
中小尺度强对流天气具有极强的破坏力,了解其气候学特征对于预测、预报和影响评价都具有实际意义。利用1961~2015年的2332个高密度逐月国家级气象站观测资料,分析了中国大陆3种常见中小尺度强对流天气(雷暴、闪电、冰雹)在年、季、月尺度上发生日数的时间变化规律和空间分布特征。结果表明:全国年平均雷暴、闪电和冰雹发生频率分别为39.23 d/a、20.56 d/a和1.07 d/a;雷暴和闪电主要发生在夏季3个月,雷暴日数7月最多,闪电日数8月最多;冰雹主要发生每年5~9月,6月发生频率最高;雷暴和闪电的高发区分布基本一致,主要集中在华南和西南,青藏高原也是雷暴的高发区域之一;冰雹的高发区主要集中在青藏高原、内蒙古高原东部以及中西部山地,而东南沿海地区发生频率则较低。进一步分析发现,我国雷暴和冰雹出现频率随海拔高度增加而明显增加,冰雹和海拔高度有更好的对应关系,二者增加速率分别为2.87 d/500 m和1.80 d/500 m,表明地势高度对这两种强对流天气形成和发展具有重要影响。
中国周边海域海面温度日变化对区域气候的影响
周倩, 凌铁军, 李响, 张蕴斐
2019, 24(2): 214-226. doi: 10.3878/j.issn.1006-9585.2018.18087
摘要:
利用区域气候模式,分别以逐时海面温度(sea surface temperature,SST)数据及逐日SST数据作为模式的海表温度进行强迫,开展了1991~2010年共计20年的数值模拟,探讨SST日变化对中国区域气候变化的影响。对比结果表明,两组试验均能合理地再现中国区域气候的主要气候态特征。同时发现,两组试验模拟的气候特征在我国沿海区域以及近海洋面上存在明显差异:考虑SST日变化之后,2 m气温和感热通量差异呈现夏季(冬季)升高(降低)为主的趋势;潜热通量则与之相反;低层风场差异在夏季以海洋吹向大陆的东南风为主,冬季则以陆面吹向海洋的西北风差异为主;另外,水汽输送差异呈气旋式(反气旋式)时,降水出现正差异(负差异)。SST日变化对上述气候因子的影响在夏季更为显著。
对流强度对雷暴云微物理发展和电荷结构影响的数值模拟
仇梦扬, 谭涌波, 师正, 杜赛, 林辉, 周洁晨
2019, 24(2): 227-236. doi: 10.3878/j.issn.1006-9585.2018.17159
摘要:
为了探讨对流强度大小对雷暴云内微物理发展和起电过程的影响,基于已有的二维积云起、放电模式,改变其扰动温度进行敏感性试验。试验结果表明:对流强度对雷暴云内微物理过程、起电率及后续电荷结构的产生均有一定程度的影响:1)对流强度较小时,冰晶粒子极大值在高温区(高于-13.8℃)出现,对流强度较大时,上升风明显增强,将更多的水汽带入高空,气溶胶活化过程明显增强,使得云滴粒子明显增多,冰晶粒子较早产生,冰晶粒子极大值在低温区(低于-13.8℃)出现,发展过程更为剧烈;同时,较高的对流强度也使得降雨量增多,霰粒子数目也在对流发展旺盛时期显著增多。2)非感应起电率主要和冰晶-霰的碰并分离过程有关,对流强度较大时,非感应起电率较大,电荷结构持续时间较长,过程明显,感应起电率也较强。3)对流强度较大时,电荷结构更为复杂,雷暴云发展初期基本呈现为三极性,发展旺盛时期底部正电荷区域嵌入一个较小的负电荷区,呈现四极性电荷结构,雷暴云发展末期基本呈现偶极性电荷结构;对流强度较小时,发展初期、旺盛时期均呈现三极性电荷结构,发展末期呈现偶极性电荷结构。
“05·6”华南持续性暴雨发生前上对流层及平流层异常信号分析
梁靖琳, 雒佳丽, 田红瑛, 张诗妍, 张如华, 商林
2019, 24(2): 237-250. doi: 10.3878/j.issn.1006-9585.2018.17164
摘要:
利用欧洲中心ERA-Interim再分析资料,对"05·6"华南持续性暴雨发生前上对流层及平流层信号进行分析。分析结果表明,暴雨发生前一周,暴雨区域上空对流层顶高度出现先降低后升高再降低的变化,这种变化与日本南部的位涡异常存在较好的对应关系,即我国中纬度沿海一带至日本的高位涡带向华南延伸,使得华南地区上空的位涡升高,对流层顶下降。在环流场中,本次暴雨发生前低纬地区上对流层下平流层(UTLS)区域的东风与1991~2010年平均值相比偏强偏北,华南地区上空平流层东风场也偏强,平流层低层东风在暴雨发生前第9天提早向下传播;位势高度场中,"05·6"华南暴雨发生前中低纬度100 hPa上的南亚高压中心位置偏东偏南;华南地区UTLS区域有较强的位势高度场正异常,在暴雨发生前随时间出现两次明显的加强,但在暴雨发生后减弱。南亚高压中心位置的偏移、东风信号的提早下传、高位涡空气入侵华南均有利于降水的发生。
中亚地区夏季温度的季节预测
杨占梅, 张井勇
2019, 24(2): 251-261. doi: 10.3878/j.issn.1006-9585.2018.18121
摘要:
根据1979~2016年春季海表温度、土壤温度以及大尺度气候指数与中亚地区夏季温度的相关关系,确定了印度洋东南部海表温度、非洲西北部土壤温度、大西洋多年代际振荡(AMO)和东亚/西俄型(EA/WR)4个春季预测因子,进而建立了中亚地区夏季温度的预测模型。春季印度洋东南部海表温度暖异常、非洲西北部土壤温度暖异常、AMO正异常与EA/WR负异常均对应夏季中亚地区500 hPa位势高度场正异常,为该地区夏季高温发生提供有利条件。预测模型留一法交叉验证产生的1979~2016年中亚地区夏季温度无(有)趋势的时间序列与观测的无(有)趋势的时间序列的相关为0.65(0.74),表明该预测模型具有良好的预测能力。研究结果有望帮助提高中亚地区夏季温度的预测技巧。
区域气候与中国柳属物种多样性格局的关系研究
王芳, 熊喆, 延晓冬, 戴新刚, 李亚飞, 王磊斌
2019, 24(2): 262-276. doi: 10.3878/j.issn.1006-9585.2018.18122
摘要:
利用地理信息系统技术与空间统计相结合的方法,研究了柳属物种多样性在中国区域尺度上的空间分布格局,并且采用逐步广义线性回归分析方法研究了柳属物种多样性与主要气候因子的关系。结果表明:1)柳属物种多样性在中国的分布格局表现为区域广泛,局部聚集:聚集区分布在新疆阿勒泰地区、东北地区和西南地区,其中西南分布区的青藏高原与横断山脉毗连处为中国柳属物种多样性分布中心。2)柳属物种多样性在经度、纬度、气温、降水、蒸散量等气候气候因子一维格局上的分布随着因子梯度先增加后减小,均存在一个最适区间。3)柳属物种多样性与水分因子呈正相关、与能量因子呈负相关关系。水分因子是影响柳属物种多样性的主导因子,能量与水分间的交互作用对物种多样性影响微弱。4)结论部分地支持了水-热动态假说和生态位保守假说,但柳属物种多样性格局成因并非由任何单一假说来完全地解释,这表明其他因子如历史因素、地形异质性、土壤因素或扰动等也可能是形成柳属物种多样性格局的重要因素。
华北背景地区大气能见度变化特征及影响因素分析
陈婧, 马志强, 胡天洁, 卢俐, 林润生
2019, 24(2): 277-288. doi: 10.3878/j.issn.1006-9585.2018.18085
摘要:
基于1980~2014年上甸子国家级地面气象台站人工观测的大气水平能见度数据和大气成分站资料,采用Mann-Kendall趋势分析及突变检验法对大气能见度进行分析,并结合气象和污染要素进行相关性检验,以了解华北背景地区大气能见度的变化趋势及其影响因素。结果表明:上甸子地区年均能见度呈下降趋势,能见度最大和最小变率出现在夏季和春季,分别为3.4 km(10 a)-1和1.7 km(10 a)-1;冬季能见度(38.1 km)最高,秋季(36.2 km)次之,春季(32.8 km)和夏季(31.4 km)较低;突变分析表明上甸子地区的年均能见度未出现明显突变。能见度受各类气象因子的综合影响。根据Person相关和偏相关的统计结果,能见度与相对湿度和风速均呈明显负相关;与气压呈明显的正相关;而与气温的相关系数时正时负,表明气温对能见度的影响具有两面性。能见度下降的主要原因为大气污染,能见度随着大气细颗粒物增加呈幂指数降低(决定系数R2=0.98,显著性水平p < 0.01);能见度为10 km时对应的细颗粒物(PM2.5)的边界浓度为74 μg/m3;在现行的国家环境空气质量标准二级标准(75μg/m3)下,可以使华北背景地区保持较高的大气能见度(≥ 10 km)。