高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1990年代和2000年代华北寒潮的对比及其与北极海冰的联系

白寒冰 曾刚

白寒冰, 曾刚. 2022. 1990年代和2000年代华北寒潮的对比及其与北极海冰的联系[J]. 气候与环境研究, 27(3): 368−382 doi: 10.3878/j.issn.1006-9585.2021.21036
引用本文: 白寒冰, 曾刚. 2022. 1990年代和2000年代华北寒潮的对比及其与北极海冰的联系[J]. 气候与环境研究, 27(3): 368−382 doi: 10.3878/j.issn.1006-9585.2021.21036
BAI Hanbing, ZENG Gang. 2022. Comparison of Cold Surges across North China between the 1990s and the 2000s and Their Relationships with Arctic Sea Ice [J]. Climatic and Environmental Research (in Chinese), 27 (3): 368−382 doi: 10.3878/j.issn.1006-9585.2021.21036
Citation: BAI Hanbing, ZENG Gang. 2022. Comparison of Cold Surges across North China between the 1990s and the 2000s and Their Relationships with Arctic Sea Ice [J]. Climatic and Environmental Research (in Chinese), 27 (3): 368−382 doi: 10.3878/j.issn.1006-9585.2021.21036

1990年代和2000年代华北寒潮的对比及其与北极海冰的联系

doi: 10.3878/j.issn.1006-9585.2021.21036
基金项目: 国家重点研发计划专项2017YFA0603804,国家自然科学基金项目 42175034、41575085
详细信息
    作者简介:

    白寒冰,男,1993年出生,硕士,助理工程师,主要从事东亚季风及海气相互作用研究。E-mail: bhbsass@foxmail.com

    通讯作者:

    曾刚,E-mail: zenggang@nuist.edu.cn

  • 中图分类号: P458

Comparison of Cold Surges across North China between the 1990s and the 2000s and Their Relationships with Arctic Sea Ice

Funds: National Key Research and Development Program of China (Grant 2017YFA0603804), National Natural Science Foundation of China (Grants 42175034 and 41575085)
  • 摘要: 基于华北区域均一化站点气温资料、NCEP/NCAR大气再分析资料、CFSR大气再分析资料以及NOAA高分辨率北极海冰密集度资料,对比研究了1990年代与2000年代华北寒潮的差异及其与秋、冬季北极海冰的联系。结果表明:影响华北的区域性寒潮事件在1990年代(2000年代)发生的频次为1957~2011年最多(少),但寒潮平均强度偏弱(强),冷空气大多源自格陵兰岛(新地岛)附近,取偏西(偏北)路径进入华北。秋、冬季新地岛附近以及巴芬湾附近海冰在2000年代初显著减少,导致1990年代与2000年代出现显著环流差异:1990年代(2000年代)极区位势高度存在负异常(正异常),欧亚大陆大型槽脊波动较弱(强),绕极区西风较强(弱),东亚大槽较弱(强),西伯利亚高压较弱(强),使得华北寒潮在两段时间出现上述差异。
  • 图  1  华北区域分区(灰色虚线框)以及西伯利亚高压关键区(蓝色实线框)

    Figure  1.  North China partition (gray dotted line) and key region of the Siberian High (blue box)

    图  2  1957~2011年华北寒潮(a)频次与(b)强度序列(图中红色虚线表示年代平均)

    Figure  2.  Time series of cold surge (CS) (a) frequency and (b) intensity in North China during 1957−2011(red dotted line denotes the interdecadal average)

    图  3  (a)1990~2000年与(b)2001~2011年华北寒潮冷空气路径

    Figure  3.  Trajectories of cold surges in North China during (a) 1990−2000 and (b) 2001−2011

    图  4  (a、c)1990年代与(b、d)2000年代850 hPa以及500 hPa水平风场距平(单位:m/s):(a、b)850 hPa; (c、d)500 hPa。点状阴影区域表示通过90%置信度的显著性检验

    Figure  4.  Composite anomalies in the horizontal wind (units: m/s) at (a, b) 850 hPa and (c, d) 500 hPa: (a, c) 1990s; (b, d) 2000s. Stippling areas are significant at the 90% confidence level

    图  5  (a)1990年代与(b)2000年代500 hPa位势高度距平(点状阴影区域表示通过90%置信度的显著性检验)

    Figure  5.  Composite anomalies of geopotential heights at 500 hPa in the (a) 1990s and (b) 2000s. Stippling areas are significant at the 90% confidence level

    图  6  (a)1990年代与(b)2000年代海平面气压(SLP)距平(点状阴影区域表示通过90%置信度的显著性检验;黑色实线框表示西伯利亚高压关键区)

    Figure  6.  Composite anomalies of sea level pressure (SLP) in the (a) 1990s and (b) 2000s. Stippling areas are significant at the 90% confidence level; black box represents the key region of Siberia High

    图  7  (a)1990年代与(b)2000年代地表气温(SAT)距平(点状阴影区域表示通过90%置信度的显著性检验)

    Figure  7.  Composite anomalies of surface air temperature (SAT) in the (a) 1990s and (b) 2000s. Stippling areas are significant at the 90% confidence level

    图  8  1990~2011年华北寒潮(a、c)频次及(b、d)强度序列与秋季和冬季北极海冰密集度(SIC)的相关:(a、b)秋季北极海冰密集度;(c、d)冬季北极海冰密集度。点状阴影区域表示通过90%置信度的显著性检验;黑色实线框表示海冰关键区

    Figure  8.  Correlation coefficients between the CS (a, c) frequency and (b, d) intensity in North China and Arctic sea ice concentration (SIC) in autumn and winter during 1990−2011: (a, b) Autumn SIC; (c, d) winter SIC. Stippling areas are significant at the 90% confidence level; black box denotes the key region of SIC

    图  9  1990~2011年华北寒潮(a)频次序列与频次关键区SIC指数以及(b)强度序列与强度关键区SIC指数(柱状图表示关键区SIC指数。黑色实线表示华北寒潮频次或强度序列;绿色虚线表示各SIC指数年代平均值;R1与R2分别表示关键区海冰指数与华北寒潮频次和强度序列的相关系数,**代表相关系数通过95%置信度的显著性检验)

    Figure  9.  (a) Time series of CS frequency in North China and its associated SIC index and (b) time series of CS intensity in North China and its associated SIC index. Histogram denotes the SIC index; black solid line denotes the CS frequency or intensity in North China; green dotted line denotes the interdecadal average of SIC index; R1 and R2 denote the correlation coefficients between the SIC index and CS frequency and intensity in North China, respectively. ** indicates the statistical significance above the 95% confidence level

    图  10  1990~2011年华北寒潮频次关键区SIC指数与冬季(a)850 hPa、(b)500 hPa纬向风的相关系数(矢量表示1990~2011年850 hPa水平风场平均;点状阴影区域表示相关系数通过90%置信度的显著性检验)

    Figure  10.  Correlation coefficients between the SIC index of key region (frequency) and horizontal wind at (a) 850 hPa and (b) 500 hPa in winter during 1990−2011. Vector denotes the average horizontal wind at 850 hPa or 500 hPa in winter during 1990−2011; stippling areas are significant at the 90% confidence level)

    图  11  1990~2011年华北寒潮(a)频次与(b)强度关键区SIC指数与冬季500 hPa位势高度的相关系数(点状阴影区域表示相关系数通过90%置信度的显著性检验)

    Figure  11.  Correlation coefficients between the SIC index of the key regions for (a) frequency, (b) intensity, and geopotential heights at 500 hPa in winter during 1990−2011. Stippling areas are significant at the 90% confidence level

    图  12  1990~2011年华北寒潮强度海冰关键区SIC指数与冬季海平面气压(SLP)的相关系数(点状阴影区域表示相关系数通过90%置信度的显著性检验;黑色实线框表示西伯利亚高压关键区)

    Figure  12.  Correlation coefficients between the SIC index of the key regions for CS intensity and sea level pressure (SLP) in winter during 1990−2011. Stippling areas are significant at the 90% confidence level; black box indicates the key region of Siberia High

    图  13  1990~2011年华北寒潮(a)频次与(b)强度关键区SIC指数与冬季地表气温(SAT)的相关(点状阴影区域表示相关系数通过90%置信度的显著性检验)

    Figure  13.  Correlation coefficients between the SIC index of key region (a) frequency, (b) intensity and Surface Air Temperature (SAT) in winter during 1990−2011. Stippling areas are significant at the 90% confidence level

  • [1] 布和朝鲁, 彭京备, 谢作威, 等. 2018. 冬季大范围持续性极端低温事件与欧亚大陆大型斜脊斜槽系统研究进展 [J]. 大气科学, 42(3): 656−676. doi: 10.3878/j.issn.1006-9895.1712.17249

    Bueh Cholaw, Peng Jingbei, Xie Zuowei, et al. 2018. Recent progresses on the studies of wintertime extensive and persistent extreme cold events in China and large-scale tilted ridges and troughs over the Eurasian Continent [J]. Chinese J. Atmos. Sci. (in Chinese), 42(3): 656−676. doi: 10.3878/j.issn.1006-9895.1712.17249
    [2] Bueh C, Shi N, Xie Z W. 2011. Large-scale circulation anomalies associated with persistent low temperature over southern China in January 2008 [J]. Atmospheric Science Letters, 12(3): 273−280. doi: 10.1002/asl.333
    [3] Cai B, Zeng G, Zhang G W, et al. 2019. Autumn cold surge paths over North China and the associated atmospheric circulation [J]. Atmosphere, 10(3): 134. doi: 10.3390/atmos10030134
    [4] 陈海山, 刘蕾, 朱月佳. 2012. 中国冬季极端低温事件与天气尺度瞬变波的可能联系 [J]. 中国科学: 地球科学, 42(12): 1951−1965. Chen Haishan, Liu Lei, Zhu Yuejia. 2013. Possible linkage between winter extreme low temperature events over China and synoptic-scale transient wave activity [J]. Science China Earth Sciences, 56(7): 1266−1280. doi: 10.1007/s11430-012-4442-z
    [5] Chen W, Lan X Q, Wang L, et al. 2013. The combined effects of the ENSO and the Arctic Oscillation on the winter climate anomalies in East Asia [J]. Chinese Sci. Bull., 58(12): 1355−1362. doi: 10.1007/s11434-012-5654-5
    [6] Cheung H N, Zhou W, Mok H Y, et al. 2012. Relationship between Ural-Siberian blocking and the East Asian winter monsoon in relation to the Arctic Oscillation and the El Niño–Southern Oscillation [J]. J. Climate, 25(12): 4242−4257. doi: 10.1175/JCLI-D-11-00225.1
    [7] Decker M, Brunke M A, Wang Z, et al. 2012. Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations [J]. J. Climate, 25(6): 1916−1944. doi: 10.1175/JCLI-D-11-00004.1
    [8] 狄慧. 2014. 北极海冰年代际转型及其对冬季极端低温的影响[D]. 中国海洋大学硕士学位论文, 61pp

    Di Hui. 2014. Decadal regime shift of Arctic Sea ice and corresponding effects on extreme low temperature [D]. M. S. thesis (in Chinese), Ocean University of China, 61pp.
    [9] 丁一汇, 柳艳菊, 梁苏洁, 等. 2014. 东亚冬季风的年代际变化及其与全球气候变化的可能联系 [J]. 气象学报, 72(5): 835−852. doi: 10.11676/qxxb2014.079

    Ding Yihui, Liu Yanju, Liang Sujie, et al. 2014. Interdecadal variability of the East Asian winter monsoon and its possible links to global climate change [J]. Acta Meteor. Sinica (in Chinese), 72(5): 835−852. doi: 10.11676/qxxb2014.079
    [10] 贺圣平, 王会军. 2012. 东亚冬季风综合指数及其表达的东亚冬季风年际变化特征 [J]. 大气科学, 36(3): 523−538. doi: 10.3878/j.issn.1006-9895.2011.11083

    He Shengping, Wang Huijun. 2012. An integrated East Asian winter monsoon index and its interannual variability [J]. Chinese J. Atmos. Sci. (in Chinese), 36(3): 523−538. doi: 10.3878/j.issn.1006-9895.2011.11083
    [11] 黄荣辉, 刘永, 皇甫静亮, 等. 2014. 20世纪90年代末东亚冬季风年代际变化特征及其内动力成因 [J]. 大气科学, 38(4): 627−644. doi: 10.3878/j.issn.1006-9895.2013.13245

    Huang Ronghui, Liu Yong, Huangfu Jingliang, et al. 2014. Characteristics and internal dynamical causes of the interdecadal variability of East Asian winter monsoon near the late 1990s [J]. Chinese J. Atmos. Sci. (in Chinese), 38(4): 627−644. doi: 10.3878/j.issn.1006-9895.2013.13245
    [12] Huang W N, Li X, Dong S. 2017. Study on intensity change characteristics of cold wave in Shandong Province by wavelet analysis [J]. Journal of Natural Disasters, 26(3): 56−62. doi: 10.13577/j.jnd.2017.0307
    [13] Jeong J H, Ho C H. 2005. Changes in occurrence of cold surges over East Asia in association with Arctic Oscillation [J]. Geophys. Res. Lett., 32(14): L14704. doi: 10.1029/2005GL023024
    [14] 康志明, 金荣花, 鲍媛媛. 2010. 1951~2006年期间我国寒潮活动特征分析 [J]. 高原气象, 29(2): 420−428.

    Kang Zhiming, Jin Ronghua, Bao Yuanyuan. 2010. Characteristic analysis of cold wave in China during the period of 1951−2006 [J]. Plateau Meteorology (in Chinese), 29(2): 420−428.
    [15] 李峰, 矫梅艳, 丁一汇, 等. 2006. 北极区近30年环流的变化及对中国强冷事件的影响 [J]. 高原气象, 25(2): 209−219. doi: 10.3321/j.issn:1000-0534.2006.02.006

    Li Feng, Jiao Meiyan, Ding Yihui, et al. 2006. Climate change of arctic atmospheric circulation in last 30 years and its effect on strong cold events in China [J]. Plateau Meteorology (in Chinese), 25(2): 209−219. doi: 10.3321/j.issn:1000-0534.2006.02.006
    [16] 梁苏洁, 丁一汇, 赵南, 等. 2014. 近50年中国大陆冬季气温和区域环流的年代际变化研究 [J]. 大气科学, 38(5): 974−992. doi: 10.3878/j.issn.1006-9895.1401.13234

    Liang Sujie, Ding Yihui, Zhao Nan, et al. 2014. Analysis of the interdecadal changes of the wintertime surface air temperature over mainland China and regional atmospheric circulation characteristics during 1960−2013 [J]. Chinese J. Atmos. Sci. (in Chinese), 38(5): 974−992. doi: 10.3878/j.issn.1006-9895.1401.13234
    [17] Ma S M, Zhu C W, Liu B Q, et al. 2018. Polarized response of East Asian winter temperature extremes in the era of Arctic warming [J]. J. Climate, 31(14): 5543−5557. doi: 10.1175/JCLI-D-17-0463.1
    [18] 毛炜峄, 陈颖. 2016. 1951−2015年乌鲁木齐市寒潮过程频数及强度气候特征 [J]. 干旱气象, 34(3): 403−411. doi: 10.11755/j.issn.1006-7639(2016)-03-0403

    Mao W Y, Chen Y. 2016. Climate characteristics of frequency and intensity of cold wave processes in Urumqi during 1951−2015 [J]. Journal of Arid Meteorology (in Chinese), 34(3): 403−411. doi: 10.11755/j.issn.1006-7639(2016)-03-0403
    [19] Park T W, Ho C H, Yang S. 2011a. Relationship between the Arctic Oscillation and cold surges over East Asia [J]. J. Climate, 24(1): 68−83. doi: 10.1175/2010JCLI3529.1
    [20] Park T W, Ho C H, Deng Y. 2014. A synoptic and dynamical characterization of wave-train and blocking cold surge over East Asia [J]. Climate Dyn., 43(3): 753−770. doi: 10.1007/s00382-013-1817-6
    [21] Park T W, Ho C H, Jeong S J, et al. 2011b. Different characteristics of cold day and cold surge frequency over East Asia in a global warming situation [J]. J. Geophys. Res. :Atmos., 116(D12): D12118. doi: 10.1029/2010JD015369
    [22] Peng J B, Bueh C, Xie Z W. 2021. Extensive cold-precipitation-freezing events in Southern China and their circulation characteristics [J]. Adv. Atmos. Sci., 38(1): 81−97. doi: 10.1007/s00376-020-0117-4
    [23] Saha S, Moorthi S, Pan H L, et al. 2010. The NCEP climate forecast system reanalysis [J]. Bull. Amer. Meteor. Soc., 91(8): 1015−1058. doi: 10.1175/2010BAMS3001.1
    [24] 施宁, 布和朝鲁. 2015. 中国大范围持续性极端低温事件的一类平流层前兆信号 [J]. 大气科学, 39(1): 210−220. doi: 10.3878/j.issn.1006-9895.1403.13309

    Shi Ning, Bueh Cholaw. 2015. A specific stratospheric precursory signal for the extensive and persistent extreme cold events in China [J]. Chinese J. Atmos. Sci. (in Chinese), 39(1): 210−220. doi: 10.3878/j.issn.1006-9895.1403.13309
    [25] Shi N, Wang X Q, Tian P Y. 2019. Interdecadal variations in persistent anomalous cold events over Asian mid-latitudes [J]. Climate Dyn., 52(5): 3729−3739. doi: 10.1007/s00382-018-4353-6
    [26] Stohl A. 1998. Computation, accuracy and applications of trajectories—A review and bibliography [J]. Atmos. Environ., 32(6): 947−966. doi: 10.1016/S1352-2310(97)00457-3
    [27] Stohl A, Seibert P. 1998. Accuracy of trajectories as determined from the conservation of meteorological tracers [J]. Quart. J. Roy. Meteor. Soc., 124(549): 1465−1484. doi: 10.1002/qj.49712454907
    [28] 唐孟琪, 曾刚. 2017. 近30多年中国东北地区春季寒潮的年代际变化及其可能原因 [J]. 气候与环境研究, 22(4): 473−486. doi: 10.3878/j.issn.1006-9585.2017.16201

    Tang Mengqi, Zeng Gang. 2017. Decadal variability of spring cold wave across Northeast China in the past 30 years and its possible causes [J]. Climatic Environmental Research (in Chinese), 22(4): 473−486. doi: 10.3878/j.issn.1006-9585.2017.16201
    [29] 王会军, 范可. 2013. 东亚季风近几十年来的主要变化特征 [J]. 大气科学, 37(2): 313−318. doi: 10.3878/j.issn.1006-9895.2012.12301

    Wang Huijun, Fan Ke. 2013. Recent changes in the East Asian monsoon [J]. Chinese J. Atmos. Sci. (in Chinese), 37(2): 313−318. doi: 10.3878/j.issn.1006-9895.2012.12301
    [30] Wang L, Chen W. 2010. How well do existing indices measure the strength of the East Asian winter monsoon? [J]. Adv. Atmos. Sci., 27(4): 855−870. doi: 10.1007/s00376-009-9094-3
    [31] Wang L, Chen W. 2014. The East Asian winter monsoon: Re-amplification in the mid-2000s [J]. Chinese Sci. Bull., 59(4): 430−436. doi: 10.1007/s11434-013-0029-0
    [32] Wang Z M, Sun Z B, Zeng G. 2017. Characteristics of strong cold air outbreaks in China's central and eastern Mongolian region between 1970 and 2013 [J]. Atmosphere, 8(6): 98. doi: 10.3390/atmos8060098
    [33] 王宗明, 孙照渤, 李忠贤, 等. 2011. 1949~2009年欧亚大陆强冷空气活动频次的变化特征 [J]. 气象与减灾研究, 34(1): 16−23. doi: 10.3969/j.issn.1007-9033.2011.01.003

    Wang Zongming, Sun Zhaobo, Li Zhongxian, et al. 2011. Variation characteristics of strong cold air activity frequency in Eurasia from 1949 to 2009 [J]. Meteorology and Disaster Reduction Research (in Chinese), 34(1): 16−23. doi: 10.3969/j.issn.1007-9033.2011.01.003
    [34] 王遵娅, 丁一汇. 2006. 近53年中国寒潮的变化特征及其可能原因 [J]. 大气科学, 30(6): 1068−1076. doi: 10.3878/j.issn.1006-9895.2006.06.02

    Wang Zunya, Ding Yihui. 2006. Climate change of the cold wave frequency of China in the last 53 years and the possible reasons [J]. Chinese J. Atmos. Sci. (in Chinese), 30(6): 1068−1076. doi: 10.3878/j.issn.1006-9895.2006.06.02
    [35] Wang Z Y, Yang S, Zhou B T. 2017. Preceding features and relationship with possible affecting factors of persistent and extensive icing events in China [J]. Int. J. Climatol., 37(11): 4105−4118. doi: 10.1002/joc.5026
    [36] Wang Z Y, Ding Y H, Zhou B T, et al. 2020. Comparison of two severe low-temperature snowstorm and ice freezing events in China: Role of Eurasian mid-high latitude circulation patterns [J]. Int. J. Climatol., 40(7): 3436−3450. doi: 10.1002/joc.6406
    [37] 魏凤英. 2008. 气候变暖背景下我国寒潮灾害的变化特征 [J]. 自然科学进展, 18(3): 289−295. doi: 10.3321/j.issn:1002-008X.2008.03.007

    Wei Fengying. 2008. Change of the cold wave frequency of China in global warming [J]. Progress in Natural Science (in Chinese), 18(3): 289−295. doi: 10.3321/j.issn:1002-008X.2008.03.007
    [38] 谢永坤, 刘玉芝, 黄建平. 2014. 秋季北极海冰对中国冬季气温的影响 [J]. 气象学报, 72(4): 703−710. doi: 10.11676/qxxb2014.057

    Xie Yongkun, Liu Yuzhi, Huang Jianping. 2014. The influence of the autumn Arctic sea ice on winter air temperature in China [J]. Acta Meteorologica Sinica (in Chinese), 72(4): 703−710. doi: 10.11676/qxxb2014.057
    [39] Xu W H, Li Q X, Wang X L, et al. 2013. Homogenization of Chinese daily surface air temperatures and analysis of trends in the extreme temperature indices [J]. J. Geophys. Res. :Atmos., 118(17): 9708−9720. doi: 10.1002/jgrd.50791
    [40] Yang X Y, Zeng G, Zhang G W, et al. 2020. Interdecadal variation of winter cold surge path in East Asia and its relationship with Arctic sea ice [J]. J. Climate, 33(11): 4907−4925. doi: 10.1175/JCLI-D-19-0751.1
    [41] 周琳, 孙照渤. 2015. 1961−2010年我国冷空气的活动特征 [J]. 大气科学学报, 38(3): 342−353. doi: 10.13878/j.cnki.dqkxxb.20130526002

    Zhou Lin, Sun Zhaobo. 2015. Activity characteristics of cold air in China from 1961 to 2010 [J]. Transactions of Atmospheric Sciences (in Chinese), 38(3): 342−353. doi: 10.13878/j.cnki.dqkxxb.20130526002
    [42] 朱晨玉, 黄菲, 石云昊, 等. 2014. 中国近50年寒潮冷空气的时空特征及其与北极海冰的关系 [J]. 中国海洋大学学报, 44(12): 12−20.

    Zhu Chenyu, Huang Fei, Shi Yunhao, et al. 2014. Spatial−temporal patterns of the cold surge events in China in recent 50 years and its relationship with Arctic sea ice [J]. Periodical of Ocean University of China (in Chinese), 44(12): 12−20.
  • 加载中
图(13)
计量
  • 文章访问数:  86
  • HTML全文浏览量:  12
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-16
  • 网络出版日期:  2021-10-28
  • 刊出日期:  2022-06-02

目录

    /

    返回文章
    返回